1
|
Vaidya S, Saha D, Rode DKH, Torrens G, Hansen MF, Singh PK, Jelli E, Nosho K, Jeckel H, Göttig S, Cava F, Drescher K. Bacteria use exogenous peptidoglycan as a danger signal to trigger biofilm formation. Nat Microbiol 2025; 10:144-157. [PMID: 39753671 PMCID: PMC11726461 DOI: 10.1038/s41564-024-01886-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/13/2024] [Indexed: 01/12/2025]
Abstract
For any organism, survival is enhanced by the ability to sense and respond to threats in advance. For bacteria, danger sensing among kin cells has been observed, but the presence or impacts of general danger signals are poorly understood. Here we show that different bacterial species use exogenous peptidoglycan fragments, which are released by nearby kin or non-kin cell lysis, as a general danger signal. Using microscopy and gene expression profiling of Vibrio cholerae, we find that even brief signal exposure results in a regulatory response that causes three-dimensional biofilm formation, which protects cells from a broad range of stresses, including bacteriophage predation. A diverse set of species (Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis) also respond to exogenous peptidoglycan by forming biofilms. As peptidoglycan from different Gram-negative and Gram-positive species triggered three-dimensional biofilm formation, we propose that this danger signal and danger response are conserved among bacteria.
Collapse
Affiliation(s)
- Sanika Vaidya
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Dibya Saha
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Gabriel Torrens
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mads F Hansen
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Eric Jelli
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Kazuki Nosho
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Knut Drescher
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Ávila-Oviedo JL, Méndez-Inocencio C, Rodríguez-Torres MD, Angoa-Pérez MV, Chávez-Avilés MN, Martínez-Mendoza EK, Oregel-Zamudio E, Villar-Luna E. Antagonistic Effects and Volatile Organic Compound Profiles of Rhizobacteria in the Biocontrol of Phytophthora capsici. PLANTS (BASEL, SWITZERLAND) 2024; 13:3224. [PMID: 39599433 PMCID: PMC11598575 DOI: 10.3390/plants13223224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Phytophthora capsici is a devastating pathogen in horticultural crops, particularly affecting Capsicum annuum (pepper). The overuse of chemical fungicides has led to resistance development, necessitating alternative strategies. This study investigates the antagonistic effects of four rhizobacterial isolates (Bacillus sp., Pseudomonas putida, Bacillus subtilis, Bacillus amyloliquefaciens) against P. capsici, focusing on the production of volatile organic compounds (VOCs). Using in vitro dual culture assays, we observed a significant inhibition of mycelial growth and sporangia production, especially by B. subtilis and B. amyloliquefaciens. The GC-MS/SPME-HS analysis identified key VOCs responsible for these antagonistic effects. Our findings demonstrate that specific rhizobacteria and their VOCs offer a promising biocontrol strategy, potentially reducing the reliance on chemical fungicides and contributing to sustainable agriculture.
Collapse
Affiliation(s)
- José Luis Ávila-Oviedo
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| | - Carlos Méndez-Inocencio
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| | - María Dolores Rodríguez-Torres
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| | - María Valentina Angoa-Pérez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| | - Mauricio Nahuam Chávez-Avilés
- Laboratorio de Bioquímica y Biología Molecular, División de Ingeniería Bioquímica, Tecnológico Nacional de México/ITS de Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez No. 2120 Fracc. Valle de La Herradura C.P., Hidalgo 61100, Michoacán, Mexico;
| | - Erika Karina Martínez-Mendoza
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| | - Ernesto Oregel-Zamudio
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| | - Edgar Villar-Luna
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| |
Collapse
|
3
|
Leinweber A, Laffont C, Lardi M, Eberl L, Pessi G, Kümmerli R. RNA-Seq reveals that Pseudomonas aeruginosa mounts growth medium-dependent competitive responses when sensing diffusible cues from Burkholderia cenocepacia. Commun Biol 2024; 7:995. [PMID: 39143311 PMCID: PMC11324955 DOI: 10.1038/s42003-024-06618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Most habitats host diverse bacterial communities, offering opportunities for inter-species interactions. While competition might often dominate such interactions, little is known about whether bacteria can sense competitors and mount adequate responses. The competition sensing hypothesis proposes that bacteria can use cues such as nutrient stress and cell damage to prepare for battle. Here, we tested this hypothesis by measuring transcriptome changes in Pseudomonas aeruginosa exposed to the supernatant of its competitor Burkholderia cenocepacia. We found that P. aeruginosa exhibited significant growth-medium-dependent transcriptome changes in response to competition. In an iron-rich medium, P. aeruginosa upregulated genes encoding the type-VI secretion system and the siderophore pyoverdine, whereas genes encoding phenazine toxins and hydrogen cyanide were upregulated under iron-limited conditions. Moreover, general stress response and quorum sensing regulators were upregulated upon supernatant exposure. Altogether, our results reveal nuanced competitive responses of P. aeruginosa when confronted with B. cenocepacia supernatant, integrating both environmental and social cues.
Collapse
Affiliation(s)
- Anne Leinweber
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Clémentine Laffont
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
4
|
Kennedy NW, Comstock LE. Mechanisms of bacterial immunity, protection, and survival during interbacterial warfare. Cell Host Microbe 2024; 32:794-803. [PMID: 38870897 PMCID: PMC11216714 DOI: 10.1016/j.chom.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
Most bacteria live in communities, often with closely related strains and species with whom they must compete for space and resources. Consequently, bacteria have acquired or evolved mechanisms to antagonize competitors through the production of antibacterial toxins. Similar to bacterial systems that combat phage infection and mechanisms to thwart antibiotics, bacteria have also acquired and evolved features to protect themselves from antibacterial toxins. Just as there is a large body of research identifying and characterizing antibacterial proteins and toxin delivery systems, studies of bacterial mechanisms to resist and survive assault from competitors' weapons have also expanded tremendously. Emerging data are beginning to reveal protective processes and mechanisms that are as diverse as the toxins themselves. Protection against antibacterial toxins can be acquired by horizontal gene transfer, receptor or target alteration, induction of protective functions, physical barriers, and other diverse processes. Here, we review recent studies in this rapidly expanding field.
Collapse
Affiliation(s)
- Nolan W Kennedy
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Laurie E Comstock
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Hansen ML, Dénes Z, Jarmusch SA, Wibowo M, Lozano-Andrade CN, Kovács ÁT, Strube ML, Andersen AJC, Jelsbak L. Resistance towards and biotransformation of a Pseudomonas-produced secondary metabolite during community invasion. THE ISME JOURNAL 2024; 18:wrae105. [PMID: 38874164 PMCID: PMC11203913 DOI: 10.1093/ismejo/wrae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The role of antagonistic secondary metabolites produced by Pseudomonas protegens in suppression of soil-borne phytopathogens has been clearly documented. However, their contribution to the ability of P. protegens to establish in soil and rhizosphere microbiomes remains less clear. Here, we use a four-species synthetic community (SynCom) in which individual members are sensitive towards key P. protegens antimicrobial metabolites (DAPG, pyoluteorin, and orfamide A) to determine how antibiotic production contributes to P. protegens community invasion and to identify community traits that counteract the antimicrobial effects. We show that P. protegens readily invades and alters the SynCom composition over time, and that P. protegens establishment requires production of DAPG and pyoluteorin. An orfamide A-deficient mutant of P. protegens invades the community as efficiently as wildtype, and both cause similar perturbations to community composition. Here, we identify the microbial interactions underlying the absence of an orfamide A mediated impact on the otherwise antibiotic-sensitive SynCom member, and show that the cyclic lipopeptide is inactivated and degraded by the combined action of Rhodococcus globerulus D757 and Stenotrophomonas indicatrix D763. Altogether, the demonstration that the synthetic community constrains P. protegens invasion by detoxifying its antibiotics may provide a mechanistic explanation to inconsistencies in biocontrol effectiveness in situ.
Collapse
Affiliation(s)
- Morten L Hansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Zsófia Dénes
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Carlos N Lozano-Andrade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Ákos T Kovács
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Mikael L Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Aaron J C Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
6
|
Ying JP, Wu G, Zhang YM, Zhang QL. Proteomic analysis of Staphylococcus aureus exposed to bacteriocin XJS01 and its bio-preservative effect on raw pork loins. Meat Sci 2023; 204:109258. [PMID: 37379704 DOI: 10.1016/j.meatsci.2023.109258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Antibacterial mechanism of bacteriocins against foodborne S. aureus is still to be explored, particularly in proteomics, and a deep and comprehensive study on application of bacteriocins for preservation of raw pork is required. Here, proteomic mechanism of Lactobacillus salivarius bacteriocin XJS01 against foodborne S. aureus 2612:1606BL1486 (S. aureus_26) and its preservation effect on raw pork loins stored at 4 °C for 12 days was investigated. The results showed that 301 differentially abundant proteins (DAPs) were identified between XJS01-treated and -free groups (control group) using Tandem mass tag (TMT) quantitative proteomics technology, which were primarily involved in amino acids and carbohydrate metabolism, cytolysis, defense response, cell apoptosis, cell killing, adhesion, and oxygen utilization of S. aureus_26. Bacterial secretion system (SRP) and cationic antimicrobial peptide resistance may be key pathways to maintain protein secretion and counteract the deleterious effects on S. aureus_26 caused by XJS01. In addition, XJS01 could significantly improve the preservation of raw pork loins by the evaluation results of sensory and antibacterial activity on the meat surface. Overall, this study showed that XJS01 induced a complex organism response in S. aureus, and it could be potential pork preservative.
Collapse
Affiliation(s)
- Jian-Ping Ying
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China
| | - Gang Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China; Department of Neurology, Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China
| | - Yan-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China.
| |
Collapse
|
7
|
Wang Z, Hu X, Solanki MK, Pang F. A Synthetic Microbial Community of Plant Core Microbiome Can Be a Potential Biocontrol Tool. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5030-5041. [PMID: 36946724 DOI: 10.1021/acs.jafc.2c08017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbes are accepted as the foremost drivers of the rhizosphere ecology that influences plant health in direct or indirect ways. In recent years, the rapid development of gene sequencing technology has greatly facilitated the study of plant microbiome structure and function, and various plant-associated microbiomes have been categorized. Additionally, there is growing research interest in plant-disease-related microbes, and some specific microflora beneficial to plant health have been identified. This Review discusses the plant-associated microbiome's biological control pathways and functions to modulate plant defense against pathogens. How do plant microbiomes enhance plant resistance? How does the plant core microbiome-associated synthetic microbial community (SynCom) improve plant health? This Review further points out the primary need to develop smart agriculture practices using SynComs against plant diseases. Finally, this Review provides ideas for future opportunities in plant disease control and mining new microbial resources.
Collapse
Affiliation(s)
- Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, Guangxi 537000, China
| | - Xiaohu Hu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, Guangxi 537000, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice 40-701, Poland
| | - Fei Pang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, Guangxi 537000, China
| |
Collapse
|
8
|
Almeida OAC, de Araujo NO, Mulato ATN, Persinoti GF, Sforça ML, Calderan-Rodrigues MJ, Oliveira JVDC. Bacterial volatile organic compounds (VOCs) promote growth and induce metabolic changes in rice. FRONTIERS IN PLANT SCIENCE 2023; 13:1056082. [PMID: 36844905 PMCID: PMC9948655 DOI: 10.3389/fpls.2022.1056082] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Plant growth-promoting bacteria (PGPB) represent an eco-friendly alternative to reduce the use of chemical products while increasing the productivity of economically important crops. The emission of small gaseous signaling molecules from PGPB named volatile organic compounds (VOCs) has emerged as a promising biotechnological tool to promote biomass accumulation in model plants (especially Arabidopsis thaliana) and a few crops, such as tomato, lettuce, and cucumber. Rice (Oryza sativa) is the most essential food crop for more than half of the world's population. However, the use of VOCs to improve this crop performance has not yet been investigated. Here, we evaluated the composition and effects of bacterial VOCs on the growth and metabolism of rice. First, we selected bacterial isolates (IAT P4F9 and E.1b) that increased rice dry shoot biomass by up to 83% in co-cultivation assays performed with different durations of time (7 and 12 days). Metabolic profiles of the plants co-cultivated with these isolates and controls (without bacteria and non-promoter bacteria-1003-S-C1) were investigated via 1H nuclear magnetic resonance. The analysis identified metabolites (e.g., amino acids, sugars, and others) with differential abundance between treatments that might play a role in metabolic pathways, such as protein synthesis, signaling, photosynthesis, energy metabolism, and nitrogen assimilation, involved in rice growth promotion. Interestingly, VOCs from IAT P4F9 displayed a more consistent promotion activity and were also able to increase rice dry shoot biomass in vivo. Molecular identification by sequencing the 16S rRNA gene of the isolates IAT P4F9 and E.1b showed a higher identity with Serratia and Achromobacter species, respectively. Lastly, volatilomes of these and two other non-promoter bacteria (1003-S-C1 and Escherichia coli DH5α) were evaluated through headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Compounds belonging to different chemical classes, such as benzenoids, ketones, alcohols, sulfide, alkanes, and pyrazines, were identified. One of these VOCs, nonan-2-one, was validated in vitro as a bioactive compound capable of promoting rice growth. Although further analyses are necessary to properly elucidate the molecular mechanisms, our results suggest that these two bacterial isolates are potential candidates as sources for bioproducts, contributing to a more sustainable agriculture.
Collapse
Affiliation(s)
- Octávio Augusto Costa Almeida
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Oliveira de Araujo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Aline Tieppo Nogueira Mulato
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Maurício Luís Sforça
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Hansen ML, Wibowo M, Jarmusch SA, Larsen TO, Jelsbak L. Sequential interspecies interactions affect production of antimicrobial secondary metabolites in Pseudomonas protegens DTU9.1. THE ISME JOURNAL 2022; 16:2680-2690. [PMID: 36123523 PMCID: PMC9666462 DOI: 10.1038/s41396-022-01322-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Soil and rhizosphere microbiomes play important roles in suppression of plant pathogens through production of antagonistic secondary metabolites, yet mechanisms that determine the strength of pathogen control are not well understood. Many Pseudomonas species are associated with soil and rhizosphere microbiomes, and their ability to suppress pathogens is well documented. Here, we investigate how interactions within the Pseudomonas genus affect their production of antimicrobial metabolites. From a biosensor-based screen, we identify P. capeferrum species as capable of modulating secondary metabolite production in P. protegens. We show that P. capeferrum alters production of pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) in P. protegens via two distinct and sequential mechanisms that depends on spatial proximity of the two species. Specifically, P. capeferrum secretes a diffusible signal that induce pyoluteorin production up to 100-fold in neighboring P. protegens colonies. In contrast, the interaction results in reduced DAPG production, but only within mixed-species colonies. Additionally, we found that increased pyoluteorin production and cell lysis of P. capeferrum is required for inhibition of DAPG production, suggesting that pyoluteorin-facilitated antibiosis of P. protegens on P. capeferrum leads to release of cell-associated metabolites and subsequent inhibition of DAPG production in P. protegens. As the interaction modulates in vitro bioactivity of the species, genus-specific interactions may assist in improving efficacy of biocontrol strains and consortia.
Collapse
Affiliation(s)
- Morten Lindqvist Hansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Scott Alexander Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark.
| |
Collapse
|
10
|
Kato M, Asamizu S, Onaka H. Intimate relationships among actinomycetes and mycolic acid-containing bacteria. Sci Rep 2022; 12:7222. [PMID: 35508597 PMCID: PMC9068768 DOI: 10.1038/s41598-022-11406-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/22/2022] [Indexed: 01/07/2023] Open
Abstract
Co-culture is an efficient strategy for natural product discovery. We have used mycolic acid-containing bacteria (MACB) Tsukamurella pumonis TP-B0596 to induce secondary metabolism by actinomycetes and have found several natural products. We also observed that MACB attached to the mycelium of Streptomyces lividans forming coaggregates during combined-culture. This stimulated interest in the interactions among actinomycetes and MACB, and we found that soil isolated cultures contained a mixture of actinomycetes and MACB. Our previously observed interactions were the result of selective screening and combination of bacteria in the lab, which warranted investigation of the existence of these interactions in the natural soil environment. Therefore, in this paper, we report the interaction between a co-isolated natural pair of actinomycetes and MACB in terms of morphology and metabolic changes. A natural pair of actinomycetes and MACB co-aggregated in liquid culture and showed metabolic changes. Interestingly, co-aggregated actinomycetes and MACB were re-isolated from soil with no obvious morphological colony differences from the colony of a single strain. The results demonstrate that there is a stochastic chance of picking colonies containing co-aggregated actinomycetes and MACB, which suggests that the pair can exist in co-aggregate form in the soil environment and interact with each other.
Collapse
Affiliation(s)
- Manami Kato
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Shumpei Asamizu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
11
|
Smakman F, Hall AR. Exposure to lysed bacteria can promote or inhibit growth of neighbouring live bacteria depending on local abiotic conditions. FEMS Microbiol Ecol 2022; 98:6524834. [PMID: 35138381 PMCID: PMC8902688 DOI: 10.1093/femsec/fiac011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 11/14/2022] Open
Abstract
Microbial death is extremely common in nature, yet the ecological role of dead bacteria is unclear. Dead cells are assumed to provide nutrients to surrounding microbes, but may also affect them in other ways. We found adding lysate prepared from dead bacteria to cultures of E. coli in nutrient-rich conditions suppressed their final population density. This is in stark contrast with the notion that the primary role of dead cells is nutritional, although we also observed this type of effect when we added dead bacteria to cultures that were not supplied with other nutrients. We only observed the growth-suppressive effect of our dead-bacteria treatment after they had undergone significant lysis, suggesting a key role for cellular contents released during lysis. Transcriptomic analysis indicated changes in gene expression in response to dead cells in growing populations, particularly in genes involved in motility. This was supported by experiments with genetic knockouts and copy-number manipulation. Because lysis is commonplace in natural and clinical settings, the growth-suppressive effect of dead cells we describe here may be a widespread and previously unrecognized constraint on bacterial population growth.
Collapse
Affiliation(s)
- Fokko Smakman
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16 8092 Zürich Switzerland
| | - Alex R Hall
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16 8092 Zürich Switzerland
| |
Collapse
|
12
|
Jia Z, Luo Y, Wang D, Dinh QN, Lin S, Sharma A, Block EM, Yang M, Gu T, Pearlstein AJ, Yu H, Zhang B. Nondestructive multiplex detection of foodborne pathogens with background microflora and symbiosis using a paper chromogenic array and advanced neural network. Biosens Bioelectron 2021; 183:113209. [PMID: 33836430 DOI: 10.1016/j.bios.2021.113209] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 01/04/2023]
Abstract
We have developed an inexpensive, standardized paper chromogenic array (PCA) integrated with a machine learning approach to accurately identify single pathogens (Listeria monocytogenes, Salmonella Enteritidis, or Escherichia coli O157:H7) or multiple pathogens (either in multiple monocultures, or in a single cocktail culture), in the presence of background microflora on food. Cantaloupe, a commodity with significant volatile organic compound (VOC) emission and large diverse populations of background microflora, was used as the model food. The PCA was fabricated from a paper microarray via photolithography and paper microfluidics, into which 22 chromogenic dye spots were infused and to which three red/green/blue color-standard dots were taped. When exposed to VOCs emitted by pathogens of interest, dye spots exhibited distinguishable color changes and pattern shifts, which were automatically segmented and digitized into a ΔR/ΔG/ΔB database. We developed an advanced deep feedforward neural network with a learning rate scheduler, L2 regularization, and shortcut connections. After training on the ΔR/ΔG/ΔB database, the network demonstrated excellent performance in identifying pathogens in single monocultures, multiple monocultures, and in cocktail culture, and in distinguishing them from the background signal on cantaloupe, providing accuracy of up to 93% and 91% under ambient and refrigerated conditions, respectively. With its combination of speed, reliability, portability, and low cost, this nondestructive approach holds great potential to significantly advance culture-free pathogen detection and identification on food, and is readily extendable to other food commodities with complex microflora.
Collapse
Affiliation(s)
- Zhen Jia
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, 01854, MA, USA
| | - Yaguang Luo
- Environmental Microbial and Food Safety Lab and Food Quality Lab, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, 20705, MD, USA
| | - Dayang Wang
- Department of Electrical and Computer Engineering, University of Massachusetts, Lowell, 01854, MA, USA
| | - Quynh N Dinh
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, 01854, MA, USA
| | - Sophia Lin
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, 01854, MA, USA
| | - Arnav Sharma
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, 06269, CT, USA
| | - Ethan M Block
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, 01854, MA, USA
| | - Manyun Yang
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, 01854, MA, USA
| | - Tingting Gu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, 01854, MA, USA
| | - Arne J Pearlstein
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts, Lowell, 01854, MA, USA
| | - Boce Zhang
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, 01854, MA, USA.
| |
Collapse
|
13
|
Maiti KS, Apolonski A. Monitoring the Reaction of the Body State to Antibiotic Treatment against Helicobacter pylori via Infrared Spectroscopy: A Case Study. Molecules 2021; 26:molecules26113474. [PMID: 34200454 PMCID: PMC8201021 DOI: 10.3390/molecules26113474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/20/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022] Open
Abstract
The current understanding of deviations of human microbiota caused by antibiotic treatment is poor. In an attempt to improve it, a proof-of-principle spectroscopic study of the breath of one volunteer affected by a course of antibiotics for Helicobacter pylori eradication was performed. Fourier transform spectroscopy enabled searching for the absorption spectral structures sensitive to the treatment in the entire mid-infrared region. Two spectral ranges were found where the corresponding structures strongly correlated with the beginning and end of the treatment. The structures were identified as methyl ester of butyric acid and ethyl ester of pyruvic acid. Both acids generated by bacteria in the gut are involved in fundamental processes of human metabolism. Being confirmed by other studies, measurement of the methyl butyrate deviation could be a promising way for monitoring acute gastritis and anti-Helicobacter pylori antibiotic treatment.
Collapse
Affiliation(s)
- Kiran Sankar Maiti
- Max Planck Institute for Quantum Optics, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany;
- Department of Experimental Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - Alexander Apolonski
- Max Planck Institute for Quantum Optics, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany;
- Department of Experimental Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
- Institute of Automation and Electrometry SB RAS, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
14
|
van Tatenhove-Pel RJ, Rijavec T, Lapanje A, van Swam I, Zwering E, Hernandez-Valdes JA, Kuipers OP, Picioreanu C, Teusink B, Bachmann H. Microbial competition reduces metabolic interaction distances to the low µm-range. THE ISME JOURNAL 2021; 15:688-701. [PMID: 33077887 PMCID: PMC8027890 DOI: 10.1038/s41396-020-00806-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 01/12/2023]
Abstract
Metabolic interactions between cells affect microbial community compositions and hence their function in ecosystems. It is well-known that under competition for the exchanged metabolite, concentration gradients constrain the distances over which interactions can occur. However, interaction distances are typically quantified in two-dimensional systems or without accounting for competition or other metabolite-removal, conditions which may not very often match natural ecosystems. We here analyze the impact of cell-to-cell distance on unidirectional cross-feeding in a three-dimensional aqueous system with competition for the exchanged metabolite. Effective interaction distances were computed with a reaction-diffusion model and experimentally verified by growing a synthetic consortium of 1 µm-sized metabolite producer, receiver, and competitor cells in different spatial structures. We show that receivers cannot interact with producers located on average 15 µm away from them, as product concentration gradients flatten close to producer cells. We developed an aggregation protocol and varied the receiver cells' product affinity, to show that within producer-receiver aggregates even low-affinity receiver cells could interact with producers. These results show that competition or other metabolite-removal of a public good in a three-dimensional system reduces metabolic interaction distances to the low µm-range, highlighting the importance of concentration gradients as physical constraint for cellular interactions.
Collapse
Affiliation(s)
- Rinke J van Tatenhove-Pel
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV, Amsterdam, The Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Iris van Swam
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV, Amsterdam, The Netherlands
| | - Emile Zwering
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV, Amsterdam, The Netherlands
| | - Jhonatan A Hernandez-Valdes
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Cristian Picioreanu
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Bas Teusink
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV, Amsterdam, The Netherlands
| | - Herwig Bachmann
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV, Amsterdam, The Netherlands.
- NIZO Food Research, Kernhemseweg 2, 6718ZB, Ede, The Netherlands.
| |
Collapse
|
15
|
Ebadzadsahrai G, Higgins Keppler EA, Soby SD, Bean HD. Inhibition of Fungal Growth and Induction of a Novel Volatilome in Response to Chromobacterium vaccinii Volatile Organic Compounds. Front Microbiol 2020; 11:1035. [PMID: 32508802 PMCID: PMC7251293 DOI: 10.3389/fmicb.2020.01035] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/27/2020] [Indexed: 11/29/2022] Open
Abstract
The study of chemical bioactivity in the rhizosphere has recently broadened to include microbial metabolites, and their roles in niche construction and competition via growth promotion, growth inhibition, and toxicity. Several prior studies have identified bacteria that produce volatile organic compounds (VOCs) with antifungal activities, indicating their potential use as biocontrol organisms to suppress phytopathogenic fungi and reduce agricultural losses. We sought to expand the roster of soil bacteria with known antifungal VOCs by testing bacterial isolates from wild and cultivated cranberry bog soils for VOCs that inhibit the growth of four common fungal and oomycete plant pathogens, and Trichoderma sp. Twenty one of the screened isolates inhibited the growth of at least one fungus by the production of VOCs, and isolates of Chromobacterium vaccinii had broad antifungal VOC activity, with growth inhibition over 90% for some fungi. Fungi exposed to C. vaccinii VOCs had extensive morphological abnormalities such as swollen hyphal cells, vacuolar depositions, and cell wall alterations. Quorum-insensitive cviR− mutants of C. vaccinii were significantly less fungistatic, indicating a role for quorum regulation in the production of antifungal VOCs. We collected and characterized VOCs from co-cultivation assays of Phoma sp. exposed to wild-type C. vaccinii MWU328, and its cviR− mutant using stir bar sorptive extraction and comprehensive two-dimensional gas chromatography—time-of-flight mass spectrometry (SBSE-GC × GC-TOFMS). We detected 53 VOCs that differ significantly in abundance between microbial cultures and media controls, including four candidate quorum-regulated fungistatic VOCs produced by C. vaccinii. Importantly, the metabolomes of the bacterial-fungal co-cultures were not the sum of the monoculture VOCs, an emergent property of their VOC-mediated interactions. These data suggest semiochemical feedback loops between microbes that have co-evolved for sensing and responding to exogenous VOCs.
Collapse
Affiliation(s)
- Ghazal Ebadzadsahrai
- College of Science, Engineering and Technology, Grand Canyon University, Phoenix, AZ, United States
| | - Emily A Higgins Keppler
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Tempe, AZ, United States
| | - Scott D Soby
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, United States.,College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Heather D Bean
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Tempe, AZ, United States
| |
Collapse
|
16
|
Veselova MA, Plyuta VA, Khmel IA. Volatile Compounds of Bacterial Origin: Structure, Biosynthesis, and Biological Activity. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719030160] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Streptomyces Volatile Compounds Influence Exploration and Microbial Community Dynamics by Altering Iron Availability. mBio 2019; 10:mBio.00171-19. [PMID: 30837334 PMCID: PMC6401478 DOI: 10.1128/mbio.00171-19] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Microbial growth and community interactions are influenced by a multitude of factors. A new mode of Streptomyces growth—exploration—is promoted by interactions with the yeast Saccharomyces cerevisiae and requires the emission of trimethylamine (TMA), a pH-raising volatile compound. We show here that TMA emission also profoundly alters the environment around exploring cultures. It specifically reduces iron availability, and this in turn adversely affects the viability of surrounding microbes. Paradoxically, Streptomyces bacteria thrive in these iron-depleted niches, both rewiring their gene expression and metabolism to facilitate iron uptake and increasing their exploration rate. Growth in close proximity to other microbes adept at iron uptake also enhances exploration. Collectively, the data from this work reveal a new role for bacterial volatile compounds in modulating nutrient availability and microbial community behavior. The results further expand the repertoire of interspecies interactions and nutrient cues that impact Streptomyces exploration and provide new mechanistic insight into this unique mode of bacterial growth. Bacteria and fungi produce a wide array of volatile organic compounds (VOCs), and these can act as chemical cues or as competitive tools. Recent work has shown that the VOC trimethylamine (TMA) can promote a new form of Streptomyces growth, termed “exploration.” Here, we report that TMA also serves to alter nutrient availability in the area surrounding exploring cultures: TMA dramatically increases the environmental pH and, in doing so, reduces iron availability. This, in turn, compromises the growth of other soil bacteria and fungi. In response to this low-iron environment, Streptomyces venezuelae secretes a suite of differentially modified siderophores and upregulates genes associated with siderophore uptake. Further reducing iron levels by limiting siderophore uptake or growing cultures in the presence of iron chelators enhanced exploration. Exploration was also increased when S. venezuelae was grown in association with the related low-iron- and TMA-tolerant Amycolatopsis bacteria, due to competition for available iron. We are only beginning to appreciate the role of VOCs in natural communities. This work reveals a new role for VOCs in modulating iron levels in the environment and implies a critical role for VOCs in modulating the behavior of microbes and the makeup of their communities. It further adds a new dimension to our understanding of the interspecies interactions that influence Streptomyces exploration and highlights the importance of iron in exploration modulation.
Collapse
|
18
|
García-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities. Science 2018; 361:361/6408/eaat2456. [PMID: 30237322 DOI: 10.1126/science.aat2456] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Antagonistic interactions are abundant in microbial communities and contribute not only to the composition and relative proportions of their members but also to the longer-term stability of a community. This Review will largely focus on bacterial antagonism mediated by ribosomally synthesized peptides and proteins produced by members of host-associated microbial communities. We discuss recent findings on their diversity, functions, and ecological impacts. These systems play key roles in ecosystem defense, pathogen invasion, spatial segregation, and diversity but also confer indirect gains to the aggressor from products released by killed cells. Investigations into antagonistic bacterial interactions are important for our understanding of how the microbiota establish within hosts, influence health and disease, and offer insights into potential translational applications.
Collapse
Affiliation(s)
- Leonor García-Bayona
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Schulz-Bohm K, Martín-Sánchez L, Garbeva P. Microbial Volatiles: Small Molecules with an Important Role in Intra- and Inter-Kingdom Interactions. Front Microbiol 2017; 8:2484. [PMID: 29312193 PMCID: PMC5733050 DOI: 10.3389/fmicb.2017.02484] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023] Open
Abstract
During the last decades, research on the function of volatile organic compounds focused primarily on the interactions between plants and insects. However, microorganisms can also release a plethora of volatiles and it appears that microbial volatile organic compounds (mVOCs) can play an important role in intra- and inter-kingdom interactions. So far, most studies are focused on aboveground volatile-mediated interactions and much less information is available about the function of volatiles belowground. This minireview summarizes the current knowledge on the biological functions of mVOCs with the focus on mVOCs-mediated interactions belowground. We pinpointed mVOCs involved in microbe-microbe and microbe–plant interactions, and highlighted the ecological importance of microbial terpenes as a largely underexplored group of mVOCs. We indicated challenges in studying belowground mVOCs-mediated interactions and opportunities for further studies and practical applications.
Collapse
Affiliation(s)
- Kristin Schulz-Bohm
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Lara Martín-Sánchez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
20
|
Abstract
Microbes in nature often live in unfavorable conditions. To survive, they have to occupy niches close to food sources and efficiently utilize nutrients that are often present in very low concentrations. Moreover, they have to possess an arsenal of attack and defense mechanisms against competing bacteria. In this review, we will discuss strategies used by microbes to compete with each other in the rhizosphere and on fruits, with a focus on mechanisms of inter- and intra-species antagonism. Special attention will be paid to the recently discovered roles of volatile organic compounds. Several microbes with proven capabilities in the art of warfare are being applied in products used for the biological control of plant diseases, including post-harvest control of fruits and vegetables.
Collapse
Affiliation(s)
- Ben Lugtenberg
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Faina Kamilova
- Koppert Biological Systems, Veilingweg 14, PO Box 155, 2650 AD Berkel en Rodenrijs, Netherlands
| |
Collapse
|