1
|
Matilla MA, Gavira JA, Monteagudo-Cascales E, Zhulin IB, Krell T. Structural and functional diversity of sensor domains in bacterial transmembrane receptors. Trends Microbiol 2025:S0966-842X(25)00076-9. [PMID: 40121131 DOI: 10.1016/j.tim.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
The ability of bacteria to adapt to changing environmental conditions largely depends on transmembrane receptors that sense signal molecules and generate responses such as chemotaxis, changes in gene expression, or alterations in second-messenger levels. Although these receptors differ significantly in function, they share a common mode of activation that involves signal molecule interaction with sensor domains. A major challenge in microbiology lies in the limited knowledge of ligands that stimulate receptors. Here, we review recent advances in this field, including the occurrence of multi-modular sensor domains, the identification of co-component signal transduction systems, evidence for sensor domain evolution from transporters, and the use of binding pocket sequence motifs to identify sensor domain ligands.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada, 18008, Spain
| | - José A Gavira
- Laboratory of Crystallographic Studies, CSIC-UGR, Avenida de las Palmeras 4, Armilla, 18100, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada, 18008, Spain
| | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada, 18008, Spain.
| |
Collapse
|
2
|
Yu W, Jin K, Xu X, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Engineering microbial cell factories by multiplexed spatiotemporal control of cellular metabolism: Advances, challenges, and future perspectives. Biotechnol Adv 2025; 79:108497. [PMID: 39645209 DOI: 10.1016/j.biotechadv.2024.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Generally, the metabolism in microbial organism is an intricate, spatiotemporal process that emerges from gene regulatory networks, which affects the efficiency of product biosynthesis. With the coming age of synthetic biology, spatiotemporal control systems have been explored as versatile strategies to promote product biosynthesis at both spatial and temporal levels. Meanwhile, the designer synthetic compartments provide new and promising approaches to engineerable spatiotemporal control systems to construct high-performance microbial cell factories. In this article, we comprehensively summarize recent developments in spatiotemporal control systems for tailoring advanced cell factories, and illustrate how to apply spatiotemporal control systems in different microbial species with desired applications. Future challenges of spatiotemporal control systems and perspectives are also discussed.
Collapse
Affiliation(s)
- Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Claywell JE, Fu Y, Sibley LD. Phospho-relay feedback loops control egress vs. intracellular development in Toxoplasma gondii. Cell Rep 2025; 44:115260. [PMID: 39903669 PMCID: PMC11922314 DOI: 10.1016/j.celrep.2025.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
The intracellular parasite Toxoplasma gondii alternates between a motile invasive and a quiescent intracellular replicative form, yet how these transitions are regulated is unknown. A positive feedback loop involving protein kinase G (PKG) and calcium-dependent PKs (CDPKs) controls motility, invasion, and egress by Toxoplasma gondii, while PKA isoform c1 (PKAc1) counteracts this pathway. Shortly after invasion, PKAc1 is activated by cyclic AMP (cAMP) produced by adenylate cyclases, leading to the suppression of the PKG/CDPK pathway. PKAc1 further activates phosphodiesterase 2, which selectively consumes cAMP, thus forming a negative feedback loop, causing transient activation of PKAc1. Perturbation of cyclic GMP (cGMP) vs. calcium demonstrates that PKAc1 acts on targets between guanylate cyclase and calcium release. The combined activation of PKG/CDPKs and inhibition by PKAc1, controlled by a transient negative feedback loop, ensures that the parasite is responsive to environmental signals needed to activate motility while also ensuring periods of long-term stable intracellular growth.
Collapse
Affiliation(s)
- Ja E Claywell
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Kadam P, Barvkar VT, Darshetkar AM, Zinjarde S. The tropical marine actinomycete Nocardiopsis dassonvillei NCIM 5124 as novel source of ectoine: Genomic and transcriptomic insights. Gene 2024; 930:148860. [PMID: 39151675 DOI: 10.1016/j.gene.2024.148860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Since ectoine is a high-value product, overviewing strategies for identifying novel microbial sources becomes relevant. In the current study, by following a genome mining approach, the ectoine biosynthetic cluster in a tropical marine strain of Nocardiopsis dassonvillei (NCIM 5124) was located and compared with related organisms. Transcriptome analysis of Control and Test samples (with 0 and 5% NaCl, respectively) was carried out to understand salt induced stress response at the molecular level. There were 4950 differentially expressed genes with 25 transcripts being significantly upregulated in Test samples. NaCl induced upregulation of the ectoine biosynthesis cluster and some other genes (stress response, chaperone/Clp protease, cytoplasm, ribonucleoprotein and protein biosynthesis). The production of ectoine as a stress response molecule was experimentally validated via LCMS analysis. The investigation sheds light on the responses exhibited by this actinomycete in coping up with salt stress and provides a foundation for understanding salt induced molecular interactions.
Collapse
Affiliation(s)
- Pratik Kadam
- Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, India
| | | | | | - Smita Zinjarde
- Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
5
|
Cao W, Huang C, Zhou X, Zhou S, Deng Y. Engineering two-component systems for advanced biosensing: From architecture to applications in biotechnology. Biotechnol Adv 2024; 75:108404. [PMID: 39002783 DOI: 10.1016/j.biotechadv.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Two-component systems (TCSs) are prevalent signaling pathways in bacteria. These systems mediate phosphotransfer between histidine kinase and a response regulator, facilitating responses to diverse physical, chemical, and biological stimuli. Advancements in synthetic and structural biology have repurposed TCSs for applications in monitoring heavy metals, disease-associated biomarkers, and the production of bioproducts. However, the utility of many TCS biosensors is hindered by undesired performance due to the lack of effective engineering methods. Here, we briefly discuss the architectures and regulatory mechanisms of TCSs. We also summarize the recent advancements in TCS engineering by experimental or computational-based methods to fine-tune the biosensor functional parameters, such as response curve and specificity. Engineered TCSs have great potential in the medical, environmental, and biorefinery fields, demonstrating a crucial role in a wide area of biotechnology.
Collapse
Affiliation(s)
- Wenyan Cao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chao Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xuan Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Reynolds MF. New insights into the signal transduction mechanism of O 2-sensing FixL and other biological heme-based sensor proteins. J Inorg Biochem 2024; 259:112642. [PMID: 38908215 DOI: 10.1016/j.jinorgbio.2024.112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Recent structural and biophysical studies of O2-sensing FixL, NO-sensing soluble guanylate cyclase, and other biological heme-based sensing proteins have begun to reveal the details of their molecular mechanisms and shed light on how nature regulates important biological processes such as nitrogen fixation, blood pressure, neurotransmission, photosynthesis and circadian rhythm. The O2-sensing FixL protein from S. meliloti, the eukaryotic NO-sensing protein sGC, and the CO-sensing CooA protein from R. rubrum transmit their biological signals through gas-binding to the heme domain of these proteins, which inhibits or activates the regulatory, enzymatic domain. These proteins appear to propagate their signal by specific structural changes in the heme sensor domain initiated by the appropriate gas binding to the heme, which is then propagated through a coiled-coil linker or other domain to the regulatory, enzymatic domain that sends out the biological signal. The current understanding of the signal transduction mechanisms of O2-sensing FixL, NO-sensing sGC, CO-sensing CooA and other biological heme-based gas sensing proteins and their mechanistic themes are discussed, with recommendations for future work to further understand this rapidly growing area of biological heme-based gas sensors.
Collapse
Affiliation(s)
- Mark F Reynolds
- Department of Chemistry and Biochemistry, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA 19131, United States of America.
| |
Collapse
|
7
|
Mina S, Hérivaux A, Yaakoub H, Courdavault V, Wéry M, Papon N. Structure and distribution of sensor histidine kinases in the fungal kingdom. Curr Genet 2024; 70:17. [PMID: 39276214 DOI: 10.1007/s00294-024-01301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024]
Abstract
Two-component systems (TCSs) are diverse cell signaling pathways that play a significant role in coping with a wide range of environmental cues in both prokaryotic and eukaryotic organisms. These transduction circuitries are primarily governed by histidine kinases (HKs), which act as sensing proteins of a broad variety of stressors. To date, nineteen HK groups have been previously described in the fungal kingdom. However, the structure and distribution of these prominent sensing proteins were hitherto investigated in a limited number of fungal species. In this study, we took advantage of recent genomic resources in fungi to refine the fungal HK classification by deciphering the structural diversity and phylogenetic distribution of HKs across a large number of fungal clades. To this end, we browsed the genome of 91 species representative of different fungal clades, which yielded 726 predicted HK sequences. A domain organization analysis, coupled with a robust phylogenomic approach, led to an improved categorization of fungal HKs. While most of the compiled sequences were categorized into previously described fungal HK groups, some new groups were also defined. Overall, this study provides an improved overview of the structure, distribution, and evolution of HKs in the fungal kingdom.
Collapse
Affiliation(s)
- Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.
| | - Anaïs Hérivaux
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France
| | - Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France
- Nantes-Université, INRAE, UMR 1280, PhAN, Nantes, 44000, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Méline Wéry
- Univ Angers, SFR ICAT, Angers, F-49000, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France.
| |
Collapse
|
8
|
Gallagher KA, Tschowri N, Brennan RG, Schumacher MA, Buttner MJ. How c-di-GMP controls progression through the Streptomyces life cycle. Curr Opin Microbiol 2024; 80:102516. [PMID: 39059031 PMCID: PMC11497840 DOI: 10.1016/j.mib.2024.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Members of the antibiotic-producing bacterial genus Streptomyces undergo a complex developmental life cycle that culminates in the production of spores. Central to control of this cell differentiation process is signaling through the second messenger 3', 5'-cyclic diguanylic acid (c-di-GMP). So far, three proteins that are directly controlled by c-di-GMP in Streptomyces have been functionally and structurally characterized: the key developmental regulators BldD and σWhiG, and the glycogen-degrading enzyme GlgX. c-di-GMP signals through BldD and σWhiG, respectively, to control the two most dramatic transitions of the Streptomyces life cycle, the formation of the reproductive aerial hyphae and their differentiation into spore chains. Later in development, c-di-GMP activates GlgX-mediated degradation of glycogen, releasing stored carbon for spore maturation.
Collapse
Affiliation(s)
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
9
|
Maciunas LJ, Rotsides P, D'Lauro EJ, Brady S, Beld J, Loll PJ. The VanS sensor histidine kinase from type-B VRE recognizes vancomycin directly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.09.548278. [PMID: 37503228 PMCID: PMC10369886 DOI: 10.1101/2023.07.09.548278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
V ancomycin- r esistant e nterococci (VRE) are among the most common causes of nosocomial infections and have been prioritized as targets for new therapeutic development. Many genetically distinct types of VRE have been identified; however, they all share a common suite of resistance genes that function together to confer resistance to vancomycin. Expression of the resistance phenotype is controlled by the VanRS two-component system. This system senses the presence of the antibiotic, and responds by initiating transcription of resistance genes. VanS is a transmembrane sensor histidine kinase, and plays a fundamental role in antibiotic resistance by detecting vancomycin or its effects; it then transduces this signal to the VanR transcription factor, thereby alerting the organism to the presence of the antibiotic. Despite the critical role played by VanS, fundamental questions remain about its function, and in particular about how it senses vancomycin. Here, we focus on a purified VanRS system from one of the most clinically prevalent forms of VRE, type B. We show that in a native-like membrane environment, the autokinase activity of type-B VanS is strongly stimulated by vancomycin. We additionally demonstrate that this effect is mediated by a direct physical interaction between the antibiotic and the type-B VanS protein, and localize the interacting region to the protein's periplasmic domain. This represents the first time that a direct sensing mechanism has been confirmed for any VanS protein. Significance Statement When v ancomycin- r esistant e nterococci (VRE) sense the presence of vancomycin, they remodel their cell walls to block antibiotic binding. This resistance phenotype is controlled by the VanS protein, a histidine kinase that senses the antibiotic or its effects and signals for transcription of resistance genes. However, the mechanism by which VanS detects the antibiotic has remained unclear, with no consensus emerging as to whether the protein interacts directly with vancomycin, or instead detects some downstream consequence of vancomycin's action. Here, we show that for one of the most clinically relevant types of VRE, type B, VanS is activated by direct binding of the antibiotic. Such mechanistic insights will likely prove useful in circumventing vancomycin resistance.
Collapse
|
10
|
Partipilo M, Slotboom DJ. The S-component fold: a link between bacterial transporters and receptors. Commun Biol 2024; 7:610. [PMID: 38773269 PMCID: PMC11109136 DOI: 10.1038/s42003-024-06295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
The processes of nutrient uptake and signal sensing are crucial for microbial survival and adaptation. Membrane-embedded proteins involved in these functions (transporters and receptors) are commonly regarded as unrelated in terms of sequence, structure, mechanism of action and evolutionary history. Here, we analyze the protein structural universe using recently developed artificial intelligence-based structure prediction tools, and find an unexpected link between prominent groups of microbial transporters and receptors. The so-called S-components of Energy-Coupling Factor (ECF) transporters, and the membrane domains of sensor histidine kinases of the 5TMR cluster share a structural fold. The discovery of their relatedness manifests a widespread case of prokaryotic "transceptors" (related proteins with transport or receptor function), showcases how artificial intelligence-based structure predictions reveal unchartered evolutionary connections between proteins, and provides new avenues for engineering transport and signaling functions in bacteria.
Collapse
Affiliation(s)
- Michele Partipilo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
11
|
Zheng R, Feng Y, Kong L, Wu X, Zhou J, Zhang L, Liu S. Blue-light irradiation induced partial nitrification. WATER RESEARCH 2024; 254:121381. [PMID: 38442606 DOI: 10.1016/j.watres.2024.121381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
The role of ray radiation from the sunlight acting on organisms has long-term been investigated. However, how the light with different wavelengths affects nitrification and the involved nitrifiers are still elusive. Here, we found more than 60 % of differentially expressed genes (DEGs) in nitrifiers were observed under irradiation of blue light with wavelengths of 440-480 nm, which were 13.4 % and 20.3 % under red light and white light irradiation respectively. Blue light was more helpful to achieve partial nitrification rather than white light or red light, where ammonium oxidization by ammonia-oxidizing archaea (AOA) with the increased relative abundance from 8.6 % to 14.2 % played a vital role. This was further evidenced by the enhanced TCA cycle, reactive oxygen species (ROS) scavenge and DNA repair capacity in AOA under blue-light irradiation. In contrast, nitrite-oxidizing bacteria (NOB) was inhibited severely to achieve partial nitrification, and the newly discovered encoded blue light photoreceptor proteins made them more sensitive to blue light and hindered cell activity. Ammonia-oxidizing bacteria (AOB) expressed genes for DNA repair capacity under blue-light irradiation, which ensured their tiny impact by light irradiation. This study provided valuable insights into the photosensitivity mechanism of nitrifiers and shed light on the diverse regulatory by light with different radiation wavelengths in artificial systems, broadening our comprehension of the nitrogen cycle on earth.
Collapse
Affiliation(s)
- Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Liguo Zhang
- School of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China.
| |
Collapse
|
12
|
Leusenko AV, Mironov KS, Los DA. Transmembrane and PAS domains of the histidine kinase Hik33 as regulators of cold and light responses in the cyanobacterium Synechocystis sp. PCC 6803. Biochimie 2024; 218:76-84. [PMID: 37567357 DOI: 10.1016/j.biochi.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
The PAS (Per-ARNT-Sim) domain is a sensory protein regulatory module found in archaea, prokaryotes, and eukaryotes. Histidine and serine/threonine protein kinases, chemo- and photoreceptors, circadian rhythm regulators, ion channels, phosphodiesterases, and other cellular response regulators are among these proteins. Hik33 is a multifunctional sensory histidine kinase that is implicated in cyanobacterial responses to cold, salt, hyperosmotic, and oxidative stressors. The functional roles of individual Hik33 domains in signal transduction were investigated in this study. Synechocystis Hik33 deletion variants were developed, in which either both or a portion of the transmembrane domains and/or the PAS domain were deleted. Cold stress was applied to the mutant strains either under illumination or in the dark. The findings show that the transmembrane domains govern temperature responses, whereas PAS domain may be involved in regulation of downstream gene expression in light-dependent manner.
Collapse
Affiliation(s)
- Anna V Leusenko
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Kirill S Mironov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Dmitry A Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| |
Collapse
|
13
|
Mukherjee P, Agarwal S, Mallick SB, Dasgupta J. PAS domain of flagellar histidine kinase FlrB has a unique architecture and binds heme as a sensory ligand in an unconventional fashion. Structure 2024; 32:200-216.e5. [PMID: 38157857 DOI: 10.1016/j.str.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Phosphorylation of the σ54-dependent transcription activator FlrC by the sensor histidine kinase FlrB is essential for flagellar synthesis of Vibrio cholerae. Despite that, the structure, sensory signal, and mechanistic basis of function of FlrB were elusive. Here, we report the crystal structure of the sensory PAS domain of FlrB in its functional dimeric state that exhibits a unique architecture. Series of biochemical/biophysical experiments on different constructs and mutants established that heme binds hydrophobically as sensory ligand in the shallow ligand-binding cleft of FlrB-PAS without axial coordination. Intriguingly, ATP binding to the C-terminal ATP-binding (CA) domain assists PAS domain to bind heme, vis-à-vis, heme binding to the PAS facilitates ATP binding to the CA domain. We hypothesize that synergistic binding of heme and ATP triggers conformational signaling in FlrB, leading to downstream flagellar gene transcription. Enhanced swimming motility of V. cholerae with increased heme uptake supports this proposition.
Collapse
Affiliation(s)
- Peeali Mukherjee
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India
| | - Shubhangi Agarwal
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India
| | - Sritapa Basu Mallick
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India
| | - Jhimli Dasgupta
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India.
| |
Collapse
|
14
|
Eilers K, Hoong Yam JK, Liu X, Goh YF, To KN, Paracuellos P, Morton R, Brizuela J, Hui Yong AM, Givskov M, Freibert SA, Bange G, Rice SA, Steinchen W, Filloux A. The dual GGDEF/EAL domain enzyme PA0285 is a Pseudomonas species housekeeping phosphodiesterase regulating early attachment and biofilm architecture. J Biol Chem 2024; 300:105659. [PMID: 38237678 PMCID: PMC10874727 DOI: 10.1016/j.jbc.2024.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Abstract
Bacterial lifestyles depend on conditions encountered during colonization. The transition between planktonic and biofilm growth is dependent on the intracellular second messenger c-di-GMP. High c-di-GMP levels driven by diguanylate cyclases (DGCs) activity favor biofilm formation, while low levels were maintained by phosphodiesterases (PDE) encourage planktonic lifestyle. The activity of these enzymes can be modulated by stimuli-sensing domains such as Per-ARNT-Sim (PAS). In Pseudomonas aeruginosa, more than 40 PDE/DGC are involved in c-di-GMP homeostasis, including 16 dual proteins possessing both canonical DGC and PDE motifs, that is, GGDEF and EAL, respectively. It was reported that deletion of the EAL/GGDEF dual enzyme PA0285, one of five c-di-GMP-related enzymes conserved across all Pseudomonas species, impacts biofilms. PA0285 is anchored in the membrane and carries two PAS domains. Here, we confirm that its role is conserved in various P. aeruginosa strains and in Pseudomonas putida. Deletion of PA0285 impacts the early stage of colonization, and RNA-seq analysis suggests that expression of cupA fimbrial genes is involved. We demonstrate that the C-terminal portion of PA0285 encompassing the GGDEF and EAL domains binds GTP and c-di-GMP, respectively, but only exhibits PDE activity in vitro. However, both GGDEF and EAL domains are important for PA0285 PDE activity in vivo. Complementation of the PA0285 mutant strain with a copy of the gene encoding the C-terminal GGDEF/EAL portion in trans was not as effective as complementation with the full-length gene. This suggests the N-terminal transmembrane and PAS domains influence the PDE activity in vivo, through modulating the protein conformation.
Collapse
Affiliation(s)
- Kira Eilers
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Yu Fen Goh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Ka-Ning To
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Patricia Paracuellos
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Richard Morton
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jaime Brizuela
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Adeline Mei Hui Yong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Sven-Andreas Freibert
- Philipps University Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Gert Bange
- Philipps University Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Microbiomes for One Systems Health and Agriculture and Food, CSIRO, Westmead, New South Wales, Australia
| | - Wieland Steinchen
- Philipps University Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| | - Alain Filloux
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
15
|
Chowdhury G, Biswas S, Dholey Y, Panja P, Das S, Adak S. Importance of aspartate 4 in the Mg 2+ dependent regulation of Leishmania major PAS domain-containing phosphoglycerate kinase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140964. [PMID: 37726028 DOI: 10.1016/j.bbapap.2023.140964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Magnesium is an important divalent cation for the regulation of catalytic activity. Recently, we have described that the Mg2+ binding through the PAS domain inhibits the phosphoglycerate kinase (PGK) activity in PAS domain-containing PGK from Leishmania major (LmPAS-PGK) at neutral pH 7.5, but PGK activity is derepressed at acidic pH 5.5. The acidic residue within the PAS domain of LmPAS-PGK is expected to bind the cofactor Mg2+ ion at neutral pH, but which specific acidic residue(s) is/are responsible for the Mg2+ binding is still unknown. To identify the residues, we exploited mutational studies of all acidic (twelve Asp/Glu) residues in the PAS domain for plausible Mg2+ binding. Mg2+ ion-dependent repression at pH 7.5 is withdrawn by substitution of Asp-4 with Ala, whereas other acidic residue mutants (D16A, D22A, D24A, D29A, D43A, D44A, D60A, D63A, D77A, D87A, and E107A) showed similar features compared to the wild-type protein. Fluorescence spectroscopic studies and isothermal titration calorimetry analysis showed that the Asp-4 is crucial for Mg2+ binding in the absence of both PGK's substrates. These results suggest that Asp-4 residue in the regulatory (PAS) domain of wild type enzymes is required for Mg2+ dependent repressed state of the catalytic PGK domain at neutral pH.
Collapse
Affiliation(s)
- Gaurab Chowdhury
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Saroj Biswas
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Yuthika Dholey
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Puja Panja
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Sumit Das
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Subrata Adak
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
16
|
Xing J, Gumerov VM, Zhulin IB. Origin and functional diversification of PAS domain, a ubiquitous intracellular sensor. SCIENCE ADVANCES 2023; 9:eadi4517. [PMID: 37647406 PMCID: PMC10468136 DOI: 10.1126/sciadv.adi4517] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Signal perception is a key function in regulating biological activities and adapting to changing environments. Per-Arnt-Sim (PAS) domains are ubiquitous sensors found in diverse receptors in bacteria, archaea, and eukaryotes, but their origins, distribution across the tree of life, and extent of their functional diversity are not fully characterized. Here, we show that using sequence conservation and structural information, it is possible to propose specific and potential functions for a large portion of nearly 3 million PAS domains. Our analysis suggests that PAS domains originated in bacteria and were horizontally transferred to archaea and eukaryotes. We reveal that gas sensing via a heme cofactor evolved independently in several lineages, whereas redox and light sensing via flavin adenine dinucleotide and flavin mononucleotide cofactors have the same origin. The close relatedness of human PAS domains to those in bacteria provides an opportunity for drug design by exploring potential natural ligands and cofactors for bacterial homologs.
Collapse
Affiliation(s)
- Jiawei Xing
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH USA
| | - Vadim M. Gumerov
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH USA
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH USA
| |
Collapse
|
17
|
Boyer NR, Tokmina-Lukaszewska M, Bueno Batista M, Mus F, Dixon R, Bothner B, Peters JW. Structural insights into redox signal transduction mechanisms in the control of nitrogen fixation by the NifLA system. Proc Natl Acad Sci U S A 2023; 120:e2302732120. [PMID: 37459513 PMCID: PMC10372690 DOI: 10.1073/pnas.2302732120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
NifL is a conformationally dynamic flavoprotein responsible for regulating the activity of the σ54-dependent activator NifA to control the transcription of nitrogen fixation (nif) genes in response to intracellular oxygen, cellular energy, or nitrogen availability. The NifL-NifA two-component system is the master regulatory system for nitrogen fixation. NifL serves as a sensory protein, undergoing signal-dependent conformational changes that modulate its interaction with NifA, forming the NifL-NifA complex, which inhibits NifA activity in conditions unsuitable for nitrogen fixation. While NifL-NifA regulation is well understood, these conformationally flexible proteins have eluded previous attempts at structure determination. In work described here, we advance a structural model of the NifL dimer supported by a combination of scattering techniques and mass spectrometry (MS)-coupled structural analyses that report on the average structure in solution. Using a combination of small angle X-ray scattering-derived electron density maps and MS-coupled surface labeling, we investigate the conformational dynamics responsible for NifL oxygen and energy responses. Our results reveal conformational differences in the structure of NifL under reduced and oxidized conditions that provide the basis for a model for modulating NifLA complex formation in the regulation of nitrogen fixation in response to oxygen in the model diazotroph, Azotobacter vinelandii.
Collapse
Affiliation(s)
- Nathaniel R. Boyer
- Institute of Biological Chemistry, Washington State University, Pullman, WA99164
| | | | - Marcelo Bueno Batista
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, WA99164
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK73019
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59717
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA99164
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK73019
| |
Collapse
|
18
|
Rojas-Pirela M, Delgado A, Rondón-Guerrero YDC, Cáceres AJ, Michels PAM, Concepción JL, Quiñones W. A Trypanosoma cruzi phosphoglycerate kinase isoform with a Per-Arnt-Sim domain acts as a possible sensor for intracellular conditions. Exp Parasitol 2023:108574. [PMID: 37353138 DOI: 10.1016/j.exppara.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Per-ARNT-Sim (PAS) domains constitute a family of domains present in a wide variety of prokaryotic and eukaryotic organisms. They form part of the structure of various proteins involved in diverse cellular processes. Regulation of enzymatic activity and adaptation to environmental conditions, by binding small ligands, are the main functions attributed to PAS-containing proteins. Recently, genes for a diverse set of proteins with a PAS domain were identified in the genomes of several protists belonging to the group of kinetoplastids, however, until now few of these proteins have been characterized. In this work, we characterize a phosphoglycerate kinase containing a PAS domain present in Trypanosoma cruzi (TcPAS-PGK). This PGK isoform is an active enzyme of 58 kDa with a PAS domain located at its N-terminal end. We identified the protein's localization within glycosomes of the epimastigote form of the parasite by differential centrifugation and selective permeabilization of its membranes with digitonin, as well as in an enriched mitochondrial fraction. Heterologous expression systems were developed for the protein with the N-terminal PAS domain (PAS-PGKc) and without it (PAS-PGKt), and the substrate affinities of both forms of the protein were determined. The enzyme does not exhibit standard Michaelis-Menten kinetics. When evaluating the dependence of the specific activity of the recombinant PAS-PGK on the concentration of its substrates 3-phosphoglycerate (3PGA) and ATP, two peaks of maximal activity were found for the complete enzyme with the PAS domain and a single peak for the enzyme without the domain. Km values measured for 3PGA were 219 ± 26 and 8.8 ± 1.3 μM, and for ATP 291 ± 15 and 38 ± 2.2 μM, for the first peak of PAS-PGKc and for PAS-PGKt, respectively, whereas for the second PAS-PGKc peak values of approximately 1.1-1.2 mM were estimated for both substrates. Both recombinant proteins show inhibition by high concentrations of their substrates, ATP and 3PGA. The presence of hemin and FAD exerts a stimulatory effect on PAS-PGKc, increasing the specific activity by up to 55%. This stimulation is not observed in the absence of the PAS domain. It strongly suggests that the PAS domain has an important function in vivo in T. cruzi in the modulation of the catalytic activity of this PGK isoform. In addition, the PAS-PGK through its PAS and PGK domains could act as a sensor for intracellular conditions in the parasite to adjust its intermediary metabolism.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Andrea Delgado
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Yossmayer D C Rondón-Guerrero
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Paul A M Michels
- School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FL, Scotland, United Kingdom
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| |
Collapse
|
19
|
Wang Z, Song L, Liu X, Shen X, Li X. Bacterial second messenger c-di-GMP: Emerging functions in stress resistance. Microbiol Res 2023; 268:127302. [PMID: 36640720 DOI: 10.1016/j.micres.2023.127302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
In natural environments, bacteria constantly encounter various stressful conditions, including nutrient starvation, toxic chemicals, and oxidative stress. The ability to adapt to these adverse conditions is crucial for bacterial survival. Frequently, bacteria utilize nucleotide signaling molecules such as cyclic diguanylate (c-di-GMP) to regulate their behaviors when encounter stress conditions. c-di-GMP is a ubiquitous bacterial second messenger regulating the transition between the planktonic state and biofilm state. An essential feature of biofilms is the production of extracellular matrix that covers bacterial cells and offers a physical barrier protecting the cells from environmental assaults. Beyond that, accumulating evidences have demonstrated that changes in the environment, including stress stimuli, cause the alteration of intracellular levels of c-di-GMP in bacterial cells, which is immediately sensed by a variety of downstream effectors that induce an appropriate stress response. In this review, we summarize recent research on the role of c-di-GMP signaling in bacterial responses to diverse stress conditions.
Collapse
Affiliation(s)
- Zhuo Wang
- Yuncheng Key Laboratory of Halophiles Resources Utilization, College of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
| | - Li Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaozhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xin Li
- Yuncheng Key Laboratory of Halophiles Resources Utilization, College of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China.
| |
Collapse
|
20
|
Barr SA, Kennedy EN, McKay LS, Johnson RM, Ohr RJ, Cotter PA, Bourret RB. Phosphorylation chemistry of the Bordetella PlrSR TCS and its contribution to bacterial persistence in the lower respiratory tract. Mol Microbiol 2023; 119:174-190. [PMID: 36577696 PMCID: PMC10313215 DOI: 10.1111/mmi.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
Bordetella species cause lower respiratory tract infections in mammals. B. pertussis and B. bronchiseptica are the causative agents of whooping cough and kennel cough, respectively. The current acellular vaccine for B. pertussis protects against disease but does not prevent transmission or colonization. Cases of pertussis are on the rise even in areas of high vaccination. The PlrSR two-component system, is required for persistence in the mouse lung. A partial plrS deletion strain and a plrS H521Q strain cannot survive past 3 days in the lung, suggesting PlrSR works in a phosphorylation-dependent mechanism. We characterized the biochemistry of B. bronchiseptica PlrSR and found that both proteins function as a canonical two-component system. His521 was essential and Glu522 was critical for PlrS autophosphorylation. Asn525 was essential for phosphatase activity. The PAS domain was critical for both PlrS autophosphorylation and phosphatase activities. PlrS could both phosphotransfer to and exert phosphatase activity toward PlrR. Unexpectedly, PlrR formed a tetramer when unphosphorylated and a dimer upon phosphorylation. Finally, we demonstrated the importance of PlrS phosphatase activity for persistence within the murine lung. By characterizing PlrSR we hope to guide future in vivo investigation for development of new vaccines and therapeutics.
Collapse
Affiliation(s)
- Sarah A. Barr
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Emily N. Kennedy
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Liliana S. McKay
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Richard M. Johnson
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ryan J. Ohr
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert B. Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Stuffle EC, Suzuki T, Orillard E, Watts KJ. The Aer2 chemoreceptor from Vibrio vulnificus is a tri-PAS-heme oxygen sensor. Mol Microbiol 2023; 119:59-73. [PMID: 36420630 PMCID: PMC10107281 DOI: 10.1111/mmi.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
The marine pathogen Vibrio vulnificus senses and responds to environmental stimuli via two chemosensory systems and 42-53 chemoreceptors. Here, we present an analysis of the V. vulnificus Aer2 chemoreceptor, VvAer2, which is the first V. vulnificus chemoreceptor to be characterized. VvAer2 is related to the Aer2 receptors of other gammaproteobacteria, but uncharacteristically contains three PAS domains (PAS1-3), rather than one or two. Using an E. coli chemotaxis hijack assay, we determined that VvAer2, like other Aer2 receptors, senses and responds to O2 . All three VvAer2 PAS domains bound pentacoordinate b-type heme and exhibited similar O2 affinities. PAS2 and PAS3 both stabilized O2 via conserved Iβ-Trp residues, but PAS1, which was easily oxidized in vitro, was unaffected by Iβ-Trp replacement. Our results support a model in which PAS1 is largely dispensable for O2 -mediated signaling, whereas PAS2 modulates PAS3 signaling, and PAS3 signals to the downstream domains. Each PAS domain appeared to be positionally optimized, because PAS swapping caused altered signaling properties, and neither PAS1 nor PAS2 could replace PAS3. Our findings strengthen previous conclusions that Aer2 receptors are O2 sensors, but with distinct N-terminal domain arrangements that facilitate, modulate and tune responses based on environmental signals.
Collapse
Affiliation(s)
- Erwin C Stuffle
- Division of Microbiology and Molecular Genetics, Loma Linda University, California, Loma Linda, USA
| | - Tise Suzuki
- Division of Biochemistry, Loma Linda University, California, Loma Linda, USA
| | - Emilie Orillard
- College of Health Sciences, Western University of Health Sciences, California, Pomona, USA
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, California, Loma Linda, USA
| |
Collapse
|
22
|
Matilla MA, Monteagudo-Cascales E, Krell T. Advances in the identification of signals and novel sensing mechanisms for signal transduction systems. Environ Microbiol 2023; 25:79-86. [PMID: 35896893 DOI: 10.1111/1462-2920.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/16/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
23
|
Abstract
Photoactive yellow protein (PYP) is a model photoreceptor. It binds a p-coumaric acid as a chromophore, thus enabling blue light sensing. The first discovered single-domain PYP from Halorhodospira halophila has been studied thoroughly in terms of its structural dynamics and photochemical properties. However, the evolutionary origins and biological role of PYP homologs are not well understood. Here, we show that PYP is an evolutionarily novel domain family of the ubiquitous PAS (Per-Arnt-Sim) superfamily. It likely originated from the phylum Myxococcota and was then horizontally transferred to representatives of a few other bacterial phyla. We show that PYP is associated with signal transduction either by domain fusion or by genome context. Key cellular functions modulated by PYP-initiated signal transduction pathways likely involve gene expression, motility, and biofilm formation. We identified three clades of the PYP family, one of which is poorly understood and potentially has novel functional properties. The Tyr42, Glu46, and Cys69 residues that are involved in p-coumaric acid binding in the model PYP from H. halophila are well conserved in the PYP family. However, we also identified cases where substitutions in these residues might have led to neofunctionalization, such as the proposed transition from light to redox sensing. Overall, this study provides definition, a newly built hidden Markov model, and the current genomic landscape of the PYP family and sets the stage for the future exploration of its signaling mechanisms and functional diversity. IMPORTANCE Photoactive yellow protein is a model bacterial photoreceptor. For many years, it was considered a prototypical model of the ubiquitous PAS domain superfamily. Here, we show that, in fact, the PYP family is evolutionarily novel, restricted to a few bacterial phyla and distinct from other PAS domains. We also reveal the diversity of PYP-containing signal transduction proteins and their potential mechanisms.
Collapse
|
24
|
Maschmann ZA, Chua TK, Chandrasekaran S, Ibáñez H, Crane BR. Redox properties and PAS domain structure of the Escherichia coli energy sensor Aer indicate a multistate sensing mechanism. J Biol Chem 2022; 298:102598. [PMID: 36252616 PMCID: PMC9668731 DOI: 10.1016/j.jbc.2022.102598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
The Per-Arnt-Sim (PAS; named for the representative proteins: Period, Aryl hydrocarbon receptor nuclear translocator protein and Single-minded) domain of the dimeric Escherichia coli aerotaxis receptor Aer monitors cellular respiration through a redox-sensitive flavin adenine dinucleotide (FAD) cofactor. Conformational shifts in the PAS domain instigated by the oxidized FAD (FADOX)/FAD anionic semiquinone (FADASQ) redox couple traverse the HAMP (histidine kinases, adenylate cyclases, methyl-accepting chemotaxis proteins, and phosphatases) and kinase control domains of the Aer dimer to regulate CheA kinase activity. The PAS domain of Aer is unstable and has not been previously purified. Here, residue substitutions that rescue FAD binding in an FAD binding-deficient full-length Aer variant were used in combination to stabilize the Aer PAS domain. We solved the 2.4 Å resolution crystal structure of this variant, Aer-PAS-GVV, and revealed a PAS fold that contains distinct features associated with FAD-based redox sensing, such as a close contact between the Arg115 side chain and N5 of the isoalloxazine ring and interactions of the flavin with the side chains of His53 and Asn85 that are poised to convey conformational signals from the cofactor to the protein surface. In addition, we determined the FADox/FADASQ formal potentials of Aer-PAS-GVV and full-length Aer reconstituted into nanodiscs. The Aer redox couple is remarkably low at -289.6 ± 0.4 mV. In conclusion, we propose a model for Aer energy sensing based on the low potential of Aer-PAS-FADox/FADASQ couple and the inability of Aer-PAS to bind to the fully reduced FAD hydroquinone.
Collapse
Affiliation(s)
- Zachary A Maschmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Teck Khiang Chua
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | | | - Héctor Ibáñez
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
25
|
Vávra J, Sergunin A, Jeřábek P, Shimizu T, Martínková M. Signal transduction mechanisms in heme-based globin-coupled oxygen sensors with a focus on a histidine kinase ( AfGcHK) and a diguanylate cyclase (YddV or EcDosC). Biol Chem 2022; 403:1031-1042. [PMID: 36165459 DOI: 10.1515/hsz-2022-0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023]
Abstract
Heme is a vital cofactor of proteins with roles in oxygen transport (e.g. hemoglobin), storage (e.g. myoglobin), and activation (e.g. P450) as well as electron transfer (e.g. cytochromes) and many other functions. However, its structural and functional role in oxygen sensing proteins differs markedly from that in most other enzymes, where it serves as a catalytic or functional center. This minireview discusses the mechanism of signal transduction in two heme-based oxygen sensors: the histidine kinase AfGcHK and the diguanylate cyclase YddV (EcDosC), both of which feature a heme-binding domain containing a globin fold resembling that of hemoglobin and myoglobin.
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Petr Jeřábek
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| |
Collapse
|
26
|
Abstract
Bacteria have evolved many different signal transduction systems to sense and respond to changing environmental conditions. Signal integration is mainly achieved by signal recognition at extracytosolic ligand-binding domains (LBDs) of receptors. Hundreds of different LBDs have been reported, and our understanding of their sensing properties is growing. Receptors must function over a range of environmental pH values, but there is little information available on the robustness of sensing as a function of pH. Here, we have used isothermal titration calorimetry to determine the pH dependence of ligand recognition by nine LBDs that cover all major LBD superfamilies, of periplasmic solute-binding proteins, and cytosolic LBDs. We show that periplasmic LBDs recognize ligands over a very broad pH range, frequently stretching over eight pH units. This wide pH range contrasts with a much narrower pH response range of the cytosolic LBDs analyzed. Many LBDs must be dimeric to bind ligands, and analytical ultracentrifugation studies showed that the LBD of the Tar chemoreceptor forms dimers over the entire pH range tested. The pH dependences of Pseudomonas aeruginosa motility and chemotaxis were bell-shaped and centered at pH 7.0. Evidence for pH robustness of signaling in vivo was obtained by Förster Resonance Energy Transfer (FRET) measurements of the chemotaxis pathway responses in Escherichia coli. Bacteria have evolved several strategies to cope with extreme pH, such as periplasmic chaperones for protein refolding. The intrinsic pH resistance of periplasmic LBDs appears to be another strategy that permits bacteria to survive under adverse conditions.
Collapse
|
27
|
New Roles for HAMP Domains: the Tri-HAMP Region of Pseudomonas aeruginosa Aer2 Controls Receptor Signaling and Cellular Localization. J Bacteriol 2022; 204:e0022522. [PMID: 35916529 PMCID: PMC9487508 DOI: 10.1128/jb.00225-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Aer2 chemoreceptor from Pseudomonas aeruginosa is an O2 sensor involved in stress responses, virulence, and tuning the behavior of the chemotaxis (Che) system. Aer2 is the sole receptor of the Che2 system. It is soluble, but membrane associated, and forms complexes at the cell pole during stationary phase. The domain arrangement of Aer2 is unusual, with a PAS sensing domain sandwiched between five HAMP domains, followed by a C-terminal kinase-control output domain. The first three HAMP domains form a poly-HAMP chain N-terminal to the PAS sensing domain. HAMP domains are often located between signal input and output domains, where they transduce signals. Given that HAMP1 to 3 reside N-terminal to the input-output pathway, we undertook a systematic examination of their function in Aer2. We found that HAMP1 to 3 influence PAS signaling over a considerable distance, as the majority of HAMP1, 2 and 3 mutations, and deletions of helical phase stutters, led to nonresponsive signal-off or off-biased receptors. PAS signal-on lesions that mimic activated Aer2 also failed to override N-terminal HAMP signal-off replacements. This indicates that HAMP1 to 3 are critical coupling partners for PAS signaling and likely function as a cohesive unit and moveable scaffold to correctly orient and poise PAS dimers for O2-mediated signaling in Aer2. HAMP1 additionally controlled the clustering and polar localization of Aer2 in P. aeruginosa. Localization was not driven by HAMP1 charge, and HAMP1 signal-off mutants still localized. Employing HAMP as a clustering and localization determinant, as well as a facilitator of PAS signaling, are newly recognized roles for HAMP domains. IMPORTANCE P. aeruginosa is an opportunistic pathogen that interprets environmental stimuli via 26 chemoreceptors that signal through 4 distinct chemosensory systems. The second chemosensory system, Che2, contains a receptor named Aer2 that senses O2 and mediates stress responses and virulence and tunes chemotactic behavior. Aer2 is membrane associated, but soluble, and has three N-terminal HAMP domains (HAMP1 to 3) that reside outside the signal input-output pathway of Aer2. In this study, we determined that HAMP1 to 3 facilitate O2-dependent signaling from the PAS sensing domain and that HAMP1 controls the formation of Aer2-containing polar foci in P. aeruginosa. Both of these are newly recognized roles for HAMP domains that may be applicable to other non-signal-transducing HAMP domains and poly-HAMP chains.
Collapse
|
28
|
Reduction of a Heme Cofactor Initiates N-Nitroglycine Degradation by NnlA. Appl Environ Microbiol 2022; 88:e0102322. [PMID: 35916514 PMCID: PMC9397103 DOI: 10.1128/aem.01023-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Linear nitramines are potentially carcinogenic environmental contaminants. The NnlA enzyme from Variovorax sp. strain JS1663 degrades the nitramine N-nitroglycine (NNG)-a natural product produced by some bacteria-to glyoxylate and nitrite (NO2-). Ammonium (NH4+) was predicted as the third product of this reaction. A source of nonheme FeII was shown to be required for initiation of NnlA activity. However, the role of this FeII for NnlA activity was unclear. This study reveals that NnlA contains a b-type heme cofactor. Reduction of this heme-either by a nonheme iron source or dithionite-is required to initiate NnlA activity. Therefore, FeII is not an essential substrate for holoenzyme activity. Our data show that reduced NnlA (FeII-NnlA) catalyzes at least 100 turnovers and does not require O2. Finally, NH4+ was verified as the third product, accounting for the complete nitrogen mass balance. Size exclusion chromatography showed that NnlA is a dimer in solution. Additionally, FeII-NnlA is oxidized by O2 and NO2- and stably binds carbon monoxide (CO) and nitric oxide (NO). These are characteristics shared with heme-binding PAS domains. Furthermore, a structural homology model of NnlA was generated using the PAS domain from Pseudomonas aeruginosa Aer2 as a template. The structural homology model suggested His73 is the axial ligand of the NnlA heme. Site-directed mutagenesis of His73 to alanine decreased the heme occupancy of NnlA and eliminated NNG activity, validating the homology model. We conclude that NnlA forms a homodimeric heme-binding PAS domain protein that requires reduction for initiation of the activity. IMPORTANCE Linear nitramines are potential carcinogens. These compounds result from environmental degradation of high-energy cyclic nitramines and as by-products of carbon capture technologies. Mechanistic understanding of the biodegradation of these compounds is critical to inform strategies for their remediation. Biodegradation of NNG by NnlA from Variovorax sp. strain JS 1663 requires nonheme iron, but its role is unclear. This study shows that nonheme iron is unnecessary. Instead, our study reveals that NnlA contains a heme cofactor, the reduction of which is critical for activating NNG degradation activity. These studies constrain the proposals for NnlA reaction mechanisms, thereby informing mechanistic studies of degradation of anthropogenic nitramine contaminants. In addition, these results will inform future work to design biocatalysts to degrade these nitramine contaminants.
Collapse
|
29
|
Rick T, Kreiling V, Höing A, Fiedler S, Glatter T, Steinchen W, Hochberg G, Bähre H, Seifert R, Bange G, Knauer SK, Graumann PL, Thormann KM. GGDEF domain as spatial on-switch for a phosphodiesterase by interaction with landmark protein HubP. NPJ Biofilms Microbiomes 2022; 8:35. [PMID: 35501424 PMCID: PMC9061725 DOI: 10.1038/s41522-022-00297-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn bacteria, the monopolar localization of enzymes and protein complexes can result in a bimodal distribution of enzyme activity between the dividing cells and heterogeneity of cellular behaviors. In Shewanella putrefaciens, the multidomain hybrid diguanylate cyclase/phosphodiesterase PdeB, which degrades the secondary messenger c-di-GMP, is located at the flagellated cell pole. Here, we show that direct interaction between the inactive diguanylate cyclase (GGDEF) domain of PdeB and the FimV domain of the polar landmark protein HubP is crucial for full function of PdeB as a phosphodiesterase. Thus, the GGDEF domain serves as a spatially controlled on-switch that effectively restricts PdeBs activity to the flagellated cell pole. PdeB regulates abundance and activity of at least two crucial surface-interaction factors, the BpfA surface-adhesion protein and the MSHA type IV pilus. The heterogeneity in c-di-GMP concentrations, generated by differences in abundance and timing of polar appearance of PdeB, orchestrates the population behavior with respect to cell-surface interaction and environmental spreading.
Collapse
|
30
|
Willis SD, Hanley SE, Doyle SJ, Beluch K, Strich R, Cooper KF. Cyclin C-Cdk8 Kinase Phosphorylation of Rim15 Prevents the Aberrant Activation of Stress Response Genes. Front Cell Dev Biol 2022; 10:867257. [PMID: 35433688 PMCID: PMC9008841 DOI: 10.3389/fcell.2022.867257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cells facing adverse environmental cues respond by inducing signal transduction pathways resulting in transcriptional reprograming. In the budding yeast Saccharomyces cerevisiae, nutrient deprivation stimulates stress response gene (SRG) transcription critical for entry into either quiescence or gametogenesis depending on the cell type. The induction of a subset of SRGs require nuclear translocation of the conserved serine-threonine kinase Rim15. However, Rim15 is also present in unstressed nuclei suggesting that additional activities are required to constrain its activity in the absence of stress. Here we show that Rim15 is directly phosphorylated by cyclin C-Cdk8, the conserved kinase module of the Mediator complex. Several results indicate that Cdk8-dependent phosphorylation prevents Rim15 activation in unstressed cells. First, Cdk8 does not control Rim15 subcellular localization and rim15∆ is epistatic to cdk8∆ with respect to SRG transcription and the execution of starvation programs required for viability. Next, Cdk8 phosphorylates a residue in the conserved PAS domain in vitro. This modification appears important as introducing a phosphomimetic at Cdk8 target residues reduces Rim15 activity. Moreover, the Rim15 phosphomimetic only compromises cell viability in stresses that induce cyclin C destruction as well as entrance into meiosis. Taken together, these findings suggest a model in which Cdk8 phosphorylation contributes to Rim15 repression whilst it cycles through the nucleus. Cyclin C destruction in response to stress inactivates Cdk8 which in turn stimulates Rim15 to maximize SRG transcription and cell survival.
Collapse
|
31
|
Zerlotti R, Losi A, Polverini E. Oxygen diffusion pathways in mutated forms of a LOV photoreceptor from Methylobacterium radiotolerans: A molecular dynamics study. Biomol Concepts 2022; 13:164-174. [DOI: 10.1515/bmc-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Mr4511 from Methylobacterium radiotolerans is a photoreceptor of the light, oxygen voltage (LOV) family, binding flavin mononucleotide (FMN) as a chromophore. It exhibits the prototypical LOV photocycle, with the reversible formation of an FMN-Cys71 adduct via fast decay of the FMN triplet state. Mr4511 has high potential as a photosensitiser for singlet oxygen (SO) upon mutation of C71. Mr4511-C71S shows a triplet lifetime (τ
T) of several hundreds of microseconds, ensuring efficient energy transfer to dioxygen to form SO. In this work, we have explored the potential diffusion pathways for dioxygen within Mr4511 using molecular dynamics (MD) simulations. The structural model of wild-type (wt) Mr4511 showed a dimeric structure stabilised by a strong leucine zipper at the two C-terminal helical ends. We then introduced in silico the C71S mutation and analysed transient and persistent oxygen channels. MD simulations indicate that the chromophore binding site is highly accessible to dioxygen. Mutations that might favour SO generation were designed based on their position with respect to FMN and the oxygen channels. In particular, the C71S-Y61T and C71S-Y61S variants showed an increased diffusion and persistence of oxygen molecules inside the binding cavity.
Collapse
Affiliation(s)
- Rocco Zerlotti
- NeuroTrans ETN Network c/o Nanion Technologies GmbH, Ganghoferstraße 70/a , 80339 München , Bayern , Germany
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A , 43124 Parma , Italy
| | - Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A , 43124 Parma , Italy
| | - Eugenia Polverini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A , 43124 Parma , Italy
| |
Collapse
|
32
|
A c-di-GMP Signaling Cascade Controls Motility, Biofilm Formation, and Virulence in Burkholderia thailandensis. Appl Environ Microbiol 2022; 88:e0252921. [PMID: 35323023 DOI: 10.1128/aem.02529-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a key bacterial second messenger, cyclic di-GMP (c-di-GMP) regulates various physiological processes, such as motility, biofilm formation, and virulence. Cellular c-di-GMP levels are regulated by the opposing activities of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs). Beyond that, the enzymatic activities of c-di-GMP metabolizing proteins are controlled by a variety of extracellular signals and intracellular physiological conditions. Here, we report that pdcA (BTH_II2363), pdcB (BTH_II2364), and pdcC (BTH_II2365) are cotranscribed in the same operon and are involved in a regulatory cascade controlling the cellular level of c-di-GMP in Burkholderia thailandensis. The GGDEF domain-containing protein PdcA was found to be a DGC that modulates biofilm formation, motility, and virulence in B. thailandensis. Moreover, the DGC activity of PdcA was inhibited by phosphorylated PdcC, a single-domain response regulator composed of only the phosphoryl-accepting REC domain. The phosphatase PdcB affects the function of PdcA by dephosphorylating PdcC. The observation that homologous operons of pdcABC are widespread among betaproteobacteria and gammaproteobacteria suggests a general mechanism by which the intracellular concentration of c-di-GMP is modulated to coordinate bacterial behavior and virulence. IMPORTANCE The transition from planktonic cells to biofilm cells is a successful strategy adopted by bacteria to survive in diverse environments, while the second messenger c-di-GMP plays an important role in this process. Cellular c-di-GMP levels are mainly controlled by modulating the activity of c-di-GMP-metabolizing proteins via the sensory domains adjacent to their enzymatic domains. However, in most cases how c-di-GMP-metabolizing enzymes are modulated by their sensory domains remains unclear. Here, we reveal a new c-di-GMP signaling cascade that regulates motility, biofilm formation, and virulence in B. thailandensis. While pdcA, pdcB, and pdcC constitute an operon, the phosphorylated PdcC binds the PAS sensory domain of PdcA to inhibit its DGC activity, with PdcB dephosphorylating PdcC to derepress the activity of PdcA. We also show this c-di-GMP regulatory model is widespread in the phylum Proteobacteria. Our study expands the current knowledge of how bacteria regulate intracellular c-di-GMP levels.
Collapse
|
33
|
Abstract
In this study, we provide the first characterization of a chemoreceptor from Leptospira interrogans, the cause of leptospirosis. This receptor is related to the Aer2 receptors that have been studied in other bacteria. In those organisms, Aer2 is a soluble receptor with one or two PAS-heme domains and signals in response to O2 binding. In contrast, L. interrogans Aer2 (LiAer2) is an unusual membrane-bound Aer2 with a periplasmic domain and three cytoplasmic PAS-heme domains. Each of the three PAS domains bound b-type heme via conserved Eη-His residues. They also bound O2 and CO with similar affinities to each other and other PAS-heme domains. However, all three PAS domains were uniquely hexacoordinate in the deoxy-heme state, whereas other Aer2-PAS domains are pentacoordinate. Similar to other Aer2 receptors, LiAer2 could hijack the E. coli chemotaxis pathway but only when it was expressed with an E. coli high-abundance chemoreceptor. Unexpectedly, the response was inverted relative to classic Aer2 receptors. That is, LiAer2 caused E. coli to tumble (it was signal-on) in the absence of O2 and to stop tumbling in its presence. Thus, an endogenous ligand in the deoxy-heme state was correlated with signal-on LiAer2, and its displacement for gas-binding turned signaling off. This response also occurred in a soluble version of LiAer2 lacking the periplasmic domain, transmembrane (TM) region, and first two PAS domains, meaning that PAS3 alone was sufficient for O2-mediated control. Future studies are needed to understand the unique signaling mechanisms of this unusual Aer2 receptor. IMPORTANCE Leptospira interrogans, the cause of the zoonotic infection leptospirosis, is found in soil and water contaminated with animal urine. L. interrogans survives in complex environments with the aid of 12 chemoreceptors, none of which has been explicitly studied. In this study, we characterized the first L. interrogans chemoreceptor, LiAer2, and reported its unique characteristics. LiAer2 is membrane-bound, has three cytoplasmic PAS-heme domains that each bound hexacoordinate b-type heme and O2 turned LiAer2 signaling off. An endogenous ligand in the deoxy-heme state was correlated with signal-on LiAer2 and its displacement for O2-binding turned signaling off. Our study corroborated previous findings that Aer2 receptors are O2 sensors, but also demonstrated that they do not all function the same way.
Collapse
|
34
|
Otero LH, Foscaldi S, Antelo GT, Rosano GL, Sirigu S, Klinke S, Defelipe LA, Sánchez-Lamas M, Battocchio G, Conforte V, Vojnov AA, Chavas LMG, Goldbaum FA, Mroginski MA, Rinaldi J, Bonomi HR. Structural basis for the Pr-Pfr long-range signaling mechanism of a full-length bacterial phytochrome at the atomic level. SCIENCE ADVANCES 2021; 7:eabh1097. [PMID: 34818032 PMCID: PMC8612531 DOI: 10.1126/sciadv.abh1097] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Phytochromes constitute a widespread photoreceptor family that typically interconverts between two photostates called Pr (red light–absorbing) and Pfr (far-red light–absorbing). The lack of full-length structures solved at the (near-)atomic level in both pure Pr and Pfr states leaves gaps in the structural mechanisms involved in the signal transmission pathways during the photoconversion. Here, we present the crystallographic structures of three versions from the plant pathogen Xanthomonas campestris virulence regulator XccBphP bacteriophytochrome, including two full-length proteins, in the Pr and Pfr states. The structures show a reorganization of the interaction networks within and around the chromophore-binding pocket, an α-helix/β-sheet tongue transition, and specific domain reorientations, along with interchanging kinks and breaks at the helical spine as a result of the photoswitching, which subsequently affect the quaternary assembly. These structural findings, combined with multidisciplinary studies, allow us to describe the signaling mechanism of a full-length bacterial phytochrome at the atomic level.
Collapse
Affiliation(s)
- Lisandro H. Otero
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Sabrina Foscaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Giuliano T. Antelo
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Germán L. Rosano
- Unidad de Espectrometría de Masa, Instituto de Biología Molecular y Celular de Rosario, UEM-IBR, CONICET, Bv. 27 de Febrero (S2000EZP), Rosario, Argentina
| | - Serena Sirigu
- Proxima-1, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48 (91192), Gif-sur-Yvette Cedex, France
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Lucas A. Defelipe
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestrasse 85 (22607), Hamburg, Germany
| | - Maximiliano Sánchez-Lamas
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Giovanni Battocchio
- Technische Universität Berlin, Institute of Chemistry, Strasse des 17. Juni 135 (D-10623), Berlin, Germany
| | - Valeria Conforte
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Adrián A. Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Leonard M. G. Chavas
- Proxima-1, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48 (91192), Gif-sur-Yvette Cedex, France
- Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603, Japan
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Maria-Andrea Mroginski
- Technische Universität Berlin, Institute of Chemistry, Strasse des 17. Juni 135 (D-10623), Berlin, Germany
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Hernán R. Bonomi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| |
Collapse
|
35
|
Pardoux R, Dolla A, Aubert C. Metal-containing PAS/GAF domains in bacterial sensors. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
36
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
37
|
Orillard E, Anaya S, Johnson MS, Watts KJ. Oxygen-Induced Conformational Changes in the PAS-Heme Domain of the Pseudomonas aeruginosa Aer2 Receptor. Biochemistry 2021; 60:2610-2622. [PMID: 34383467 DOI: 10.1021/acs.biochem.1c00452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Aer2 receptor from Pseudomonas aeruginosa has an O2-binding PAS-heme domain that stabilizes O2 via a Trp residue in the distal heme pocket. Trp rotates ∼90° to bond with the ligand and initiate signaling. Although the isolated PAS domain is monomeric, both in solution and in a cyanide-bound crystal structure, an unliganded structure forms a dimer. An overlay of the two structures suggests possible signaling motions but also predicts implausible clashes at the dimer interface when the ligand is bound. Moreover, in a full-length Aer2 dimer, PAS is sandwiched between multiple N- and C-terminal HAMP domains, which would feasibly restrict PAS motions. To explore the PAS dimer interface and signal-induced motions in full-length Aer2, we introduced Cys substitutions and used thiol-reactive probes to examine in vivo accessibility and residue proximities under both aerobic and anaerobic conditions. In vivo, PAS dimers were retained in full-length Aer2 in the presence and absence of O2, and the dimer interface was consistent with the isolated PAS dimer structure. O2-mediated changes were also consistent with structural predictions in which the PAS N-terminal caps move apart and the C-terminal DxT region moves closer together. The DxT motif links PAS to the C-terminal HAMP domains and was critical for PAS-HAMP signaling. Removing the N-terminal HAMP domains altered the distal PAS dimer interface and prevented signaling, even after signal-on lesions were introduced into PAS. The N-terminal HAMP domains thus facilitate the O2-dependent shift of PAS to the signal-on conformation, clarifying their role upstream of the PAS-sensing domain.
Collapse
Affiliation(s)
- Emilie Orillard
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Selina Anaya
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Mark S Johnson
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| |
Collapse
|
38
|
Gushchin I, Aleksenko VA, Orekhov P, Goncharov IM, Nazarenko VV, Semenov O, Remeeva A, Gordeliy V. Nitrate- and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity. Int J Mol Sci 2021; 22:5933. [PMID: 34072989 PMCID: PMC8199190 DOI: 10.3390/ijms22115933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Under anaerobic conditions, bacteria may utilize nitrates and nitrites as electron acceptors. Sensitivity to nitrous compounds is achieved via several mechanisms, some of which rely on sensor histidine kinases (HKs). The best studied nitrate- and nitrite-sensing HKs (NSHKs) are NarQ and NarX from Escherichia coli. Here, we review the function of NSHKs, analyze their natural diversity, and describe the available structural information. In particular, we show that around 6000 different NSHK sequences forming several distinct clusters may now be found in genomic databases, comprising mostly the genes from Beta- and Gammaproteobacteria as well as from Bacteroidetes and Chloroflexi, including those from anaerobic ammonia oxidation (annamox) communities. We show that the architecture of NSHKs is mostly conserved, although proteins from Bacteroidetes lack the HAMP and GAF-like domains yet sometimes have PAS. We reconcile the variation of NSHK sequences with atomistic models and pinpoint the structural elements important for signal transduction from the sensor domain to the catalytic module over the transmembrane and cytoplasmic regions spanning more than 200 Å.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vladimir A. Aleksenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan M. Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vera V. Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|