1
|
Casas-Román A, Lorite MJ, Werner M, Muñoz S, Gallegos MT, Sanjuán J. The gap gene of Rhizobium etli is required for both free life and symbiosis with common beans. Microbiol Res 2024; 284:127737. [PMID: 38705080 DOI: 10.1016/j.micres.2024.127737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH or Gap) is a ubiquitous enzyme essential for carbon and energy metabolism in most organisms. Despite its primary role in sugar metabolism, GAPDH is recognized for its involvement in diverse cellular processes, being considered a paradigm among multifunctional/moonlighting proteins. Besides its canonical cytoplasmic location, GAPDH has been detected on cell surfaces or as a secreted protein in prokaryotes, yet little is known about its possible roles in plant symbiotic bacteria. Here we report that Rhizobium etli, a nitrogen-fixing symbiont of common beans, carries a single gap gene responsible for both GAPDH glycolytic and gluconeogenic activities. An active Gap protein is required throughout all stages of the symbiosis between R. etli and its host plant Phaseolus vulgaris. Both glycolytic and gluconeogenic Gap metabolic activities likely contribute to bacterial fitness during early and intermediate stages of the interaction, whereas GAPDH gluconeogenic activity seems critical for nodule invasion and nitrogen fixation. Although the R. etli Gap protein is secreted in a c-di-GMP related manner, no involvement of the R. etli gap gene in c-di-GMP related phenotypes, such as flocculation, biofilm formation or EPS production, was observed. Notably, the R. etli gap gene fully complemented a double gap1/gap2 mutant of Pseudomonas syringae for free life growth, albeit only partially in planta, suggesting potential specific roles for each type of Gap protein. Nevertheless, further research is required to unravel additional functions of the R. etli Gap protein beyond its essential metabolic roles.
Collapse
Affiliation(s)
- Ariana Casas-Román
- Departmento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - María-José Lorite
- Departmento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Mariana Werner
- Departmento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Socorro Muñoz
- Departmento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Departmento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (CSIC), Granada, Spain.
| | - Juan Sanjuán
- Departmento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (CSIC), Granada, Spain.
| |
Collapse
|
2
|
Marchante JA, Ruiz-Sáez L, Muñoz S, Sanjuán J, Pérez-Mendoza D. Quantification of Mixed-Linkage β-Glucan (MLG) in Bacteria. Methods Mol Biol 2024; 2751:133-143. [PMID: 38265714 DOI: 10.1007/978-1-0716-3617-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Prokaryotes are known to produce and secrete a broad range of biopolymers with a high functional and structural heterogeneity, often with critical duties in the bacterial physiology and ecology. Among these, exopolysaccharides (EPS) play relevant roles in the interaction of bacteria with eukaryotic hosts. EPS can help to colonize the host and assist in bacterial survival, making this interaction more robust by facilitating the formation of structured biofilms. In addition, they are often key molecules in the specific recognition mechanisms involved in both beneficial and pathogenic bacteria-host interactions. A novel EPS known as MLG (Mixed-Linkage β-Glucan) was recently discovered in rhizobia, where it participates in bacterial aggregation and biofilm formation and is required for efficient attachment to the roots of their legume host plants. MLG is the first and, so far, the only reported linear Mixed-Linkage β-glucan in bacteria, containing a perfect alternation of β (1 → 3) and β (1 → 4) bonds. A phylogenetic study of MLG biosynthetic genes suggests that far from being exclusive of rhizobia, different soil and plant-associated bacteria likely produce MLG, adding this novel polymer to the plethora of surface polysaccharides that help bacteria thrive in the changing environment and to establish successful interactions with their hosts.In this work, a quantification method for MLG is proposed. It relays on the hydrolysis of MLG by a specific enzyme (lichenase), and the subsequent quantification of the released disaccharide (laminaribiose) by the phenol-sulfuric acid method. The protocol has been set up and optimized for its use in 96-well plates, which makes it suitable for high-throughput screening (HTS) approaches. This method stands out by its fast processing, technical simplicity, and capability to handle multiple samples and biological replicates at a time.
Collapse
Affiliation(s)
- Juan Antonio Marchante
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Lucía Ruiz-Sáez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Socorro Muñoz
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Daniel Pérez-Mendoza
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| |
Collapse
|
3
|
Xu LC, Ochetto A, Chen C, Sun D, Allcock HR, Siedlecki CA. Surfaces modified with small molecules that interfere with nucleotide signaling reduce Staphylococcus epidermidis biofilm and increase the efficacy of ciprofloxacin. Colloids Surf B Biointerfaces 2023; 227:113345. [PMID: 37196462 PMCID: PMC10355139 DOI: 10.1016/j.colsurfb.2023.113345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/30/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Staphylococcus epidermidis are common bacteria associated with biofilm related infections on implanted medical devices. Antibiotics are often used in combating such infections, but they may lose their efficacy in the presence of biofilms. Bacterial intracellular nucleotide second messenger signaling plays an important role in biofilm formation, and interference with the nucleotide signaling pathways provides a possible way to control biofilm formation and to increase biofilm susceptibility to antibiotic therapy. This study synthesized small molecule derivates of 4-arylazo-3,5-diamino-1 H-pyrazole (named as SP02 and SP03) and found these molecules inhibited S. epidermidis biofilm formation and induced biofilm dispersal. Analysis of bacterial nucleotide signaling molecules showed that both SP02 and SP03 significantly reduced cyclic dimeric adenosine monophosphate (c-di-AMP) levels in S. epidermidis at doses as low as 25 µM while having significant effects on multiple nucleotides signaling including cyclic dimeric guanosine monophosphate (c-di-GMP), c-di-AMP, and cyclic adenosine monophosphate (cAMP) at high doses (100 µM or greater). We then tethered these small molecules to polyurethane (PU) biomaterial surfaces and investigated biofilm formation on the modified surfaces. Results showed that the modified surfaces significantly inhibited biofilm formation during 24 h and 7-day incubations. The antibiotic ciprofloxacin was used to treat these biofilms and the efficacy of the antibiotic (2 µg/mL) was found to increase from 94.8% on unmodified PU surfaces to > 99.9% on both SP02 and SP03 modified surfaces (>3 log units). Results demonstrated the feasibility of tethering small molecules that interfere with nucleotide signaling onto polymeric biomaterial surfaces and in a way that interrupts biofilm formation and increases antibiotic efficacy for S. epidermidis infections.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Alyssa Ochetto
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dongxiao Sun
- Department of Pharmacology, Mass Spectrometry Core Facilities (RRID: SCR_017831), The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christopher A Siedlecki
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Biomedical Engineering, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Lorite MJ, Casas-Román A, Girard L, Encarnación S, Díaz-Garrido N, Badía J, Baldomá L, Pérez-Mendoza D, Sanjuán J. Impact of c-di-GMP on the Extracellular Proteome of Rhizobium etli. BIOLOGY 2022; 12:44. [PMID: 36671740 PMCID: PMC9855851 DOI: 10.3390/biology12010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Extracellular matrix components of bacterial biofilms include biopolymers such as polysaccharides, nucleic acids and proteins. Similar to polysaccharides, the secretion of adhesins and other matrix proteins can be regulated by the second messenger cyclic diguanylate (cdG). We have performed quantitative proteomics to determine the extracellular protein contents of a Rhizobium etli strain expressing high cdG intracellular levels. cdG promoted the exportation of proteins that likely participate in adhesion and biofilm formation: the rhizobial adhesion protein RapA and two previously undescribed likely adhesins, along with flagellins. Unexpectedly, cdG also promoted the selective exportation of cytoplasmic proteins. Nearly 50% of these cytoplasmic proteins have been previously described as moonlighting or candidate moonlighting proteins in other organisms, often found extracellularly. Western blot assays confirmed cdG-promoted export of two of these cytoplasmic proteins, the translation elongation factor (EF-Tu) and glyceraldehyde 3-phosphate dehydrogenase (Gap). Transmission Electron Microscopy immunolabeling located the Gap protein in the cytoplasm but was also associated with cell membranes and extracellularly, indicative of an active process of exportation that would be enhanced by cdG. We also obtained evidence that cdG increases the number of extracellular Gap proteoforms, suggesting a link between cdG, the post-translational modification and the export of cytoplasmic proteins.
Collapse
Affiliation(s)
- María J. Lorite
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Ariana Casas-Román
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Lourdes Girard
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Natalia Díaz-Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefa Badía
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08028 Barcelona, Spain
| | - Laura Baldomá
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Daniel Pérez-Mendoza
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
5
|
Pérez-Mendoza D, Romero-Jiménez L, Rodríguez-Carvajal MÁ, Lorite MJ, Muñoz S, Olmedilla A, Sanjuán J. The Role of Two Linear β-Glucans Activated by c-di-GMP in Rhizobium etli CFN42. BIOLOGY 2022; 11:biology11091364. [PMID: 36138843 PMCID: PMC9495663 DOI: 10.3390/biology11091364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Bacterial exopolysaccharides (EPS) are secreted biopolymers with often critical roles in bacterial physiology and ecology. In addition to their biological role, there is increasing interest for EPS in various industrial sectors. β-glucans are among the most important ones including cellulose as the most abundant organic polymer on earth, but also newcomers, such as the bacterial Mixed Linkage β-Glucan (MLG), displaying a unique repeating unit suggestive of biotechnological potential. In this work we describe Rhizobium etli as the first bacterium reported to be able to produce these two linear β-glucans cellulose and MLG. Rhizobium etli is an agronomic relevant rhizobacteria able to perform Biological Nitrogen Fixation (BNF) in a symbiotic association with common bean plants. The production and regulation of cellulose and MLG by Rhizobium etli CFN42 is discussed and their impact on its free-living and symbiotic lifestyles evaluated. Abstract Bacterial exopolysaccharides (EPS) have been implicated in a variety of functions that assist in bacterial survival, colonization, and host–microbe interactions. Among them, bacterial linear β-glucans are polysaccharides formed by D-glucose units linked by β-glycosidic bonds, which include curdlan, cellulose, and the new described Mixed Linkage β-Glucan (MLG). Bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a universal bacterial second messenger that usually promote EPS production. Here, we report Rhizobium etli as the first bacterium capable of producing cellulose and MLG. Significant amounts of these two β-glucans are not produced under free-living laboratory conditions, but their production is triggered upon elevation of intracellular c-di-GMP levels, both contributing to Congo red (CR+) and Calcofluor (CF+) phenotypes. Cellulose turned out to be more relevant for free-living phenotypes promoting flocculation and biofilm formation under high c-di-GMP conditions. None of these two EPS are essential for attachment to roots of Phaseolus vulgaris, neither for nodulation nor for symbiotic nitrogen fixation. However, both β-glucans separately contribute to the fitness of interaction between R. etli and its host. Overproduction of these β-glucans, particularly cellulose, appears detrimental for symbiosis. This indicates that their activation by c-di-GMP must be strictly regulated in time and space and should be controlled by different, yet unknown, regulatory pathways.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
- Correspondence: (D.P.-M.); (J.S.); Tel.: +34-958-526-522 (D.P.-M.); +34-958-526-552 (J.S.)
| | - Lorena Romero-Jiménez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | | | - María J. Lorite
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Socorro Muñoz
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Adela Olmedilla
- Department of Stress, Development and Signaling in Plants, CSIC, 18008 Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
- Correspondence: (D.P.-M.); (J.S.); Tel.: +34-958-526-522 (D.P.-M.); +34-958-526-552 (J.S.)
| |
Collapse
|
6
|
Shimizu T, Aritoshi T, Beatty JT, Masuda T. Persulfide-Responsive Transcription Factor SqrR Regulates Gene Transfer and Biofilm Formation via the Metabolic Modulation of Cyclic di-GMP in Rhodobacter capsulatus. Microorganisms 2022; 10:908. [PMID: 35630353 PMCID: PMC9143464 DOI: 10.3390/microorganisms10050908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Bacterial phage-like particles (gene transfer agents-GTAs) are widely employed as a crucial genetic vector in horizontal gene transfer. GTA-mediated gene transfer is induced in response to various stresses; however, regulatory mechanisms are poorly understood. We found that the persulfide-responsive transcription factor SqrR may repress the expression of several GTA-related genes in the photosynthetic bacterium Rhodobacter capsulatus. Here, we show that the sqrR deletion mutant (ΔsqrR) produces higher amounts of intra- and extracellular GTA and gene transfer activity than the wild type (WT). The transcript levels of GTA-related genes are also increased in ΔsqrR. In spite of the presumption that GTA-related genes are regulated in response to sulfide by SqrR, treatment with sulfide did not alter the transcript levels of these genes in the WT strain. Surprisingly, hydrogen peroxide increased the transcript levels of GTA-related genes in the WT, and this alteration was abolished in the ΔsqrR strain. Moreover, the absence of SqrR changed the intracellular cyclic dimeric GMP (c-di-GMP) levels, and the amount of c-di-GMP was correlated with GTA activity and biofilm formation. These results suggest that SqrR is related to the repression of GTA production and the activation of biofilm formation via control of the intracellular c-di-GMP levels.
Collapse
Affiliation(s)
- Takayuki Shimizu
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (T.A.); (T.M.)
| | - Toma Aritoshi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (T.A.); (T.M.)
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (T.A.); (T.M.)
| |
Collapse
|
7
|
Geng M, Ai L, Ma M, Li P, Guo L, Shan G, Bai L. A DasA family sugar binding protein Ste2 links nutrient and oxidative stress to exopolysaccharides production in Streptomyces sp. 139. BMC Microbiol 2022; 22:69. [PMID: 35255829 PMCID: PMC8902715 DOI: 10.1186/s12866-022-02472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ebosin is an exopolysaccharide produced by Streptomyces sp. 139, and its biosynthetic gene cluster (ste) has been previously described. Ste234 has high homology to the well-known ATP-binding cassette transport system DasABC, which has been linked to the regulation of morphological differentiation, antibiotics biosynthesis and aminosugars utilization in Streptomycetes. This study was conducted to evaluate the effect of the DasA family sugar binding protein Ste2 on Streptomyces sp. 139. Results The disruption of ste2 results in the upregulation of transcription of genes within Ebosin biosynthetic gene cluster and a two-fold increase in Ebosin production. RNA sequencing data suggests that the disruption of ste2 results in the decreased utilization of carbon and nitrogen sources, increased sensitivity to oxidative stress, as well as differed strain morphology, all of which have been experimentally proven. Conclusions Taken together, Ste2 controls Ebosin yields, aminosugars uptake, sensitivity to oxidative stress, and morphological differentiation of Streptomyces sp. 139. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02472-7.
Collapse
Affiliation(s)
- Mengxin Geng
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Limei Ai
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, People's Republic of China
| | - Ming Ma
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Panpan Li
- Analytical & Testing Center, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lianhong Guo
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Guangzhi Shan
- Analytical & Testing Center, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liping Bai
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
8
|
Sierra Cacho D, Zamorano Sánchez DS, Xiqui-Vázquez ML, Viruega Góngora VI, Ramírez-Mata A, Baca BE. CdgC, a Cyclic-di-GMP Diguanylate Cyclase of Azospirillum baldaniorum Is Involved in Internalization to Wheat Roots. FRONTIERS IN PLANT SCIENCE 2021; 12:748393. [PMID: 34745182 PMCID: PMC8564387 DOI: 10.3389/fpls.2021.748393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Azospirillum baldaniorum is a plant growth-promoting rhizobacterium (PGPR) capable of fixing nitrogen, the synthesis of several phytohormones including indole-acetic acid, and induction of plant defenses against phytopathogens. To establish a successful and prolonged bacteria-plant interaction, A. baldaniorum can form biofilms, bacterial communities embedded in a self-made matrix formed by extracellular polymeric substances which provide favorable conditions for survival. A key modulator of biofilm formation is the second messenger bis-(3'-5')-cyclic-dimeric-GMP (c-di-GMP), which is synthesized by diguanylate cyclases (DGC) and degraded by specific phosphodiesterases. In this study, we analyzed the contribution of a previously uncharacterized diguanylate cyclase designated CdgC, to biofilm formation and bacterial-plant interaction dynamics. We showed that CdgC is capable of altering c-di-GMP levels in a heterologous host, strongly supporting its function as a DGC. The deletion of cdgC resulted in alterations in the three-dimensional structure of biofilms in a nitrogen-source dependent manner. CdgC was required for optimal colonization of wheat roots. Since we also observed that CdgC played an important role in exopolysaccharide production, we propose that this signaling protein activates a physiological response that results in the strong attachment of bacteria to the roots, ultimately contributing to an optimal bacterium-plant interaction. Our results demonstrate that the ubiquitous second messenger c-di-GMP is a key factor in promoting plant colonization by the PGPR A. baldaniorum by allowing proficient internalization in wheat roots. Understanding the molecular basis of PGPR-plant interactions will enable the design of better biotechnological strategies of agro-industrial interest.
Collapse
Affiliation(s)
- Daniel Sierra Cacho
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| | - David S. Zamorano Sánchez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Maria Luisa Xiqui-Vázquez
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| | - Víctor Iván Viruega Góngora
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| | - Alberto Ramírez-Mata
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| | - Beatriz E. Baca
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| |
Collapse
|
9
|
Dorado‐Morales P, Martínez I, Rivero‐Buceta V, Díaz E, Bähre H, Lasa I, Solano C. Elevated c-di-GMP levels promote biofilm formation and biodesulfurization capacity of Rhodococcus erythropolis. Microb Biotechnol 2021; 14:923-937. [PMID: 33128507 PMCID: PMC8085952 DOI: 10.1111/1751-7915.13689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022] Open
Abstract
Bacterial biofilms provide high cell density and a superior adaptation and protection from stress conditions compared to planktonic cultures, making them a very promising approach for bioremediation. Several Rhodococcus strains can desulfurize dibenzothiophene (DBT), a major sulphur pollutant in fuels, reducing air pollution from fuel combustion. Despite multiple efforts to increase Rhodococcus biodesulfurization activity, there is still an urgent need to develop better biocatalysts. Here, we implemented a new approach that consisted in promoting Rhodococcus erythropolis biofilm formation through the heterologous expression of a diguanylate cyclase that led to the synthesis of the biofilm trigger molecule cyclic di-GMP (c-di-GMP). R. erythropolis biofilm cells displayed a significantly increased DBT desulfurization activity when compared to their planktonic counterparts. The improved biocatalyst formed a biofilm both under batch and continuous flow conditions which turns it into a promising candidate for the development of an efficient bioreactor for the removal of sulphur heterocycles present in fossil fuels.
Collapse
Affiliation(s)
- Pedro Dorado‐Morales
- Laboratory of Microbial PathogenesisNavarrabiomed‐Universidad Pública de Navarra (UPNA)‐Complejo Hospitalario de Navarra (CHN)IdiSNAIrunlarrea 3PamplonaNavarra31008Spain
| | - Igor Martínez
- Department of Systems BiologyCentro Nacional de BiotecnologíaAgencia Estatal Consejo Superior de Investigaciones CientíficasDarwin 3Madrid28049Spain
| | - Virginia Rivero‐Buceta
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita SalasAgencia Estatal Consejo Superior de Investigaciones CientíficasRamiro de Maeztu 9Madrid28040Spain
| | - Eduardo Díaz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita SalasAgencia Estatal Consejo Superior de Investigaciones CientíficasRamiro de Maeztu 9Madrid28040Spain
| | - Heike Bähre
- Research Core Unit MetabolomicsHannover Medical SchoolCarl‐Neuberg‐Straße 1Hannover30625Germany
| | - Iñigo Lasa
- Laboratory of Microbial PathogenesisNavarrabiomed‐Universidad Pública de Navarra (UPNA)‐Complejo Hospitalario de Navarra (CHN)IdiSNAIrunlarrea 3PamplonaNavarra31008Spain
| | - Cristina Solano
- Laboratory of Microbial PathogenesisNavarrabiomed‐Universidad Pública de Navarra (UPNA)‐Complejo Hospitalario de Navarra (CHN)IdiSNAIrunlarrea 3PamplonaNavarra31008Spain
| |
Collapse
|
10
|
Bacterial Biopolymer: Its Role in Pathogenesis to Effective Biomaterials. Polymers (Basel) 2021; 13:polym13081242. [PMID: 33921239 PMCID: PMC8069653 DOI: 10.3390/polym13081242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteria are considered as the major cell factories, which can effectively convert nitrogen and carbon sources to a wide variety of extracellular and intracellular biopolymers like polyamides, polysaccharides, polyphosphates, polyesters, proteinaceous compounds, and extracellular DNA. Bacterial biopolymers find applications in pathogenicity, and their diverse materialistic and chemical properties make them suitable to be used in medicinal industries. When these biopolymer compounds are obtained from pathogenic bacteria, they serve as important virulence factors, but when they are produced by non-pathogenic bacteria, they act as food components or biomaterials. There have been interdisciplinary studies going on to focus on the molecular mechanism of synthesis of bacterial biopolymers and identification of new targets for antimicrobial drugs, utilizing synthetic biology for designing and production of innovative biomaterials. This review sheds light on the mechanism of synthesis of bacterial biopolymers and its necessary modifications to be used as cell based micro-factories for the production of tailor-made biomaterials for high-end applications and their role in pathogenesis.
Collapse
|
11
|
Fernández-Llamosas H, Díaz E, Carmona M. Motility, Adhesion and c-di-GMP Influence the Endophytic Colonization of Rice by Azoarcus sp. CIB. Microorganisms 2021; 9:microorganisms9030554. [PMID: 33800326 PMCID: PMC7998248 DOI: 10.3390/microorganisms9030554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023] Open
Abstract
Proficient crop production is needed to ensure the feeding of a growing global population. The association of bacteria with plants plays an important role in the health state of the plants contributing to the increase of agricultural production. Endophytic bacteria are ubiquitous in most plant species providing, in most cases, plant promotion properties. However, the knowledge on the genetic determinants involved in the colonization of plants by endophytic bacteria is still poorly understood. In this work we have used a genetic approach based on the construction of fliM, pilX and eps knockout mutants to show that the motility mediated by a functional flagellum and the pili type IV, and the adhesion modulated by exopolysaccarides are required for the efficient colonization of rice roots by the endophyte Azoarcus sp. CIB. Moreover, we have demonstrated that expression of an exogenous diguanylate cyclase or phophodiesterase, which causes either an increase or decrease of the intracellular levels of the second messenger cyclic di-GMP (c-di-GMP), respectively, leads to a reduction of the ability of Azoarcus sp. CIB to colonize rice plants. Here we present results demonstrating the unprecedented role of the universal second messenger cyclic-di-GMP in plant colonization by an endophytic bacterium, Azoarcus sp. CIB. These studies pave the way to further strategies to modulate the interaction of endophytes with their target plant hosts.
Collapse
|
12
|
Viruega-Góngora VI, Acatitla-Jácome IS, Reyes-Carmona SR, Baca BE, Ramírez-Mata A. Spatio-temporal formation of biofilms and extracellular matrix analysis in Azospirillum brasilense. FEMS Microbiol Lett 2021; 367:5762672. [PMID: 32105306 DOI: 10.1093/femsle/fnaa037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/25/2020] [Indexed: 01/02/2023] Open
Abstract
Elucidation of biofilm structure formation in the plant growth-promoting rhizobacterium Azospirillum brasilense is necessary to gain a better understanding of the growth of cells within the extracellular matrix and its role in the colonization of plants of agronomic importance. We used immunofluorescence microscopy and confocal laser scanning microscopy to study spatio-temporal biofilm formation on an abiotic surface. Observations facilitated by fluorescence microscopy revealed the presence of polar flagellin, exopolysaccharides, outer major membrane protein (OmaA) and extracellular DNA in the Azospirillum biofilm matrix. In static culture conditions, the polar flagellum disaggregated after 3 days of biofilm growth, but exopolysaccharides were increasing. These findings suggest that the first step in biofilm formation may be attachment, in which the bacterium first makes contact with a surface through its polar flagellum. After attaching to the surface, the long flagella and OmaA intertwine the cells to form a network. These bacterial aggregates initiate biofilm development. The underlying mechanisms dictating how the biofilm matrix components of A. brasilense direct the overall morphology of the biofilm are not well known. The methods developed here might be useful in further studies that analyze the differential spatial regulation of genes encoding matrix components that drive biofilm construction.
Collapse
Affiliation(s)
- Víctor I Viruega-Góngora
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| | - Iris S Acatitla-Jácome
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| | - Sandra R Reyes-Carmona
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| | - Beatriz E Baca
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| | - Alberto Ramírez-Mata
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| |
Collapse
|
13
|
Yang S, Wu Y, Qu C, Fein JB, He Y, Huang Q, Cai P. Quantitative analysis of the surficial and adhesion properties of the Gram-negative bacterial species Comamonas testosteroni modulated by c-di-GMP. Colloids Surf B Biointerfaces 2020; 198:111497. [PMID: 33296824 DOI: 10.1016/j.colsurfb.2020.111497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Cyclic diguanylate monophosphate (c-di-GMP) is a ubiquitous intracellular secondary messenger which governs the transition from a bacterial cell's planktonic state to biofilm formation by stimulating the production of a variety of exopolysaccharide material by the bacterial cell. A range of genes involved in c-di-GMP signaling in the Gram-negative species Comamonas testosteroni have been identified previously, yet the physical-chemical properties of the produced extracellular polymeric substances (EPS) and the bacterial adhesion characteristics regulated by c-di-GMP are not well understood. Here, we modulated the in vivo c-di-GMP levels of Comamonas testosteroni WDL7 through diguanylate cyclase (YedQ) and phosphodiesterase (YhjH) gene editing. The strains and their adhesion properties were characterized by Fourier-transform infrared and two-dimensional correlation spectroscopy analysis (FTIR-2D CoS), contact angle and zeta potential measurements, atomic force microscopy (AFM) and extended-Derjaguin-Landau-Verwey-Overbeek (ExDLVO) analysis. Our results show that high c-di-GMP levels promoted the secretion of long-chain hydrophobic and electroneutral extracellular polysaccharides and proteins. The protein molecules on WDL7/pYedQ2 promoted the bacterial self-aggregation and adhesion onto negatively charged surfaces. In contrast, the reduction of intracellular c-di-GMP concentrations resulted in a nearly 80 % decrease in the adhesion of bacterial cells, although little change in the surface hydrophobicity or surface charge properties were observed for these cells relative to the wild type. These results indicate that the reduced adsorption of WDL7/YhjH that we observed may be caused by the flagellum-accelerated mobility at low c-di-GMP concentrations. Taken together, these results improve our mechanistic understanding of the effects of c-di-GMP in controlling bacterial physical-chemical properties and initial biofilm development.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jeremy B Fein
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, Notre Dame, IN 46556, USA
| | - Yizhuang He
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Increased c-di-GMP Levels Lead to the Production of Alginates of High Molecular Mass in Azotobacter vinelandii. J Bacteriol 2020; 202:JB.00134-20. [PMID: 32989088 DOI: 10.1128/jb.00134-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Azotobacter vinelandii produces the linear exopolysaccharide alginate, a compound of significant biotechnological importance. The biosynthesis of alginate in A. vinelandii and Pseudomonas aeruginosa has several similarities but is regulated somewhat differently in the two microbes. Here, we show that the second messenger cyclic dimeric GMP (c-di-GMP) regulates the production and the molecular mass of alginate in A. vinelandii The hybrid protein MucG, containing conserved GGDEF and EAL domains and N-terminal HAMP and PAS domains, behaved as a c-di-GMP phosphodiesterase (PDE). This activity was found to negatively affect the amount and molecular mass of the polysaccharide formed. On the other hand, among the diguanylate cyclases (DGCs) present in A. vinelandii, AvGReg, a globin-coupled sensor (GCS) DGC that directly binds to oxygen, was identified as the main c-di-GMP-synthesizing contributor to alginate production. Overproduction of AvGReg in the parental strain phenocopied a ΔmucG strain with regard to alginate production and the molecular mass of the polymer. MucG was previously shown to prevent the synthesis of high-molecular-mass alginates in response to reduced oxygen transfer rates (OTRs). In this work, we show that cultures exposed to reduced OTRs accumulated higher levels of c-di-GMP; this finding strongly suggests that at least one of the molecular mechanisms involved in modulation of alginate production and molecular mass by oxygen depends on a c-di-GMP signaling module that includes the PAS domain-containing PDE MucG and the GCS DGC AvGReg.IMPORTANCE c-di-GMP has been widely recognized for its essential role in the production of exopolysaccharides in bacteria, such as alginate produced by Pseudomonas and Azotobacter spp. This study reveals that the levels of c-di-GMP also affect the physical properties of alginate, favoring the production of high-molecular-mass alginates in response to lower OTRs. This finding opens up new alternatives for the design of tailor-made alginates for biotechnological applications.
Collapse
|
15
|
Wang C, Yu G, Yang F, Wang J. Formation of anaerobic granules and microbial community structure analysis in anaerobic hydrolysis denitrification reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139734. [PMID: 32526572 DOI: 10.1016/j.scitotenv.2020.139734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
An anaerobic hydrolysis denitrification (AnHD) process was developed to pretreat municipal wastewater for integrating partial nitration/anammox process. The results indicated that the carbon to nitrogen (C/N) ratio of municipal wastewater changed from 4.4 ± 0.3 to 2.2 ± 0.2 after pretreatment by AnHD process, which was favorable to the partial nitration/anammox process. The influent C/N ratio had influence on the formation of anaerobic granules. Two intrinsic factors, cyclic diguanylic acid (c-di-GMP) concentration and core bacterial community, were mainly responsible for the anaerobic granular formation. The higher c-di-GMP content increased the extracellular polymeric substances and decreased the motility of the bacteria, which was beneficial for the formation of anaerobic granules. The microbial community analysis showed that the lactic acid bacteria (Lactococcus) was the core bacteria during anaerobic hydrolysis process, while the denitrifying bacteria (Denitratisoma and unclassified Comamonadaceae) were the core bacterial community during AnHD process, which were responsible for nitrogen removal and anaerobic granular formation.
Collapse
Affiliation(s)
- Chao Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Guoce Yu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
16
|
Peng LH, Liang X, Chang RH, Mu JY, Chen HE, Yoshida A, Osatomi K, Yang JL. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus. BIOFOULING 2020; 36:753-765. [PMID: 32847400 DOI: 10.1080/08927014.2020.1807520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Larval settlement and metamorphosis is essential for the development of marine invertebrates. Although polysaccharides are involved in larval settlement and metamorphosis of Mytilus coruscus, the molecular basis of polysaccharides underlying this progression remains largely unknown. Here, the roles of the polysaccharide biosynthesis-related gene 01912 of Pseudoalteromonas marina ECSMB14103 in the regulation of larval settlement and metamorphosis were examined by gene-knockout technique. Compared with biofilms (BFs) of the wild-type P. marina, Δ01912 BFs with a higher colanic acid (CA) content showed a higher inducing activity on larval settlement and metamorphosis. Deletion of the 01912 gene caused an increase in c-di-GMP levels, accompanied by a decrease in the motility, an increase in cell aggregation, and overproduction of CA. Thus, the bacterial polysaccharide biosynthesis-related gene 01912 may regulate mussel settlement by producing CA via the coordination of c-di-GMP. This work provides a deeper insight into the molecular mechanism of polysaccharides in modulating mussel settlement.
Collapse
Affiliation(s)
- Li-Hua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Rui-Heng Chang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jia-Yi Mu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hui-E Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Osatomi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
17
|
Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP. Proc Natl Acad Sci U S A 2020; 117:17211-17220. [PMID: 32611811 PMCID: PMC7382256 DOI: 10.1073/pnas.2001232117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cyclic diguanylate (c-di-GMP) regulates a wide range of bacterial cellular functions from biofilm formation to growth and survival. Based on the structural analysis of the complex of c-di-GMP with a bacterial effector protein followed by amino acid sequence optimization, we have developed a short peptide that binds c-di-GMP with nanomolar affinity and high specificity. This provides many opportunities for biotechnological and biomedical applications. In particular, we show that such an endogenously expressed peptide effectively reduces intracellular c-di-GMP and thereby inhibits and even disintegrates biofilms in Pseudomonas aeruginosa. The bacterial second messenger cyclic diguanylate (c-di-GMP) regulates a wide range of cellular functions from biofilm formation to growth and survival. Targeting a second-messenger network is challenging because the system involves a multitude of components with often overlapping functions. Here, we present a strategy to intercept c-di-GMP signaling pathways by directly targeting the second messenger. For this, we developed a c-di-GMP–sequestering peptide (CSP) that was derived from a CheY-like c-di-GMP effector protein. CSP binds c-di-GMP with submicromolar affinity. The elucidation of the CSP⋅c-di-GMP complex structure by NMR identified a linear c-di-GMP–binding motif, in which a self-intercalated c-di-GMP dimer is tightly bound by a network of H bonds and π-stacking interactions involving arginine and aromatic residues. Structure-based mutagenesis yielded a variant with considerably higher, low-nanomolar affinity, which subsequently was shortened to 19 residues with almost uncompromised affinity. We demonstrate that endogenously expressed CSP intercepts c-di-GMP signaling and effectively inhibits biofilm formation in Pseudomonas aeruginosa, the most widely used model for serious biofilm-associated medical implications.
Collapse
|
18
|
Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol 2020; 28:668-681. [PMID: 32663461 DOI: 10.1016/j.tim.2020.03.016] [Citation(s) in RCA: 707] [Impact Index Per Article: 141.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
Biofilms consist of microbial communities embedded in a 3D extracellular matrix. The matrix is composed of a complex array of extracellular polymeric substances (EPS) that contribute to the unique attributes of biofilm lifestyle and virulence. This ensemble of chemically and functionally diverse biomolecules is termed the 'matrixome'. The composition and mechanisms of EPS matrix formation, and its role in biofilm biology, function, and microenvironment are being revealed. This perspective article highlights recent advances about the multifaceted role of the 'matrixome' in the development, physical-chemical properties, and virulence of biofilms. We emphasize that targeting biofilm-specific conditions such as the matrixome could lead to precise and effective antibiofilm approaches. We also discuss the limited knowledge in the context of polymicrobial biofilms, and the need for more in-depth analyses of the EPS matrix in mixed communities that are associated with many human infectious diseases.
Collapse
Affiliation(s)
- L Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland
| | - Z Ren
- Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - H Koo
- Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Center for Innovation and Precision Dentistry, University of Pennsylvania School of Dental Medicine, School of Engineering and Applied Sciences, Philadelphia, PA, USA
| | - T Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Sun Y, Liu Y, Liu X, Dang X, Dong X, Xie Z. Azorhizobium caulinodans c-di-GMP phosphodiesterase Chp1 involved in motility, EPS production, and nodulation of the host plant. Appl Microbiol Biotechnol 2020; 104:2715-2729. [PMID: 32002604 DOI: 10.1007/s00253-020-10404-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Establishment of the rhizobia-legume symbiosis is usually accompanied by hydrogen peroxide (H2O2) production by the legume host at the site of infection, a process detrimental to rhizobia. In Azorhizobium caulinodans ORS571, deletion of chp1, a gene encoding c-di-GMP phosphodiesterase, led to increased resistance against H2O2 and to elevated nodulation efficiency on its legume host Sesbania rostrata. Three domains were identified in the Chp1: a PAS domain, a degenerate GGDEF domain, and an EAL domain. An in vitro enzymatic activity assay showed that the degenerate GGDEF domain of Chp1 did not have diguanylate cyclase activity. The phosphodiesterase activity of Chp1 was attributed to its EAL domain which could hydrolyse c-di-GMP into pGpG. The PAS domain functioned as a regulatory domain by sensing oxygen. Deletion of Chp1 resulted in increased intracellular c-di-GMP level, decreased motility, increased aggregation, and increased EPS (extracellular polysaccharide) production. H2O2-sensitivity assay showed that increased EPS production could provide ORS571 with resistance against H2O2. Thus, the elevated nodulation efficiency of the ∆chp1 mutant could be correlated with a protective role of EPS in the nodulation process. These data suggest that c-di-GMP may modulate the A. caulinodans-S. rostrata nodulation process by regulating the production of EPS which could protect rhizobia against H2O2.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, People's Republic of China
| | - Yanan Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaolin Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoxiao Dang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoyan Dong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Zhihong Xie
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China.
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China.
| |
Collapse
|
20
|
Huertas MJ, Matilla MA. Training bacteria to produce environmentally friendly polymers of industrial and medical relevance. Microb Biotechnol 2019; 13:14-16. [PMID: 31380610 PMCID: PMC6922514 DOI: 10.1111/1751-7915.13470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/21/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- María José Huertas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada, 18008, Spain
| |
Collapse
|
21
|
Lipa P, Vinardell JM, Janczarek M. Transcriptomic Studies Reveal that the Rhizobium leguminosarum Serine/Threonine Protein Phosphatase PssZ has a Role in the Synthesis of Cell-Surface Components, Nutrient Utilization, and Other Cellular Processes. Int J Mol Sci 2019; 20:ijms20122905. [PMID: 31197117 PMCID: PMC6628131 DOI: 10.3390/ijms20122905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing symbiotic associations with clover plants (Trifolium spp.). Surface polysaccharides, transport systems, and extracellular components synthesized by this bacterium are required for both the adaptation to changing environmental conditions and successful infection of host plant roots. The pssZ gene located in the Pss-I region, which is involved in the synthesis of extracellular polysaccharide, encodes a protein belonging to the group of serine/threonine protein phosphatases. In this study, a comparative transcriptomic analysis of R. leguminosarum bv. trifolii wild-type strain Rt24.2 and its derivative Rt297 carrying a pssZ mutation was performed. RNA-Seq data identified a large number of genes differentially expressed in these two backgrounds. Transcriptome profiling of the pssZ mutant revealed a role of the PssZ protein in several cellular processes, including cell signalling, transcription regulation, synthesis of cell-surface polysaccharides and components, and bacterial metabolism. In addition, we show that inactivation of pssZ affects the rhizobial ability to grow in the presence of different sugars and at various temperatures, as well as the production of different surface polysaccharides. In conclusion, our results identified a set of genes whose expression was affected by PssZ and confirmed the important role of this protein in the rhizobial regulatory network.
Collapse
Affiliation(s)
- Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
22
|
Pérez-Mendoza D, Felipe A, Ferreiro MD, Sanjuán J, Gallegos MT. AmrZ and FleQ Co-regulate Cellulose Production in Pseudomonas syringae pv. Tomato DC3000. Front Microbiol 2019; 10:746. [PMID: 31057500 PMCID: PMC6478803 DOI: 10.3389/fmicb.2019.00746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas syringae pv. tomato DC3000 carries the wssABCDEFGHI operon for the synthesis of acetylated cellulose, whose production is stimulated by increasing the intracellular levels of the second messenger c-di-GMP. This enhances air-liquid biofilm formation and generates a wrinkly colony morphotype in solid media. In the present study we show that cellulose production is a complex process regulated at multiple levels and involving different players in this bacterium. Using different in vitro approaches, including Electrophoretic Mobility Shift Assay (EMSA) and footprint analysis, we demonstrated the interrelated role of two transcriptional regulators, AmrZ and FleQ, over cellulose production in Pto DC3000 and the influence of c-di-GMP in this process. Under physiological c-di-GMP levels, both regulators bind directly to adjacent regions at the wss promoter inhibiting its expression. However, just FleQ responds to c-di-GMP releasing from its wss operator site and converting from a repressor to an activator of cellulose production. The additive effect of the double amrZ/fleQ mutation on the expression of wss, together with the fact that they are not cross-regulated at the transcriptional level, suggest that FleQ and AmrZ behave as independent regulators, unlike what has been described in other Pseudomonas species. Furthermore, this dual co-regulation exerted by AmrZ and FleQ is not limited to cellulose production, but also affects other important phenotypes in Pto DC3000, such as motility and virulence.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Antonia Felipe
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Juan Sanjuán
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
23
|
Screening of c-di-GMP-Regulated Exopolysaccharides in Host Interacting Bacteria. Methods Mol Biol 2018; 1734:263-275. [PMID: 29288461 DOI: 10.1007/978-1-4939-7604-1_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bacterial exopolysaccharides (EPS) often confer a survival advantage by protecting the cell against abiotic and biotic stresses, including host defensive factors. They are also main components of the extracellular matrix involved in cell-cell recognition, surface adhesion and biofilm formation. Biosynthesis of a growing number of EPS has been reported to be regulated by the ubiquitous second messenger c-di-GMP, which promotes the transition to a biofilm mode of growth in an intimate association with the eukaryotic host. Here we describe a strategy based on the combination of an approach to artificially increase the intracellular level of c-di-GMP in virtually any gram-negative bacteria with a high throughput screening (HTS) for the identification of monosaccharide composition and carbohydrate fingerprinting of novel EPS, or modified variants, that can be involved in host-bacteria interactions.
Collapse
|
24
|
Gambari C, Boyeldieu A, Armitano J, Méjean V, Jourlin-Castelli C. Control of pellicle biogenesis involves the diguanylate cyclases PdgA and PdgB, the c-di-GMP binding protein MxdA and the chemotaxis response regulator CheY3 in Shewanella oneidensis. Environ Microbiol 2018; 21:81-97. [PMID: 30252211 DOI: 10.1111/1462-2920.14424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 11/29/2022]
Abstract
Shewanella oneidensis is an aquatic proteobacterium with remarkable respiratory and chemotactic abilities. It is also capable of forming biofilms either associated to surfaces (SSA-biofilm) or at the air-liquid interface (pellicle). We have previously shown that pellicle biogenesis in S. oneidensis requires the flagellum and the chemotaxis regulatory system including CheA3 kinase and CheY3 response regulator. Here we searched for additional factors involved in pellicle development. Using a multicopy library of S. oneidensis chromosomal fragments, we identified two genes encoding putative diguanylate cyclases (pdgA and pdgB) and allowing pellicle formation in the non-pellicle-forming cheY3-deleted mutant. A mutant deleted of both pdgA and pdgB is affected during pellicle development. By overexpressing phosphodiesterase encoding genes, we confirmed the key role of c-di-GMP in pellicle biogenesis. The mxd operon, previously proposed to encode proteins involved in exopolysaccharide biosynthesis, is also essential for pellicle formation. In addition, we showed that the MxdA protein, containing a degenerate GGDEF motif, binds c-di-GMP and interacts with both CheY3 and PdgA. Therefore, we propose that pellicle biogenesis in S. oneidensis is controlled by a complex pathway that involves the chemotaxis response regulator CheY3, the two putative diguanylate cyclases PdgA and PdgB, and the c-di-GMP binding protein MxdA.
Collapse
|
25
|
Pérez-Mendoza D, Bertinetti D, Lorenz R, Gallegos MT, Herberg FW, Sanjuán J. A novel c-di-GMP binding domain in glycosyltransferase BgsA is responsible for the synthesis of a mixed-linkage β-glucan. Sci Rep 2017; 7:8997. [PMID: 28827694 PMCID: PMC5567048 DOI: 10.1038/s41598-017-09290-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/14/2017] [Indexed: 12/04/2022] Open
Abstract
BgsA is the glycosyltransferase (GT) involved in the synthesis of a linear mixed-linkage β-glucan (MLG), a recently described exopolysaccharide activated by c-di-GMP in Sinorhizobium meliloti and other Rhizobiales. Although BgsA displays sequence and structural homology with bacterial cellulose synthases (CS), it does not contain any predictable c-di-GMP binding domain. In this work we demonstrate that the cytoplasmic C-terminal domain of BgsA (C-BgsA) binds c-di-GMP with both high affinity (KD = 0.23 μM) and specificity. C-BgsA is structurally different to the otherwise equivalent cytoplasmic C-terminal domain of CS, and does not contain PilZ motifs for c-di-GMP recognition. A combination of random and site-directed mutagenesis with surface plasmon resonance (SPR) allowed identification of the C-BgsA residues which are important not only for c-di-GMP binding, but also for BgsA GT activity. The results suggest that the C-BgsA domain is important for both, c-di-GMP binding and GT activity of BgsA. In contrast to bacterial CS where c-di-GMP has been proposed as a derepressor of GT activity, we hypothesize that the C-terminal domain of BgsA plays an active role in BgsA GT activity upon binding c-di-GMP.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Department of Biochemistry, University of Kassel, Kassel, Germany. .,Dpto. Microbiología del Suelo y Sistemas Simbióticos. Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.
| | | | - Robin Lorenz
- Department of Biochemistry, University of Kassel, Kassel, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - María-Trinidad Gallegos
- Dpto. Microbiología del Suelo y Sistemas Simbióticos. Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | - Juan Sanjuán
- Dpto. Microbiología del Suelo y Sistemas Simbióticos. Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
26
|
Echeverz M, García B, Sabalza A, Valle J, Gabaldón T, Solano C, Lasa I. Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host. PLoS Genet 2017; 13:e1006816. [PMID: 28542593 PMCID: PMC5464674 DOI: 10.1371/journal.pgen.1006816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/08/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022] Open
Abstract
Many bacteria build biofilm matrices using a conserved exopolysaccharide named PGA or PNAG (poly-β-1,6-N-acetyl-D-glucosamine). Interestingly, while E. coli and other members of the family Enterobacteriaceae encode the pgaABCD operon responsible for PGA synthesis, Salmonella lacks it. The evolutionary force driving this difference remains to be determined. Here, we report that Salmonella lost the pgaABCD operon after the divergence of Salmonella and Citrobacter clades, and previous to the diversification of the currently sequenced Salmonella strains. Reconstitution of the PGA machinery endows Salmonella with the capacity to produce PGA in a cyclic dimeric GMP (c-di-GMP) dependent manner. Outside the host, the PGA polysaccharide does not seem to provide any significant benefit to Salmonella: resistance against chlorine treatment, ultraviolet light irradiation, heavy metal stress and phage infection remained the same as in a strain producing cellulose, the main biofilm exopolysaccharide naturally produced by Salmonella. In contrast, PGA production proved to be deleterious to Salmonella survival inside the host, since it increased susceptibility to bile salts and oxidative stress, and hindered the capacity of S. Enteritidis to survive inside macrophages and to colonize extraintestinal organs, including the gallbladder. Altogether, our observations indicate that PGA is an antivirulence factor whose loss may have been a necessary event during Salmonella speciation to permit survival inside the host. During bacterial evolution, specific traits that optimize the organism’s fitness are selected. The production of exopolysaccharides is widespread among bacteria in which they play a protective shielding role as main constituents of biofilms. In contrast to closely related siblings, Salmonella has lost the capacity to produce the exopolysaccharide PGA. Our study reveals that Salmonella lost pga genes, and that the driving force for such a loss may have been the detrimental impact that PGA has during Salmonella invasion of internal organs where it augments the susceptibility to bile salts and oxygen radicals, reducing bacterial survival inside macrophages and rendering Salmonella avirulent. These results suggest that gene-loss has played an important role during Salmonella evolution.
Collapse
Affiliation(s)
- Maite Echeverz
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
| | - Begoña García
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
| | - Amaia Sabalza
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
| | - Jaione Valle
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cristina Solano
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
- * E-mail: (CS); (IL)
| | - Iñigo Lasa
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
- * E-mail: (CS); (IL)
| |
Collapse
|
27
|
何 嘉, 孙 洁, 闫 文, 王 方. [Expression, purification and activity analysis of GGDEF and EAL domain-containing proteins from Lactobacillus acidophilus]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:633-639. [PMID: 28539286 PMCID: PMC6780469 DOI: 10.3969/j.issn.1673-4254.2017.05.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To identify the functions of the proteins containing the GGDEF or EAL domain in Lactobacillus acidophilus for investigation of the regulatory mechanism of c-di-GMP in this strain. METHODS The DNA fragments of NH13_07045-GGDEF, NH13_07050 and NH13_07055 from Lactobacillus acidophilus ATCC4356 were amplified by PCR and cloned into the expression vector pMAL-His-c2. After sequencing, the recombinant plasmids were transformed into competent Escherichia coli cells, which were induced by IPTG to express the recombinant proteins fused with maltose binding protein (MBP). The fusion proteins were purified using amylose resin column for diguanylate cyclase (DGC) or phosphodiesterase (PDE) activity assays in vitro followed by analysis with high-performance liquid chromatography (HPLC). RESULTS The target DNA fragments were obtained by PCR, and their sequences were all identical to that in GenBank. The purified and concentrated fusion proteins, which were identified by SDS-PAGE and Western blotting, had relative molecular masses of 59 kD, 67 kD and 72 kD. HPLC analysis showed no DGC activity in NH13_07045-GGDEF, while PDE activity was found in NH13_07050 but not in NH13_07055. CONCLUSION We obtained the protein encoded by NH13_07050 that possesses PDE activity in vitro. This protein may facilitate the evaluation of the regulatory function of c-di-GMP in Lactobacillus acidophilus.
Collapse
Affiliation(s)
- 嘉辉 何
- 南方医科大学 南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Guangzhou 510515, China
| | - 洁丽 孙
- 南方医科大学 南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Guangzhou 510515, China
| | - 文娟 闫
- 南方医科大学 南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Guangzhou 510515, China
| | - 方 王
- 南方医科大学 基础医学院神经生物学教研室,广东 广州 510515Department of Neurobiology, College of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Cohesive Properties of the Caulobacter crescentus Holdfast Adhesin Are Regulated by a Novel c-di-GMP Effector Protein. mBio 2017; 8:mBio.00294-17. [PMID: 28325767 PMCID: PMC5362036 DOI: 10.1128/mbio.00294-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When encountering surfaces, many bacteria produce adhesins to facilitate their initial attachment and to irreversibly glue themselves to the solid substrate. A central molecule regulating the processes of this motile-sessile transition is the second messenger c-di-GMP, which stimulates the production of a variety of exopolysaccharide adhesins in different bacterial model organisms. In Caulobacter crescentus, c-di-GMP regulates the synthesis of the polar holdfast adhesin during the cell cycle, yet the molecular and cellular details of this control are currently unknown. Here we identify HfsK, a member of a versatile N-acetyltransferase family, as a novel c-di-GMP effector involved in holdfast biogenesis. Cells lacking HfsK form highly malleable holdfast structures with reduced adhesive strength that cannot support surface colonization. We present indirect evidence that HfsK modifies the polysaccharide component of holdfast to buttress its cohesive properties. HfsK is a soluble protein but associates with the cell membrane during most of the cell cycle. Coincident with peak c-di-GMP levels during the C. crescentus cell cycle, HfsK relocalizes to the cytosol in a c-di-GMP-dependent manner. Our results indicate that this c-di-GMP-mediated dynamic positioning controls HfsK activity, leading to its inactivation at high c-di-GMP levels. A short C-terminal extension is essential for the membrane association, c-di-GMP binding, and activity of HfsK. We propose a model in which c-di-GMP binding leads to the dispersal and inactivation of HfsK as part of holdfast biogenesis progression. Exopolysaccharide (EPS) adhesins are important determinants of bacterial surface colonization and biofilm formation. Biofilms are a major cause of chronic infections and are responsible for biofouling on water-exposed surfaces. To tackle these problems, it is essential to dissect the processes leading to surface colonization at the molecular and cellular levels. Here we describe a novel c-di-GMP effector, HfsK, that contributes to the cohesive properties and stability of the holdfast adhesin in C. crescentus. We demonstrate for the first time that c-di-GMP, in addition to its role in the regulation of the rate of EPS production, also modulates the physicochemical properties of bacterial adhesins. By demonstrating how c-di-GMP coordinates the activity and subcellular localization of HfsK, we provide a novel understanding of the cellular processes involved in adhesin biogenesis control. Homologs of HfsK are found in representatives of different bacterial phyla, suggesting that they play important roles in various EPS synthesis systems.
Collapse
|