1
|
Deng J, Zeng G, Xia W, Tang W, Chai Z, Liu Y, Li C, Huang L, Jiang L. Backbone resonance assignment of the catalytic and ATP-binding domain of CpxA from Escherichia coli. BIOMOLECULAR NMR ASSIGNMENTS 2025; 19:59-62. [PMID: 39915341 DOI: 10.1007/s12104-025-10218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/13/2025] [Indexed: 03/11/2025]
Abstract
CpxA is an extensively studied histidine kinase implicated in cellular stress responses. The highly conserved CA domain of CpxA (CpxACA) is an essential domain for the hydrolysis of ATP and the binding of inhibitors and considered to be a promising target for broad-spectrum antimicrobial drugs development. The ATP-binding pocket in the CA domain contains a flexible ATP lid motif. Although the crystal structure of CA domain has been defined, the structure of the ATP lid remains uncertain, posing a challenge to the study of its catalytic mechanism. In this study, we report the backbone 1H, 13C and 15N chemical shift assignments of CpxACA by heteronuclear multidimensional spectroscopy and predict its secondary structure in solution using TALOS+. The residues of ATP lid motif are well-assigned. Therefore, this study provides a foundation for understanding the role of CpxACA in cellular signaling and the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Jing Deng
- HitGen Inc, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Guofang Zeng
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqing Xia
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Tang
- HitGen Inc, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Zhaofei Chai
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yixiang Liu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liqun Huang
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
2
|
Choi S, Ahn S, Cho KH, Lee SK, Kee JM. Chemoproteomic identification of phosphohistidine acceptors: posttranslational activity regulation of a key glycolytic enzyme. Chem Sci 2025; 16:8014-8022. [PMID: 40201162 PMCID: PMC11974560 DOI: 10.1039/d5sc01024a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
Histidine phosphorylation, an unconventional and understudied posttranslational modification, often involves phosphohistidine (pHis) "acceptor" proteins, which bind to pHis residues and undergo phosphotransfer from pHis. While the roles of pHis acceptors are well-documented in bacterial cell signalling and metabolism, the presence and functions of additional pHis acceptors remain largely unknown. In this study, we introduce a chemoproteomic strategy leveraging a stable analogue of 3-pHis to identify 13 putative pHis acceptors in Escherichia coli. Among these, we identified phosphofructokinase-1 (PfkA), a central enzyme in glycolysis, as a pHis acceptor phosphorylated at His249 by phosphocarrier protein HPr (PtsH). This phosphorylation, modulated by carbon source availability, inhibited PfkA's kinase activity, while the pHis-specific phosphatase signal inhibitory factor X (SixA) reversed the effect, restoring the kinase function. Our findings reveal a novel regulatory mechanism in which histidine phosphorylation dynamically controls a key glycolytic enzyme, implicating a broader role for pHis in bacterial metabolism.
Collapse
Affiliation(s)
- Solbee Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Seungmin Ahn
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Kyung Hyun Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| |
Collapse
|
3
|
Gao S, Liu B, Yuan S, Quan Y, Song S, Jin W, Wang Y, Wang Y. Cross-talk between signal transduction systems and metabolic networks in antibiotic resistance and tolerance. Int J Antimicrob Agents 2025; 65:107479. [PMID: 40024604 DOI: 10.1016/j.ijantimicag.2025.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The comprehensive antibiotic resistance of pathogens signifies the oneset of the "post-antibiotic era", and the myriad treatment challenges posed by "superbugs" have emerged as the primary threat to human health. Recent studies indicate that bacterial resistance and tolerance development are mediated at the metabolic level by various signalling networks (e.g., quorum sensing systems, second messenger systems, and two-component systems), resulting in metabolic rearrangements and alterations in bacterial community behaviour. This review focuses on current research, highlighting the intrinsic link between signalling and metabolic networks in bacterial resistance and tolerance.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Shenao Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China.
| |
Collapse
|
4
|
Niño-Vega GA, Ortiz-Ramírez JA, López-Romero E. Novel Antibacterial Approaches and Therapeutic Strategies. Antibiotics (Basel) 2025; 14:404. [PMID: 40298586 PMCID: PMC12024240 DOI: 10.3390/antibiotics14040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/30/2025] Open
Abstract
The increase in multidrug-resistant organisms worldwide is a major public health threat driven by antibiotic overuse, horizontal gene transfer (HGT), environmental drivers, and deficient infection control in hospitals. In this article, we discuss these factors and summarize the new drugs and treatment strategies suggested to combat the increasing challenges of multidrug-resistant (MDR) bacteria. New treatments recently developed involve targeting key processes involved in bacterial growth, such as riboswitches and proteolysis, and combination therapies to improve efficacy and minimize adverse effects. It also tackles the challenges of the Gram-negative bacterial outer membrane, stressing that novel strategies are needed to evade permeability barriers, efflux pumps, and resistance mechanisms. Other approaches, including phage therapy, AMPs, and AI in drug discovery, are also discussed as potential alternatives. Finally, this review points out the urgency for continued research and development (R&D), industry-academic partnerships, and financial engines to ensure that MDR microbes do not exceed the value of antibacterial therapies.
Collapse
Affiliation(s)
- Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato C.P. 36050, Mexico;
| | | | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato C.P. 36050, Mexico;
| |
Collapse
|
5
|
Boudrioua A, Baëtz B, Desmadril S, Goulard C, Groo AC, Lombard C, Gueulle S, Marugan M, Malzert-Fréon A, Hartke A, Li Y, Giraud C. Lasso peptides sviceucin and siamycin I exhibit anti-virulence activity and restore vancomycin effectiveness in vancomycin-resistant pathogens. iScience 2025; 28:111922. [PMID: 40034853 PMCID: PMC11872507 DOI: 10.1016/j.isci.2025.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Antibiotic resistance is a major threat to human health and new drugs are urgently needed. Ideally, these drugs should have several cellular targets in pathogens, decreasing the risk of resistance development. We show here that two natural ribosomally synthesized lasso peptides (LPs), sviceucin and siamycin I, (1) abolish bacterial virulence of pathogenic enterococci, (2) restore vancomycin clinical susceptibility of vancomycin-resistant (VR) enterococci in vitro and in a surrogate animal model, and (3) re-sensitize VR Staphylococcus aureus. Mode of action (MoA) analyses showed that they do so by inhibiting the histidine kinases (HKs) FsrC and VanS controlling these phenotypes. Strains resistant to the vancomycin/LP combination were difficult to obtain, and were still fully susceptible to the anti-virulence effect of the LPs, highlighting the advantage of multiple targets. Together with the highly sought-after MoA as HK inhibitors, such properties make these lasso peptides promising candidates for the development of next generation antibiotics.
Collapse
Affiliation(s)
| | - Benjamin Baëtz
- Université de Caen Normandie, CBSA UR4312, F-14000 Caen, France
| | | | - Christophe Goulard
- Unit Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-Muséum National d’Histoire Naturelle (MNHN), 75005 Paris, France
| | | | - Carine Lombard
- Unit Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-Muséum National d’Histoire Naturelle (MNHN), 75005 Paris, France
| | - Sabrina Gueulle
- Université de Caen Normandie, CBSA UR4312, F-14000 Caen, France
| | - Marie Marugan
- Unit Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-Muséum National d’Histoire Naturelle (MNHN), 75005 Paris, France
| | | | - Axel Hartke
- Université de Caen Normandie, CBSA UR4312, F-14000 Caen, France
| | - Yanyan Li
- Unit Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-Muséum National d’Histoire Naturelle (MNHN), 75005 Paris, France
| | - Caroline Giraud
- Université de Caen Normandie, CBSA UR4312, F-14000 Caen, France
| |
Collapse
|
6
|
Hondros AD, Young MM, Jaimes FE, Kinkead J, Thompson RJ, Melander C, Cavanagh J. Two-Component System Sensor Kinase Inhibitors Target the ATP-Lid of PmrB to Disrupt Colistin Resistance in Acinetobacter baumannii. Biochemistry 2025; 64:1317-1327. [PMID: 40056100 DOI: 10.1021/acs.biochem.4c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Two-component systems serve as ubiquitous communication modules that enable bacteria to detect and respond to various stimuli by regulating cellular processes such as growth, viability, and, most notably, antimicrobial resistance. Classical two-component systems consist of two proteins: an initial membrane-bound sensor histidine kinase and a DNA-binding response regulator that induces the appropriate response within the cell. Numerous studies have implicated the PmrAB two-component system in facilitating resistance to the last-resort antibiotic polymyxin E (colistin) in Acinetobacter baumannii. As initiators of the signaling pathways that elicit resistance, histidine kinases present ideal targets for developing antibiotic adjuvant drugs. Despite this, due to the membrane-bound nature of the histidine kinase PmrB, in vitro studies on PmrAB have been predominantly limited to the response regulator PmrA. In this work, we counter these limitations by producing a recombinant truncation of the cytosolic portion of PmrB (PmrBc) that retains its ATP binding, autophosphorylation, and phosphotransfer functions. Subsequently, in vivo phosphorylation assays using this protein construct allowed for the evaluation of five compounds (IMD-0354, NDM-265, NDM-455, NDM-463, and NDM-497) that act as PmrBc inhibitors capable of preventing autophosphorylation and phosphotransfer independently. These compounds have been shown to eliminate colistin resistance in vivo. Finally, these results, paired with mass spectrometry and limited proteolysis investigations, enabled us to determine the mechanism of action of these compounds as well as their likely binding site on the ATP-lid of PmrB.
Collapse
Affiliation(s)
- Alexander D Hondros
- Department of Biochemistry & Molecular Biology, Brody School of Medicine East Carolina University, Greenville, North Carolina 27834, United States
| | - Milah M Young
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Felicia E Jaimes
- Department of Biochemistry & Molecular Biology, Brody School of Medicine East Carolina University, Greenville, North Carolina 27834, United States
| | - Jude Kinkead
- Department of Biochemistry & Molecular Biology, Brody School of Medicine East Carolina University, Greenville, North Carolina 27834, United States
| | - Richele J Thompson
- Department of Biochemistry & Molecular Biology, Brody School of Medicine East Carolina University, Greenville, North Carolina 27834, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - John Cavanagh
- Department of Biochemistry & Molecular Biology, Brody School of Medicine East Carolina University, Greenville, North Carolina 27834, United States
| |
Collapse
|
7
|
Fihn CA, Lembke HK, Gaulin J, Bouchard P, Villarreal AR, Penningroth MR, Crone KK, Vogt GA, Gilbertsen AJ, Ayotte Y, Coutinho de Oliveira L, Serrano-Wu MH, Drouin N, Hung DT, Hunter RC, Carlson EE. Evaluation of expanded 2-aminobenzothiazole library as inhibitors of a model histidine kinase and virulence suppressors in Pseudomonas aeruginosa. Bioorg Chem 2024; 153:107840. [PMID: 39362083 PMCID: PMC11614690 DOI: 10.1016/j.bioorg.2024.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance. These systems consist of a homodimeric membrane-bound sensor histidine kinase, and a cognate effector, the response regulator. Histidine kinases play an essential role in the regulation of multiple virulence mechanisms including toxin production, immune evasion, and antibiotic resistance. Targeting virulence, as opposed to development of bactericidal compounds, could reduce evolutionary pressure for acquired resistance. Additionally, compounds targeting the highly conserved catalytic and adenosine triphosphate-binding (CA) domain have the potential to impair multiple two-component systems that regulate virulence in one or more pathogens. We conducted in vitro structure-activity relationship studies of 2-aminobenzothiazole-based inhibitors designed to target the CA domain. We found that these compounds, which inhibit the model histidine kinase, HK853 from Thermotoga maritima, have anti-virulence activities inPseudomonas aeruginosa, reducing motility phenotypes and toxin production associated with the pathogenic functions of this bacterium.
Collapse
Affiliation(s)
- Conrad A Fihn
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, United States
| | - Hannah K Lembke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55454, United States
| | - Jeffrey Gaulin
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Patricia Bouchard
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec H1Y 2R1, Canada
| | - Alex R Villarreal
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave SE Minneapolis, MN 55455, United States
| | - Mitchell R Penningroth
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave SE Minneapolis, MN 55455, United States
| | - Kathryn K Crone
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, United States
| | - Grace A Vogt
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave SE Minneapolis, MN 55455, United States
| | - Adam J Gilbertsen
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave SE Minneapolis, MN 55455, United States
| | - Yann Ayotte
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec H1Y 2R1, Canada
| | | | | | - Nathalie Drouin
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec H1Y 2R1, Canada
| | - Deborah T Hung
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Ryan C Hunter
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave SE Minneapolis, MN 55455, United States
| | - Erin E Carlson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55454, United States; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
8
|
Mina S, Hérivaux A, Yaakoub H, Courdavault V, Wéry M, Papon N. Structure and distribution of sensor histidine kinases in the fungal kingdom. Curr Genet 2024; 70:17. [PMID: 39276214 DOI: 10.1007/s00294-024-01301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024]
Abstract
Two-component systems (TCSs) are diverse cell signaling pathways that play a significant role in coping with a wide range of environmental cues in both prokaryotic and eukaryotic organisms. These transduction circuitries are primarily governed by histidine kinases (HKs), which act as sensing proteins of a broad variety of stressors. To date, nineteen HK groups have been previously described in the fungal kingdom. However, the structure and distribution of these prominent sensing proteins were hitherto investigated in a limited number of fungal species. In this study, we took advantage of recent genomic resources in fungi to refine the fungal HK classification by deciphering the structural diversity and phylogenetic distribution of HKs across a large number of fungal clades. To this end, we browsed the genome of 91 species representative of different fungal clades, which yielded 726 predicted HK sequences. A domain organization analysis, coupled with a robust phylogenomic approach, led to an improved categorization of fungal HKs. While most of the compiled sequences were categorized into previously described fungal HK groups, some new groups were also defined. Overall, this study provides an improved overview of the structure, distribution, and evolution of HKs in the fungal kingdom.
Collapse
Affiliation(s)
- Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.
| | - Anaïs Hérivaux
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France
| | - Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France
- Nantes-Université, INRAE, UMR 1280, PhAN, Nantes, 44000, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Méline Wéry
- Univ Angers, SFR ICAT, Angers, F-49000, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France.
| |
Collapse
|
9
|
Stupar M, Tan L, Kerr ED, De Voss CJ, Forde BM, Schulz BL, West NP. TcrXY is an acid-sensing two-component transcriptional regulator of Mycobacterium tuberculosis required for persistent infection. Nat Commun 2024; 15:1615. [PMID: 38388565 PMCID: PMC10883919 DOI: 10.1038/s41467-024-45343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to persist in the host complicates and prolongs tuberculosis (TB) patient chemotherapy. Here we demonstrate that a neglected two-component system (TCS) of Mtb, TcrXY, is an autoregulated acid-sensing TCS that controls a functionally diverse 70-gene regulon required for bacterial persistence. Characterisation of two representatives of this regulon, Rv3706c and Rv3705A, implicate these genes as key determinants for the survival of Mtb in vivo by serving as important effectors to mitigate redox stress at acidic pH. We show that genetic silencing of the response regulator tcrX using CRISPR interference attenuates the persistence of Mtb during chronic mouse infection and improves treatment with the two front-line anti-TB drugs, rifampicin and isoniazid. We propose that targeting TcrXY signal transduction blocks the ability of Mtb to sense and respond to acid stress, resulting in a disordered program of persistence to render the organism vulnerable to existing TB chemotherapy.
Collapse
Affiliation(s)
- Miljan Stupar
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Edward D Kerr
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Christopher J De Voss
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Brian M Forde
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
10
|
Mukherjee P, Agarwal S, Mallick SB, Dasgupta J. PAS domain of flagellar histidine kinase FlrB has a unique architecture and binds heme as a sensory ligand in an unconventional fashion. Structure 2024; 32:200-216.e5. [PMID: 38157857 DOI: 10.1016/j.str.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Phosphorylation of the σ54-dependent transcription activator FlrC by the sensor histidine kinase FlrB is essential for flagellar synthesis of Vibrio cholerae. Despite that, the structure, sensory signal, and mechanistic basis of function of FlrB were elusive. Here, we report the crystal structure of the sensory PAS domain of FlrB in its functional dimeric state that exhibits a unique architecture. Series of biochemical/biophysical experiments on different constructs and mutants established that heme binds hydrophobically as sensory ligand in the shallow ligand-binding cleft of FlrB-PAS without axial coordination. Intriguingly, ATP binding to the C-terminal ATP-binding (CA) domain assists PAS domain to bind heme, vis-à-vis, heme binding to the PAS facilitates ATP binding to the CA domain. We hypothesize that synergistic binding of heme and ATP triggers conformational signaling in FlrB, leading to downstream flagellar gene transcription. Enhanced swimming motility of V. cholerae with increased heme uptake supports this proposition.
Collapse
Affiliation(s)
- Peeali Mukherjee
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India
| | - Shubhangi Agarwal
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India
| | - Sritapa Basu Mallick
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India
| | - Jhimli Dasgupta
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India.
| |
Collapse
|
11
|
Alenazi NA, Aleanizy FS, Alqahtani FY, Aldossari AA, Alanazi MM, Alfaraj R. Anti-quorum sensing activity of poly-amidoamine dendrimer generation 5 dendrimer loaded kinase inhibitor peptide against methicillin-resistant Staphylococcus aureus. Saudi Pharm J 2024; 32:101932. [PMID: 38261946 PMCID: PMC10797154 DOI: 10.1016/j.jsps.2023.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a significant concern in both healthcare and community settings, as it causes numerous infections worldwide with high morbidity and mortality rates. One promising strategy is to target the quorum sensing (QS) system of MRSA using a dendrimer loaded with kinase inhibitor peptide. The present investigation has formulated a poly-amidoamine dendrimer (PAMAM) G5 dendrimer that is loaded with Quorum Quencher (QQ) peptide, which functions as a histidine kinase inhibitor. The particle average size of the formulated G5-QQ3 complex was determined to be 276 nm, and polydispersity index values of 0.33. The MIC50 for the formulated nanoparticles was 18 μM as demonstrated by a growth assay. Furthermore, the G5-QQ3 complex was able to inhibit the hemolysis activity of the MRSA with a concentration of 10 μM, and for Staphylococcus aureus was 3 μM. The G5-QQ3 complex possesses the ability to inhibit, penetrate, and eradicate biofilm in MRSA, Staphylococcus aureus, and different agr mutants with inhibition percentages ranging from 60 to 72%. Furthermore, live/dead viability assay confirmed the ability of the formulated nanoparticles to effectively kill all strains within the biofilm structure as evidenced by a confocal microscope, and the cytotoxicity of the G5-QQ3 complex was dose-dependent (p < 0.05). against RAW 264.7 cells. In general, the study confirmed that encapsulating QQ3 peptide within PAMAM G5 dendrimer results in a potent anti-virulence and anti-bacterial action and suggests a synergistic effect. The findings of this study have significant implications for the development of new treatments for MRSA infections, which are a major public health concern.
Collapse
Affiliation(s)
- Naifa A. Alenazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Fadilah S. Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Fulwah Y. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
12
|
Fihn CA, Lembke HK, Gaulin J, Bouchard P, Villarreal AR, Penningroth MR, Crone KK, Vogt GA, Gilbertsen AJ, Ayotte Y, de Oliveira LC, Serrano-Wu MH, Drouin N, Hung DT, Hunter RC, Carlson EE. Evaluation of Expanded 2-Aminobenzothiazole Library for Inhibition of Pseudomonas aeruginosa Virulence Phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.02.539119. [PMID: 37205454 PMCID: PMC10187220 DOI: 10.1101/2023.05.02.539119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance. These systems consist of a homodimeric membrane-bound sensor histidine kinase, and a cognate effector, the response regulator. The high sequence conservation in the catalytic and adenosine triphosphate-binding (CA) domain of histidine kinases and their essential role in bacterial signal transduction could enable broad-spectrum antibacterial activity. Through this signal transduction, histidine kinases regulate multiple virulence mechanisms including toxin production, immune evasion, and antibiotic resistance. Targeting virulence, as opposed to development of bactericidal compounds, could reduce evolutionary pressure for acquired resistance. Additionally, compounds targeting the CA domain have the potential to impair multiple two-component systems that regulate virulence in one or more pathogens. We conducted structure-activity relationship studies of 2-aminobenzothiazole-based inhibitors designed to target the CA domain of histidine kinases. We found these compounds have anti-virulence activities in Pseudomonas aeruginosa, reducing motility phenotypes and toxin production associated with the pathogenic functions of this bacterium.
Collapse
Affiliation(s)
- Conrad A. Fihn
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Jeffrey Gaulin
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Patricia Bouchard
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec, Canada, H1Y 2R1
| | - Alex R. Villarreal
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Mitchell R. Penningroth
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Kathryn K. Crone
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Grace A. Vogt
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Adam J. Gilbertsen
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Yann Ayotte
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec, Canada, H1Y 2R1
| | | | | | - Nathalie Drouin
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec, Canada, H1Y 2R1
| | - Deborah T. Hung
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Ryan C. Hunter
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Erin E. Carlson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
MohanaSundaram A, Suriyamoorthy A, Vikram Singh A, Kumar S, Amin R, Emran TB. Binding to the immutable targets: a novel strategy to combat surgical-site infections caused by multidrug-resistant superbugs. Ann Med Surg (Lond) 2024; 86:28-31. [PMID: 38222675 PMCID: PMC10783363 DOI: 10.1097/ms9.0000000000001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024] Open
Affiliation(s)
| | | | - Akhilesh Vikram Singh
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand
| | - Sanjeev Kumar
- Indira Gandhi Institute of Medical Sciences. Sheikhpura, Patna, Bihar
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
14
|
Lembke HK, Carlson EE. Activity-based probes in pathogenic bacteria: Investigating drug targets and molecule specificity. Curr Opin Chem Biol 2023; 76:102359. [PMID: 37406424 PMCID: PMC10526982 DOI: 10.1016/j.cbpa.2023.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023]
Abstract
Bacteria comprise complex communities within our bodies and largely have beneficial roles, however a small percentage are pathogenic. While all pathogens are important to public health, immediate action is necessary to combat bacterial strains developing pan- and multi-resistance to antibiotics. As present therapeutics fail to tackle this problem, novel strategies are required to address this threat. Activity-based probes (ABPs) are one method to investigate proteins of interest in pathogens. These probes can serve multiple purposes to better our understanding of bacterial pathogenicity. Herein, we highlight recent studies that used ABPs to identify new drug targets or visualize antibiotic resistance- or bacterial virulence-associated proteins, and introduce strategies to determine the specificity of ABPs within a targeted enzyme class.
Collapse
Affiliation(s)
- Hannah K Lembke
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Erin E Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States; Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States; Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
15
|
Pathak RK, Kim JM. Identification of histidine kinase inhibitors through screening of natural compounds to combat mastitis caused by Streptococcus agalactiae in dairy cattle. J Biol Eng 2023; 17:59. [PMID: 37752501 PMCID: PMC10523694 DOI: 10.1186/s13036-023-00378-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Mastitis poses a major threat to dairy farms globally; it results in reduced milk production, increased treatment costs, untimely compromised genetic potential, animal deaths, and economic losses. Streptococcus agalactiae is a highly virulent bacteria that cause mastitis. The administration of antibiotics for the treatment of this infection is not advised due to concerns about the emergence of antibiotic resistance and potential adverse effects on human health. Thus, there is a critical need to identify new therapeutic approaches to combat mastitis. One promising target for the development of antibacterial therapies is the transmembrane histidine kinase of bacteria, which plays a key role in signal transduction pathways, secretion systems, virulence, and antibiotic resistance. RESULTS In this study, we aimed to identify novel natural compounds that can inhibit transmembrane histidine kinase. To achieve this goal, we conducted a virtual screening of 224,205 natural compounds, selecting the top ten based on their lowest binding energy and favorable protein-ligand interactions. Furthermore, molecular docking of eight selected antibiotics and five histidine kinase inhibitors with transmembrane histidine kinase was performed to evaluate the binding energy with respect to top-screened natural compounds. We also analyzed the ADMET properties of these compounds to assess their drug-likeness. The top two compounds (ZINC000085569031 and ZINC000257435291) and top-screened antibiotics (Tetracycline) that demonstrated a strong binding affinity were subjected to molecular dynamics simulations (100 ns), free energy landscape, and binding free energy calculations using the MM-PBSA method. CONCLUSION Our results suggest that the selected natural compounds have the potential to serve as effective inhibitors of transmembrane histidine kinase and can be utilized for the development of novel antibacterial veterinary medicine for mastitis after further validation through clinical studies.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
16
|
Baranova AA, Tyurin AP, Korshun VA, Alferova VA. Sensing of Antibiotic-Bacteria Interactions. Antibiotics (Basel) 2023; 12:1340. [PMID: 37627760 PMCID: PMC10451291 DOI: 10.3390/antibiotics12081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Sensing of antibiotic-bacteria interactions is an important area of research that has gained significant attention in recent years. Antibiotic resistance is a major public health concern, and it is essential to develop new strategies for detecting and monitoring bacterial responses to antibiotics in order to maintain effective antibiotic development and antibacterial treatment. This review summarizes recent advances in sensing strategies for antibiotic-bacteria interactions, which are divided into two main parts: studies on the mechanism of action for sensitive bacteria and interrogation of the defense mechanisms for resistant ones. In conclusion, this review provides an overview of the present research landscape concerning antibiotic-bacteria interactions, emphasizing the potential for method adaptation and the integration of machine learning techniques in data analysis, which could potentially lead to a transformative impact on mechanistic studies within the field.
Collapse
Affiliation(s)
| | | | | | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (A.P.T.); (V.A.K.)
| |
Collapse
|
17
|
Song H, Li Y, Wang Y. Two-component system GacS/GacA, a global response regulator of bacterial physiological behaviors. ENGINEERING MICROBIOLOGY 2023; 3:100051. [PMID: 39628522 PMCID: PMC11611043 DOI: 10.1016/j.engmic.2022.100051] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/06/2024]
Abstract
The signal transduction system of microorganisms helps them adapt to changes in their complex living environment. Two-component system (TCS) is a representative signal transduction system that plays a crucial role in regulating cellular communication and secondary metabolism. In Gram-negative bacteria, an unorthodox TCS consisting of histidine kinase protein GacS (initially called LemA) and response regulatory protein GacA is widespread. It mainly regulates various physiological activities and behaviors of bacteria, such as quorum sensing, secondary metabolism, biofilm formation and motility, through the Gac/Rsm (Regulator of secondary metabolism) signaling cascade pathway. The global regulatory ability of GacS/GacA in cell physiological activities makes it a potential research entry point for developing natural products and addressing antibiotic resistance. In this review, we summarize the progress of research on GacS/GacA from various perspectives, including the reaction mechanism, related regulatory pathways, main functions and GacS/GacA-mediated applications. Hopefully, this review will facilitate further research on GacS/GacA and promote its application in regulating secondary metabolism and as a therapeutic target.
Collapse
Affiliation(s)
- Huihui Song
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuying Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
18
|
Structure of VanS from vancomycin-resistant enterococci: A sensor kinase with weak ATP binding. J Biol Chem 2023; 299:103001. [PMID: 36764524 PMCID: PMC10017428 DOI: 10.1016/j.jbc.2023.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The VanRS two-component system regulates the resistance phenotype of vancomycin-resistant enterococci. VanS is a sensor histidine kinase that responds to the presence of vancomycin by autophosphorylating and subsequently transferring the phosphoryl group to the response regulator, VanR. The phosphotransfer activates VanR as a transcription factor, which initiates the expression of resistance genes. Structural information about VanS proteins has remained elusive, hindering the molecular-level understanding of their function. Here, we present X-ray crystal structures for the catalytic and ATP-binding (CA) domains of two VanS proteins, derived from vancomycin-resistant enterococci types A and C. Both proteins adopt the canonical Bergerat fold that has been observed for CA domains of other prokaryotic histidine kinases. We attempted to determine structures for the nucleotide-bound forms of both proteins; however, despite repeated efforts, these forms could not be crystallized, prompting us to measure the proteins' binding affinities for ATP. Unexpectedly, both CA domains displayed low affinities for the nucleotide, with KD values in the low millimolar range. Since these KD values are comparable to intracellular ATP concentrations, this weak substrate binding could reflect a way of regulating expression of the resistance phenotype.
Collapse
|
19
|
The role of sensory kinase proteins in two-component signal transduction. Biochem Soc Trans 2022; 50:1859-1873. [DOI: 10.1042/bst20220848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Two-component systems (TCSs) are modular signaling circuits that regulate diverse aspects of microbial physiology in response to environmental cues. These molecular circuits comprise a sensor histidine kinase (HK) protein that contains a conserved histidine residue, and an effector response regulator (RR) protein with a conserved aspartate residue. HKs play a major role in bacterial signaling, since they perceive specific stimuli, transmit the message across the cytoplasmic membrane, and catalyze their own phosphorylation, and the trans-phosphorylation and dephosphorylation of their cognate response regulator. The molecular mechanisms by which HKs co-ordinate these functions have been extensively analyzed by genetic, biochemical, and structural approaches. Here, we describe the most common modular architectures found in bacterial HKs, and address the operation mode of the individual functional domains. Finally, we discuss the use of these signaling proteins as drug targets or as sensing devices in whole-cell biosensors with medical and biotechnological applications.
Collapse
|
20
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
21
|
Roles of Two-Component Signal Transduction Systems in Shigella Virulence. Biomolecules 2022; 12:biom12091321. [PMID: 36139160 PMCID: PMC9496106 DOI: 10.3390/biom12091321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.
Collapse
|
22
|
Stupar M, Furness J, De Voss CJ, Tan L, West NP. Two-component sensor histidine kinases of Mycobacterium tuberculosis: beacons for niche navigation. Mol Microbiol 2022; 117:973-985. [PMID: 35338720 PMCID: PMC9321153 DOI: 10.1111/mmi.14899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Intracellular bacterial pathogens such as Mycobacterium tuberculosis are remarkably adept at surviving within a host, employing a variety of mechanisms to counteract host defenses and establish a protected niche. Constant surveying of the environment is key for pathogenic mycobacteria to discern their immediate location and coordinate the expression of genes necessary for adaptation. Two‐component systems efficiently perform this role, typically comprised of a transmembrane sensor kinase and a cytoplasmic response regulator. In this review, we describe the role of two‐component systems in bacterial pathogenesis, focusing predominantly on the role of sensor kinases of M. tuberculosis. We highlight important features of sensor kinases in mycobacterial infection, discuss ways in which these signaling proteins sense and respond to environments, and how this is attuned to their intracellular lifestyle. Finally, we discuss recent studies which have identified and characterized inhibitors of two‐component sensor kinases toward establishing a new strategy in anti‐mycobacterial therapy.
Collapse
Affiliation(s)
- Miljan Stupar
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Juanelle Furness
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Christopher J De Voss
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|