1
|
Da Silva A, Barrachina F, Avenatti MC, Elizagaray ML, Bastepe I, Sasso-Cerri E, Battistone MA. Proton-secreting cells modulate mucosal immune surveillance in the male reproductive tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645301. [PMID: 40196529 PMCID: PMC11974861 DOI: 10.1101/2025.03.26.645301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Proton-secreting cells in various organs, such as the kidney and epididymis, regulate pH balance, maintaining cellular homeostasis, and supporting key physiological processes. More recently, these specialized cells have emerged as key contributors to mucosal immunity, orchestrating immune activation. Epididymitis is an inflammatory condition that significantly impacts male fertility, often due to a lack of diagnosis and treatment. This study explores the involvement of region-specific epididymal proton-secreting clear cells (CCs) in the immune response by interacting with the immune system during LPS-induced mouse epididymitis. We found that in response to LPS, CCs rapidly shifted to a proinflammatory phenotype, marked by the upregulation of cytokines and chemokines, alongside the downregulation of genes involved in sperm maturation. Morphological changes in CCs, including increased apical blebs and altered shape across different epididymal segments, suggest their active role in immune responses. Moreover, mononuclear phagocytes (MPs) reduced their luminal-reaching projections in the proximal epididymis after the LPS challenge. This bacteria antigen triggered the migration of dendritic cells and neutrophil infiltration in the distal epididymis. These immune landscape alterations contributed to epithelial damage and impaired sperm maturation, as evidenced by decreased sperm motility following LPS injection. Our findings indicate that proton-secreting cells are immune gatekeepers in the epididymis, initiating immune responses and disrupting sperm maturation. This research enhances the understanding of epithelial immunoregulation and will help to develop novel diagnostic and therapeutic strategies for epididymitis and male infertility. Furthermore, insights into CC-mediated immune responses could inform the development of new approaches for male contraception.
Collapse
|
2
|
Desai JV. mSphere of Influence: Complement activity beyond systemic circulation-implications in the context of infections. mSphere 2025; 10:e0053124. [PMID: 39918335 PMCID: PMC11934306 DOI: 10.1128/msphere.00531-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Jigar V. Desai works in the field of immunology, studying the mucosal and systemic complement systems and their roles in regulating the immune response. In this mSphere of Influence article, he reflects on how the papers by the Kemper, Kulkarni, and Kasper laboratories made an impact on his ongoing work investigating the cell-intrinsic and extrinsic regulation of complement and studying its impacts on mucosal and systemic immunity.
Collapse
Affiliation(s)
- Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
3
|
Silva-Gomes R, Caldeira I, Fernandes R, Cunha C, Carvalho A. Metabolic regulation of the host-fungus interaction: from biological principles to therapeutic opportunities. J Leukoc Biol 2024; 116:469-486. [PMID: 38498599 DOI: 10.1093/jleuko/qiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Fungal infections present a significant global public health concern, impacting over 1 billion individuals worldwide and resulting in more than 3 million deaths annually. Despite considerable progress in recent years, the management of fungal infections remains challenging. The limited development of novel diagnostic and therapeutic approaches is largely attributed to our incomplete understanding of the pathogenetic mechanisms involved in these diseases. Recent research has highlighted the pivotal role of cellular metabolism in regulating the interaction between fungi and their hosts. In response to fungal infection, immune cells undergo complex metabolic adjustments to meet the energy demands necessary for an effective immune response. A comprehensive understanding of the metabolic circuits governing antifungal immunity, combined with the integration of individual host traits, holds the potential to inform novel medical interventions for fungal infections. This review explores recent insights into the immunometabolic regulation of host-fungal interactions and the infection outcome and discusses how the metabolic repurposing of immune cell function could be exploited in innovative and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Rita Silva-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Caldeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Dellière S, Chauvin C, Wong SSW, Gressler M, Possetti V, Parente R, Fontaine T, Krüger T, Kniemeyer O, Bayry J, Carvalho A, Brakhage AA, Inforzato A, Latgé JP, Aimanianda V. Interplay between host humoral pattern recognition molecules controls undue immune responses against Aspergillus fumigatus. Nat Commun 2024; 15:6966. [PMID: 39138196 PMCID: PMC11322389 DOI: 10.1038/s41467-024-51047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Pentraxin 3 (PTX3), a long pentraxin and a humoral pattern recognition molecule (PRM), has been demonstrated to be protective against Aspergillus fumigatus, an airborne human fungal pathogen. We explored its mode of interaction with A. fumigatus, and the resulting implications in the host immune response. Here, we demonstrate that PTX3 interacts with A. fumigatus in a morphotype-dependent manner: (a) it recognizes germinating conidia through galactosaminogalactan, a surface exposed cell wall polysaccharide of A. fumigatus, (b) in dormant conidia, surface proteins serve as weak PTX3 ligands, and (c) surfactant protein D (SP-D) and the complement proteins C1q and C3b, the other humoral PRMs, enhance the interaction of PTX3 with dormant conidia. SP-D, C3b or C1q opsonized conidia stimulated human primary immune cells to release pro-inflammatory cytokines and chemokines. However, subsequent binding of PTX3 to SP-D, C1q or C3b opsonized conidia significantly decreased the production of pro-inflammatory cytokines/chemokines. PTX3 opsonized germinating conidia also significantly lowered the production of pro-inflammatory cytokines/chemokines while increasing IL-10 (an anti-inflammatory cytokine) released by immune cells when compared to the unopsonized counterpart. Overall, our study demonstrates that PTX3 recognizes A. fumigatus either directly or by interplaying with other humoral PRMs, thereby restraining detrimental inflammation. Moreover, PTX3 levels were significantly higher in the serum of patients with invasive pulmonary aspergillosis (IPA) and COVID-19-associated pulmonary aspergillosis (CAPA), supporting previous observations in IPA patients, and suggesting that it could be a potential panel-biomarker for these pathological conditions caused by A. fumigatus.
Collapse
Affiliation(s)
- Sarah Dellière
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Paris, France
- Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
- Institut Pasteur, Université Paris Cité, Immunobiology of Aspergillus, Paris, France
| | - Camille Chauvin
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris-Cité, Paris, France
| | - Sarah Sze Wah Wong
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Paris, France
- Institut Pasteur, Unité des Aspergillus, Paris, France
| | - Markus Gressler
- Institut Pasteur, Unité des Aspergillus, Paris, France
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany; Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, Jena, Germany
| | - Valentina Possetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Thierry Fontaine
- Institut Pasteur, Unité des Aspergillus, Paris, France
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris-Cité, Paris, France
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | - Agostinho Carvalho
- Life & Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Paris, France.
- Institut Pasteur, Université Paris Cité, Immunobiology of Aspergillus, Paris, France.
- Institut Pasteur, Unité des Aspergillus, Paris, France.
| |
Collapse
|
5
|
Gonçalves SM, Pereira I, Feys S, Cunha C, Chamilos G, Hoenigl M, Wauters J, van de Veerdonk FL, Carvalho A. Integrating genetic and immune factors to uncover pathogenetic mechanisms of viral-associated pulmonary aspergillosis. mBio 2024; 15:e0198223. [PMID: 38651925 PMCID: PMC11237550 DOI: 10.1128/mbio.01982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Invasive pulmonary aspergillosis is a severe fungal infection primarily affecting immunocompromised patients. Individuals with severe viral infections have recently been identified as vulnerable to developing invasive fungal infections. Both influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are linked to high mortality rates, emphasizing the urgent need for an improved understanding of disease pathogenesis to unveil new molecular targets with diagnostic and therapeutic potential. The recent establishment of animal models replicating the co-infection context has offered crucial insights into the mechanisms that underlie susceptibility to disease. However, the development and progression of human viral-fungal co-infections exhibit a significant degree of interindividual variability, even among patients with similar clinical conditions. This observation implies a significant role for host genetics, but information regarding the genetic basis for viral-fungal co-infections is currently limited. In this review, we discuss how genetic factors known to affect either antiviral or antifungal immunity could potentially reveal pathogenetic mechanisms that predispose to IAPA or CAPA and influence the overall disease course. These insights are anticipated to foster further research in both pre-clinical models and human patients, aiming to elucidate the complex pathophysiology of viral-associated pulmonary aspergillosis and contributing to the identification of new diagnostic and therapeutic targets to improve the management of these co-infections.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Inês Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Simon Feys
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Georgios Chamilos
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
6
|
Dellière S, Aimanianda V. Humoral Immunity Against Aspergillus fumigatus. Mycopathologia 2023; 188:603-621. [PMID: 37289362 PMCID: PMC10249576 DOI: 10.1007/s11046-023-00742-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023]
Abstract
Aspergillus fumigatus is one the most ubiquitous airborne opportunistic human fungal pathogens. Understanding its interaction with host immune system, composed of cellular and humoral arm, is essential to explain the pathobiology of aspergillosis disease spectrum. While cellular immunity has been well studied, humoral immunity has been poorly acknowledge, although it plays a crucial role in bridging the fungus and immune cells. In this review, we have summarized available data on major players of humoral immunity against A. fumigatus and discussed how they may help to identify at-risk individuals, be used as diagnostic tools or promote alternative therapeutic strategies. Remaining challenges are highlighted and leads are given to guide future research to better grasp the complexity of humoral immune interaction with A. fumigatus.
Collapse
Affiliation(s)
- Sarah Dellière
- Institut Pasteur, Immunobiology of Aspergillus, Université de Paris Cité, 75015, Paris, France.
- Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Saint-Louis, 75010, Paris, France.
| | - Vishukumar Aimanianda
- Institut Pasteur, Immunobiology of Aspergillus, Université de Paris Cité, 75015, Paris, France.
| |
Collapse
|
7
|
Wong SSW, Dellière S, Schiefermeier-Mach N, Lechner L, Perkhofer S, Bomme P, Fontaine T, Schlosser AG, Sorensen GL, Madan T, Kishore U, Aimanianda V. Surfactant protein D inhibits growth, alters cell surface polysaccharide exposure and immune activation potential of Aspergillus fumigatus. Cell Surf 2022; 8:100072. [PMID: 35118215 PMCID: PMC8792412 DOI: 10.1016/j.tcsw.2022.100072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 10/25/2022] Open
Abstract
Humoral immunity plays a defensive role against invading microbes. However, it has been largely overlooked with respect to Aspergillus fumigatus, an airborne fungal pathogen. Previously, we have demonstrated that surfactant protein D (SP-D), a major humoral component in human lung-alveoli, recognizes A. fumigatus conidial surface exposed melanin pigment. Through binding to melanin, SP-D opsonizes conidia, facilitates conidial phagocytosis, and induces the expression of protective pro-inflammatory cytokines in the phagocytic cells. In addition to melanin, SP-D also interacts with galactomannan (GM) and galactosaminogalactan (GAG), the cell wall polysaccharides exposed on germinating conidial surfaces. Therefore, we aimed at unravelling the biological significance of SP-D during the germination process. Here, we demonstrate that SP-D exerts direct fungistatic activity by restricting A. fumigatus hyphal growth. Conidial germination in the presence of SP-D significantly increased the exposure of cell wall polysaccharides chitin, α-1,3-glucan and GAG, and decreased β-1,3-glucan exposure on hyphae, but that of GM was unaltered. Hyphae grown in presence of SP-D showed positive immunolabelling for SP-D. Additionally, SP-D treated hyphae induced lower levels of pro-inflammatory cytokine, but increased IL-10 (anti-inflammatory cytokine) and IL-8 (a chemokine) secretion by human peripheral blood mononuclear cells (PBMCs), compared to control hyphae. Moreover, germ tube surface modifications due to SP-D treatment resulted in an increased hyphal susceptibility to voriconazole, an antifungal drug. It appears that SP-D exerts its anti-A. fumigatus functions via a range of mechanisms including hyphal growth-restriction, hyphal surface modification, masking of hyphal surface polysaccharides and thus altering hyphal immunostimulatory properties.
Collapse
Affiliation(s)
- Sarah Sze Wah Wong
- Institut Pasteur, Université de Paris, CNRS, Unité de Mycologie Moléculaire, UMR2000, F-75015 Paris, France
| | - Sarah Dellière
- Institut Pasteur, Université de Paris, CNRS, Unité de Mycologie Moléculaire, UMR2000, F-75015 Paris, France
- Department of Mycology & Parasitologie, Hôpital Saint-Louis, Paris, France
| | | | - Lukas Lechner
- Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, Innrain 98, 6020 Innsbruck, Austria
| | - Susanne Perkhofer
- Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, Innrain 98, 6020 Innsbruck, Austria
| | - Perrine Bomme
- Ultrastructural Bio Imaging Unit, C2RT, Institut Pasteur, Paris, France
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INREA, USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
| | - Anders G. Schlosser
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith L. Sorensen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Vishukumar Aimanianda
- Institut Pasteur, Université de Paris, CNRS, Unité de Mycologie Moléculaire, UMR2000, F-75015 Paris, France
| |
Collapse
|
8
|
Xu S, Zhang G, Wang M, Lin T, Liu W, Wang Y. Phage nanoparticle as a carrier for controlling fungal infection. Appl Microbiol Biotechnol 2022; 106:3397-3403. [PMID: 35501488 DOI: 10.1007/s00253-022-11932-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
A mass of nanocarriers have been exploited and utilized for prevention of fungi, including organic nanomaterials, inorganic nanoparticles, polypeptides, and viruses. Due to biological safety and flexible genetic engineering property, bacteriophages, as bionanoparticles, are widely used in the diagnosis and treatment of microorganisms, which can be easily loaded with proteins and drugs. In particular, random DNAs can be inserted into the genome of phage by phage display technology, and it is possible to obtain the peptide/antibody targeting fungi from phage library. Meanwhile, phages displaying specific peptides are able to conjugate with other nanoparticles, which have both characteristics of peptides and nanomaterials, and have been used for precise detection of fungi. Additionally, phage nanomaterials as carriers can reduce the toxicity of drugs, increase the time of drug circulation, stimulate the immune response, and have an anti-fungal effect by itself. In this review, we summarize the recent applications of bacteriophages on the study of fungi. The improvement of our understanding of bacteriophage will supply new tools for controlling fungal infections. These phage libraries were used to pan the specific peptides for diagnosis, prevention, and treatment of fungi. KEY POINTS: • System fungal infection has no significant clinical symptoms; it is important to develop vaccine, diagnosis, and therapeutic agents to reduce mortality; phage is an ideal carrier for vaccine and drug to stimulate immune response and improve the efficiency of drug, and also can improve the sensitivity of detection • This review summarized recent studies on phage-based fungal vaccine and threw light on the developing therapeutic phage in the treatment of fungal infection.
Collapse
Affiliation(s)
- Songbai Xu
- Department Neurosurg, First Hospital Jilin University, Changchun, People's Republic of China
| | - Guangxin Zhang
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Tie Lin
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wei Liu
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yicun Wang
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
9
|
Gonçalves SM, Cunha C, Carvalho A. Understanding the genetic basis of immune responses to fungal infection. Expert Rev Anti Infect Ther 2022; 20:987-996. [PMID: 35385368 DOI: 10.1080/14787210.2022.2063839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fungal infections represent a global public health problem that affect millions of people. Despite remarkable advances achieved over the last decades, available diagnostic and therapeutic tools remain insufficient for the optimal management of these diseases. The clinical course of fungal infection is highly variable, and evidence accumulated from patients with rare mutations and cohort-based studies suggests that the trajectory of disease is largely defined by patient genetics and its impact on immune responses. Therefore, there is an urgent need to elucidate the precise mechanisms by which which genetic variants influence the risk, progression, and outcome of fungal infection. AREAS COVERED In this review, we highlight recent advances in our understanding of the genetic factors that influence antifungal immune responses based on candidate gene studies and genome-wide approaches performed in different experimental and clinical models. EXPERT OPINION Research on genetics of susceptibility to infection is expected to lead to a detailed knowledge framework for the pathogenesis of human fungal infections and unveil novel targets and pathways amenable to clinical intervention.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Jadi PK, Sharma P, Bhogapurapu B, Roy S. Alternative Therapeutic Interventions: Antimicrobial Peptides and Small Molecules to Treat Microbial Keratitis. Front Chem 2021; 9:694998. [PMID: 34458234 PMCID: PMC8386189 DOI: 10.3389/fchem.2021.694998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Microbial keratitis is a leading cause of blindness worldwide and results in unilateral vision loss in an estimated 2 million people per year. Bacteria and fungus are two main etiological agents that cause corneal ulcers. Although antibiotics and antifungals are commonly used to treat corneal infections, a clear trend with increasing resistance to these antimicrobials is emerging at rapid pace. Extensive research has been carried out to determine alternative therapeutic interventions, and antimicrobial peptides (AMPs) are increasingly recognized for their clinical potential in treating infections. Small molecules targeted against virulence factors of the pathogens and natural compounds are also explored to meet the challenges and growing demand for therapeutic agents. Here we review the potential of AMPs, small molecules, and natural compounds as alternative therapeutic interventions for the treatment of corneal infections to combat antimicrobial resistance. Additionally, we have also discussed about the different formats of drug delivery systems for optimal administration of drugs to treat microbial keratitis.
Collapse
Affiliation(s)
- Praveen Kumar Jadi
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Prerana Sharma
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Department of Animal Sciences, University of Hyderabad, Hyderabad, India
| | - Bharathi Bhogapurapu
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Sanhita Roy
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
11
|
Dellière S, Duchateau M, Wong SSW, Giai Gianetto Q, Guegan H, Matondo M, Gangneux JP, Aimanianda V. Proteomic Analysis of Humoral Immune Components in Bronchoalveolar Lavage of Patients Infected or Colonized by Aspergillus fumigatus. Front Immunol 2021; 12:677798. [PMID: 34122441 PMCID: PMC8187748 DOI: 10.3389/fimmu.2021.677798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
Humoral immune components have been individually studied in the context of interaction of host with Aspergillus fumigatus, a major airborne fungal pathogen. However, a global view of the multitude and complex nature of humoral immune components is needed to bring new insight into host-Aspergillus interaction. Therefore, we undertook comparative proteomic analysis of the bronchoalveolar lavage fluid collected from individuals infected or colonized with A. fumigatus versus controls, to identify those alveolar humoral components affected upon A. fumigatus infection. Complement proteins C1q, C8 beta-chain, factor-H, ficolin-1, ficolin-2, mannan binding lectin serine peptidase 2, pentraxin-3 and the surfactant protein-D were identified as the major humoral immune components affected by A. fumigatus infection and colonization. Based on this observation, we hypothesize that crosstalk between these humoral components is essential during host-Aspergillus interaction giving new specific leads to study for better understanding the pathogenesis. Furthermore, the affected humoral components could be potential diagnostic markers of A. fumigatus infection or colonization.
Collapse
Affiliation(s)
- Sarah Dellière
- Institut Pasteur, Molecular Mycology Unit, CNRS, Paris, France.,Université de Paris, Paris, France.,Department of Mycology & Parasitology, Hôpital Saint-Louis, Paris, France
| | - Magalie Duchateau
- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS, Paris, France
| | | | - Quentin Giai Gianetto
- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS, Paris, France.,Institut Pasteur, Bioinformatics and Biostatistics Hub, Computational Biology Department, CNRS, Paris, France
| | - Hélène Guegan
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Mariette Matondo
- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS, Paris, France
| | - Jean-Pierre Gangneux
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | |
Collapse
|