1
|
Mao X, Yin X, Yang Y, Gao F, Li S, Shi X, Deng Y, Li L, Leung KMY, Zhang T. Longitudinal metagenomic analysis on antibiotic resistome, mobilome, and microbiome of river ecosystems in a sub-tropical metropolitan city. WATER RESEARCH 2025; 274:123102. [PMID: 39798533 DOI: 10.1016/j.watres.2025.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Rivers play an important role as reservoirs and sinks for antibiotic resistance genes (ARGs). However, it remains underexplored for the resistome and associated mobilome in river ecosystems, and hosts of riverine ARGs particularly the pathogenic ones are rarely studied. This study for the first time conducted a longitudinal metagenomic analysis to unveil the resistome, mobilome, and microbiome in river water, by collecting samples from 16 rivers in Hong Kong over a three-year period and using both short-read and long-read sequencing. Results revealed that aminoglycoside, bacitracin, β-lactam, macrolide lincosamide-streptogramin, and sulfonamide were the predominant ARG types in the river water samples. Riverine ARGs exhibited high spatial variations in abundance and diversity. Environmental factors such as fecal coliform count, Escherichia coli count, 5-day biochemical oxygen demand (BOD5), dissolved oxygen (DO), and total organic carbon (TOC) had a significant correlation to the absolute concentrations of ARGs. Nanopore sequencing was used to reveal the physical genetic linkage of mobile genetic elements (MGEs) with ARGs in river water samples. The results showed that qacEdelta, transposase, integrase, and Tn916 had a high prevalence in ARG-carrying long reads. Host tracking using ARG-carrying reads identified 23 pathogenic bacteria species that harbored ARGs. Some ARGs were shared by different bacterial groups. This study presented a nuanced insight of resistome in river water by a longitudinal metagenomic analysis and deepened our understanding of common and divergent riverine antimicrobial resistant risk across the regional patterns.
Collapse
Affiliation(s)
- Xuemei Mao
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Yang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Fangzhou Gao
- School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Shuxian Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Xianghui Shi
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China; Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China; Department of Science and Environmental Studies, Education University of Hong Kong, Hong Kong SAR, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry and School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China; School of Public Health, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, Department of Chemistry and School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao SAR, China.
| |
Collapse
|
2
|
Gillett DL, Selinidis M, Seamons T, George D, Igwe AN, Del Valle I, Egbert RG, Hofmockel KS, Johnson AL, Matthews KRW, Masiello CA, Stadler LB, Chappell J, Silberg JJ. A roadmap to understanding and anticipating microbial gene transfer in soil communities. Microbiol Mol Biol Rev 2025:e0022524. [PMID: 40197024 DOI: 10.1128/mmbr.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
SUMMARYEngineered microbes are being programmed using synthetic DNA for applications in soil to overcome global challenges related to climate change, energy, food security, and pollution. However, we cannot yet predict gene transfer processes in soil to assess the frequency of unintentional transfer of engineered DNA to environmental microbes when applying synthetic biology technologies at scale. This challenge exists because of the complex and heterogeneous characteristics of soils, which contribute to the fitness and transport of cells and the exchange of genetic material within communities. Here, we describe knowledge gaps about gene transfer across soil microbiomes. We propose strategies to improve our understanding of gene transfer across soil communities, highlight the need to benchmark the performance of biocontainment measures in situ, and discuss responsibly engaging community stakeholders. We highlight opportunities to address knowledge gaps, such as creating a set of soil standards for studying gene transfer across diverse soil types and measuring gene transfer host range across microbiomes using emerging technologies. By comparing gene transfer rates, host range, and persistence of engineered microbes across different soils, we posit that community-scale, environment-specific models can be built that anticipate biotechnology risks. Such studies will enable the design of safer biotechnologies that allow us to realize the benefits of synthetic biology and mitigate risks associated with the release of such technologies.
Collapse
Affiliation(s)
- David L Gillett
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Malyn Selinidis
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Travis Seamons
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Dalton George
- Department of Biosciences, Rice University, Houston, Texas, USA
- School for the Future of Innovation in Society, Arizona State University, Tempe, Arizona, USA
| | - Alexandria N Igwe
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Ilenne Del Valle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert G Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Alicia L Johnson
- Baker Institute for Public Policy, Rice University, Houston, Texas, USA
| | | | - Caroline A Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas, USA
| | | |
Collapse
|
3
|
Liu L, Zhang QH, Li MZ, Li RT, He Z, Dechesne A, Smets BF, Sheng GP. Single-cell analysis reveals antibiotic affects conjugative transfer by modulating bacterial growth rather than conjugation efficiency. ENVIRONMENT INTERNATIONAL 2025; 198:109385. [PMID: 40186988 DOI: 10.1016/j.envint.2025.109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/22/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
Antibiotic resistance genes (ARGs) pose a significant threat to human health and the environment. Quantifying the efficiency of horizontal gene transfer (HGT) is challenging due to diverse biological and environmental influences. Single-cell level approaches are well-suited for investigating conjugative transfer, given its reliance on cell-to-cell contact nature and its capacity to offer insights into population-level responses. This study introduces a self-developed system for automated time-lapse image acquisition and analysis. Using a custom dual-chamber microfluidic chip and Python-based image analysis pipeline, we dynamically quantify the ARGs conjugation efficiency at single-cell level. By combining experiments with individual-based modelling, we isolate the effects of subinhibitory antibiotic concentrations on conjugation efficiency from those related to bacterial growth dynamics. No significant variation in Escherichia coli conjugation efficiency was observed across kanamycin concentrations (0 to 50 mg l-1). Moreover, recipient cells with higher growth rates show a greater propensity for plasmid acquisition, suggesting the physiological state of cells pre-conjugation influences their susceptibility to gene transfer. Our methodology eliminates population growth bias, revealing the intrinsic nature of conjugation efficiency. This approach advances our understanding of the factors influencing HGT efficiency and holds promise for studying other microbial interactions. SYNOPSIS: This study employs single-cell analysis to reveal that subinhibitory concentrations of antibiotics affect the conjugative transfer of antibiotic resistance genes by modulating bacterial growth rate rather than conjugation efficiency.
Collapse
Affiliation(s)
- Li Liu
- School of Chemistry, Beihang University, 100191 Beijing, PR China.
| | - Qiang-Hong Zhang
- School of Chemistry, Beihang University, 100191 Beijing, PR China
| | - Meng-Zi Li
- School of Chemistry, Beihang University, 100191 Beijing, PR China
| | - Rui-Tong Li
- School of Chemistry, Beihang University, 100191 Beijing, PR China
| | - Zhiming He
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Barth F Smets
- Department of Biological and Chemical Engineering - Environmental Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026 Hefei, PR China
| |
Collapse
|
4
|
Heida A, Hamilton MT, Gambino J, Sanderson K, Schoen ME, Jahne MA, Garland J, Ramirez L, Quon H, Lopatkin AJ, Hamilton KA. Population Ecology-Quantitative Microbial Risk Assessment (QMRA) Model for Antibiotic-Resistant and Susceptible E. coli in Recreational Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4266-4281. [PMID: 40008406 DOI: 10.1021/acs.est.4c07248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Understanding and predicting the role of waterborne environments in transmitting antimicrobial-resistant (AMR) infections are critical for public health. A population ecology-quantitative microbial risk assessment (QMRA) model is proposed to evaluate urinary tract infection (UTI) development due to recreational waterborne exposures to Escherichia coli (E. coli) and antibiotic-resistant extended-spectrum β-lactamase-producing (ESBL) E. coli. The horizontal gene transfer (HGT) mechanism of conjugation and other evolutionary factors were modeled separately in the environment and the gut. Persistence/dilution dominated HGT in the environment; however, HGT highly impacted predicted ESBL populations in the body. Predicted disability life year (DALY) risks from exposure to ESBL E. coli at concentrations consistent with US recreational water criteria were less than the 10-6 pppy benchmark value but greater than the susceptible E. coli DALY risks associated with a UTI health outcome. However, the prevailing susceptible dose-response relationship may underestimate ESBL risk if HGT rates in vivo approach those reported in vitro. A sensitivity analysis demonstrated that DALY values, E. coli/ESBL concentrations, and exposure parameters were influential on predicted risks. The model is a preliminary tool to begin the expansion of the QMRA paradigm to explore the impacts of evolutionary changes in AMR risk assessment.
Collapse
Affiliation(s)
- Ashley Heida
- School for Engineering of Matter, Transport and Energy, Arizona State University, 502 E Tyler Mall, Tempe, Arizona 85287, United States
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85281, United States
| | - Mark T Hamilton
- Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, United States
- New England Research and Development Center, Microsoft, 1 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Julia Gambino
- Duke University, Durham, North Carolina 27708, United States
| | | | - Mary E Schoen
- Soller Environmental, 3022 King St. Berkeley, California 94703, United States
| | - Michael A Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Jr. Dr., Cincinnati, Ohio 45268, United States
| | - Jay Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Jr. Dr., Cincinnati, Ohio 45268, United States
| | - Lucia Ramirez
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85281, United States
| | - Hunter Quon
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85281, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| | - Allison J Lopatkin
- Department of Chemical Engineering, University of Rochester, 500 Joseph C. Wilson Blvd, Rochester, New York 14627, United States
- Department of Microbiology and Immunology, University of Rochester, 500 Joseph C. Wilson Blvd, Rochester, New York 14627, United States
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85281, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
5
|
Scadden J, Ansorge R, Romano S, Telatin A, Baker DJ, Evans R, Gherghisan-Filip C, Zhang ZJ, Mayer MJ, Narbad A. The nisin O cluster: species dissemination, candidate leader peptide proteases and the role of regulatory systems. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001531. [PMID: 39928552 PMCID: PMC11811420 DOI: 10.1099/mic.0.001531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/22/2025] [Indexed: 02/12/2025]
Abstract
Nisin O is an antimicrobial peptide encoded by the human gut bacterium Blautia obeum A2-162 which has antimicrobial activity against clinically relevant organisms. The nisin O biosynthetic gene cluster (BGC) varies from other nisin BGCs as it lacks a leader-peptide cleaving protease and contains two bacterial two-component response regulator-histidine kinase (RK) systems. The dissemination of the nisin O cluster, the final proteolytic biosynthesis step and the regulation of nisin O are currently unknown and are the foci of this study. We identified six nisin O-like BGCs across Blautia, Dorea and Ruminococcus species using comparative genomics. These BGCs show evidence of genetic transfer between genera, with genes involved in transposition discovered up- and downstream of the BGCs. All nisin O-like BGCs contained two RK systems but no protease. Mining the B. obeum A2-162 genome identified candidate proteases that were cloned and used in pre-nisin O leader peptide cleavage assays. None of the candidate proteases removed the leader; however, cleavage was achieved using trypsin. To maximize the expression of the nsoA1-4 peptides, the interactions of the two RK systems with predicted promoters in the nisin O cluster were assessed using a PepI reporter assay. We observed that the PnsoR2K2 promoter was constitutively expressed, with NsoR1K1 increasing its activity, and that there was increased nsoA1-4 expression when the nisin A RK system and nisin A were present. Long-read cDNA sequencing confirmed nso gene transcription in the heterologous expression system and identified a novel, highly expressed gene. This study provides evidence that the nisin O BGC has been transferred between different gut-associated genera, with all clusters lacking a protease and containing two RK systems. We hypothesize that this BGC has lost its protease due to negative selection as a result of high trypsin concentrations in the gut. Further work is required to maximize nisin O expression for it to be used as a potential antimicrobial therapy.
Collapse
Affiliation(s)
- Jacob Scadden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Rebecca Ansorge
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Stefano Romano
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Dave J. Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Zhenrun J. Zhang
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Melinda J. Mayer
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
6
|
La Rosa MC, Maugeri A, Favara G, La Mastra C, Magnano San Lio R, Barchitta M, Agodi A. The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. Antibiotics (Basel) 2025; 14:131. [PMID: 40001375 PMCID: PMC11851908 DOI: 10.3390/antibiotics14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Antimicrobial resistance (AMR) is a global issue driven by the overuse of antibiotics in healthcare, agriculture, and veterinary settings. Wastewater and treatment plants (WWTPs) act as reservoirs for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The One Health approach emphasizes the interconnectedness of human, animal, and environmental health in addressing AMR. This scoping review analyzes wastewater's role in the AMR spread, identifies influencing factors, and highlights research gaps to guide interventions. METHODS This scoping review followed the PRISMA-ScR guidelines. A comprehensive literature search was conducted across the PubMed and Web of Science databases for articles published up to June 2024, supplemented by manual reference checks. The review focused on wastewater as a source of AMR, including hospital effluents, industrial and urban sewage, and agricultural runoff. Screening and selection were independently performed by two reviewers, with conflicts resolved by a third. RESULTS Of 3367 studies identified, 70 met the inclusion criteria. The findings indicated that antibiotic residues, heavy metals, and microbial interactions in wastewater are key drivers of AMR development. Although WWTPs aim to reduce contaminants, they often create conditions conducive to horizontal gene transfer, amplifying resistance. Promising interventions, such as advanced treatment methods and regulatory measures, exist but require further research and implementation. CONCLUSIONS Wastewater plays a pivotal role in AMR dissemination. Targeted interventions in wastewater management are essential to mitigate AMR risks. Future studies should prioritize understanding AMR dynamics in wastewater ecosystems and evaluating scalable mitigation strategies to support global health efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (M.C.L.R.); (A.M.); (G.F.); (C.L.M.); (R.M.S.L.); (M.B.)
| |
Collapse
|
7
|
Davidovich C, Erokhina K, Gupta CL, Zhu YG, Su JQ, Djordjevic SP, Wyrsch ER, Blum SE, Cytryn E. Occurrence of "under-the-radar" antibiotic resistance in anthropogenically affected produce. THE ISME JOURNAL 2025; 19:wrae261. [PMID: 39913343 PMCID: PMC11833317 DOI: 10.1093/ismejo/wrae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/16/2024] [Accepted: 02/05/2025] [Indexed: 02/19/2025]
Abstract
With global climate change, treated-wastewater irrigation and manure amendment are becoming increasingly important in sustainable agriculture in water- and nutrient-stressed regions. Yet, these practices can potentially disseminate pathogens and antimicrobial resistance determinants to crops, resulting in serious health risks to humans through the food chain. Previous studies demonstrated that pathogen and antimicrobial resistance indicators from wastewater and manure survive poorly in the environment, suggesting that ecological barriers prevent their dissemination. However, we recently found that these elements can persist below detection levels in low quality treated wastewater-irrigated soil, and potentially proliferate under favorable conditions. This "under-the-radar" phenomenon was further investigated here, in treated wastewater-irrigated and poultry litter-amended lettuce plants, using an enrichment platform that resembles gut conditions, and an analytical approach that combined molecular and cultivation-based techniques. Enrichment uncovered clinically relevant multidrug-resistant pathogen indicators and a myriad of antibiotic resistance genes in the litter amended and treated wastewater-irrigated lettuce that were not detected by direct analyses, or in the enriched freshwater irrigated samples. Selected resistant E. coli isolates were capable of horizontally transferring plasmids carrying multiple resistance genes to a susceptible strain. Overall, our study underlines the hidden risks of under-the-radar pathogen and antimicrobial resistance determinants in anthropogenically affected agroenvironments, providing a platform to improve quantitative microbial risk assessment models in the future.
Collapse
Affiliation(s)
- Chagai Davidovich
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization- Volcani Institute, Rishon LeZion, 7505101, Israel
- Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Kseniia Erokhina
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization- Volcani Institute, Rishon LeZion, 7505101, Israel
- Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Chhedi Lal Gupta
- ICMR-CRMCH, National Institute of Immunohaematology, Chandrapur Unit, Chandrapur, Maharashtra, 442406, India
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Ethan R Wyrsch
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Shlomo E Blum
- Department of Bacteriology, Kimron Veterinary Institute, Beit Dagan, 50250, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization- Volcani Institute, Rishon LeZion, 7505101, Israel
| |
Collapse
|
8
|
Chen X, Zhu N, Yang G, Guo X, Sun S, Leng F, Wang Y. Role of cspA on the Preparation of Escherichia coli Competent Cells by Calcium Chloride Method. J Basic Microbiol 2024; 64:e2400113. [PMID: 38924123 DOI: 10.1002/jobm.202400113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
One of the fundamental techniques in genetic engineering is the creation of Escherichia coli competent cells using the CaCl2 method. However, little is known about the mechanism of E. coli competence formation. We have previously found that the cspA gene may play an indispensable role in the preparation of E. coli DH5α competent cells through multiomics analysis. In the present study, the cellular localization, physicochemical properties, and function of the protein expressed by the cspA gene were analyzed. To investigate the role of the cspA gene in E. coli transformation, cspA-deficient mutant was constructed by red homologous recombination. The growth, transformation efficiency, and cell morphology of the cspA-deficient strain and E. coli were compared. It was found that there were no noticeable differences in growth and morphology between E. coli and the cspA-deficient strain cultured at 37°C, but the mutant exhibited increased transformation efficiencies compared to E. coli DH5α for plasmids pUC19, pET-32a, and p1304, with enhancements of 2.23, 2.24, and 3.46 times, respectively. It was proved that cspA gene is an important negative regulatory gene in the CaCl2 preparation of competent cells.
Collapse
Affiliation(s)
- Xiaona Chen
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Guangrui Yang
- Gansu Zhongshang Food Quality Test and Detection Co. Ltd., Lanzhou, China
- Gansu Business Science and Technology Institute Co. Ltd., Lanzhou, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Shangchen Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
9
|
Tran NN, Morrisette T, Jorgensen SCJ, Orench-Benvenutti JM, Kebriaei R. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy 2023; 43:816-832. [PMID: 37133439 DOI: 10.1002/phar.2806] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 05/04/2023]
Abstract
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and contributes to significant increase in morbidity and mortality especially when associated with medical devices and in biofilm form. Biofilm structure provides a pathway for the enrichment of resistant and persistent phenotypes of S. aureus leading to relapse and recurrence of infection. Minimal diffusion of antibiotics inside biofilm structure leads to heterogeneity and distinct physiological activity. Additionally, horizontal gene transfer between cells in proximity adds to the challenges associated with eradication of biofilms. This narrative review focuses on biofilm-associated infections caused by S. aureus, the impact of environmental conditions on biofilm formation, interactions inside biofilm communities, and the clinical challenges that they present. Conclusively, potential solutions, novel treatment strategies, combination therapies, and reported alternatives are discussed.
Collapse
Affiliation(s)
- Nikki N Tran
- Department of Pharmacy, The Ohio State University Wexner Medical Center - The James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - Taylor Morrisette
- Department of Clinical Pharmacy and Outcomes Sciences, Medical University of South Carolina College of Pharmacy, Charleston, South Carolina, USA
- Department of Pharmacy Services, Medical University of South Carolina Shawn Jenkins Children's Hospital, Charleston, South Carolina, USA
| | - Sarah C J Jorgensen
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - José M Orench-Benvenutti
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Razieh Kebriaei
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Ontiveros VJ, Capitán JA, Casamayor EO, Alonso D. Colonization-persistence trade-offs in natural bacterial communities. Proc Biol Sci 2023; 290:20230709. [PMID: 37403500 PMCID: PMC10320335 DOI: 10.1098/rspb.2023.0709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Fitness equalizing mechanisms, such as trade-offs, are recognized as one of the main factors promoting species coexistence in community ecology. However, they have rarely been explored in microbial communities. Although microbial communities are highly diverse, the coexistence of their multiple taxa is largely attributed to niche differences and high dispersal rates, following the principle 'everything is everywhere, but the environment selects'. We use a dynamical stochastic model based on the theory of island biogeography to study highly diverse bacterial communities over time across three different systems (soils, alpine lakes and shallow saline lakes). Assuming fitness equalization mechanisms, here we newly analytically derive colonization-persistence trade-offs, and report a signal of such trade-offs in natural bacterial communities. Moreover, we show that different subsets of species in the community drive this trade-off. Rare taxa, which are occasional and more likely to follow independent colonization/extinction dynamics, drive this trade-off in the aquatic communities, while the core sub-community did it in the soils. We conclude that equalizing mechanisms may be more important than previously recognized in bacterial communities. Our work also emphasizes the fundamental value of dynamical models for understanding temporal patterns and processes in highly diverse communities.
Collapse
Affiliation(s)
- Vicente J. Ontiveros
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - José A. Capitán
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
- Complex Systems Group. Department of Applied Mathematics, Universidad Politécnica de Madrid. Av. Juan de Herrera, 6. E-28040 Madrid, Spain
| | - Emilio O. Casamayor
- Integrative Freshwater Ecology Group, Centre of Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - David Alonso
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| |
Collapse
|
11
|
Guidotti-Takeuchi M, Melo RTD, Ribeiro LNDM, Dumont CF, Ribeiro RAC, Brum BDA, de Amorim Junior TLIF, Rossi DA. Interference with Bacterial Conjugation and Natural Alternatives to Antibiotics: Bridging a Gap. Antibiotics (Basel) 2023; 12:1127. [PMID: 37508224 PMCID: PMC10376302 DOI: 10.3390/antibiotics12071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Horizontal gene transfer (HGT) in food matrices has been investigated under conditions that favor gene exchange. However, the major challenge lies in determining the specific conditions pertaining to the adapted microbial pairs associated with the food matrix. HGT is primarily responsible for enhancing the microbial repertoire for the evolution and spread of antimicrobial resistance and is a major target for controlling pathogens of public health concern in food ecosystems. In this study, we investigated Salmonella Heidelberg (SH) and Escherichia coli (EC) regarding gene exchange under conditions mimicking the industrial environment, with the coproducts whey (SL) and chicken juice (CJ). The S. Heidelberg strain was characterized by antibiotic susceptibility standards and PCR to detect the blaTEM gene. A concentration of 0.39 mg/mL was determined to evaluate the anti-conjugation activity of nanostructured lipid nanocarriers (NLCs) of essential oils to mitigate β-lactam resistance gene transfer. The results showed that the addition of these coproducts promoted an increase of more than 3.5 (whey) and 2.5 (chicken juice) orders of magnitude in the conjugation process (p < 0.01), and NLCs of sage essential oil significantly reduced the conjugation frequency (CF) by 74.90, 90.6, and 124.4 times when compared to the transfers in the absence of coproducts and the presence of SL and CJ, respectively. For NLCs from olibanum essential oil, the decrease was 4.46-fold for conjugations without inhibitors and 3.12- and 11.3-fold in the presence of SL and CJ. NLCs associated with sage and olibanum essential oils effectively control the transfer of antibiotic resistance genes and are a promising alternative for use at industrial levels.
Collapse
Affiliation(s)
- Micaela Guidotti-Takeuchi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Carolyne Ferreira Dumont
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Bárbara de Araújo Brum
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| |
Collapse
|
12
|
Calderón-Franco D, van Loosdrecht MCM, Abeel T, Weissbrodt DG. Catch me if you can: capturing microbial community transformation by extracellular DNA using Hi-C sequencing. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01834-z. [PMID: 37156983 DOI: 10.1007/s10482-023-01834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
The transformation of environmental microorganisms by extracellular DNA is an overlooked mechanism of horizontal gene transfer and evolution. It initiates the acquisition of exogenous genes and propagates antimicrobial resistance alongside vertical and conjugative transfers. We combined mixed-culture biotechnology and Hi-C sequencing to elucidate the transformation of wastewater microorganisms with a synthetic plasmid encoding GFP and kanamycin resistance genes, in the mixed culture of chemostats exposed to kanamycin at concentrations representing wastewater, gut and polluted environments (0.01-2.5-50-100 mg L-1). We found that the phylogenetically distant Gram-negative Runella (102 Hi-C links), Bosea (35), Gemmobacter (33) and Zoogloea (24) spp., and Gram-positive Microbacterium sp. (90) were transformed by the foreign plasmid, under high antibiotic exposure (50 mg L-1). In addition, the antibiotic pressure shifted the origin of aminoglycoside resistance genes from genomic DNA to mobile genetic elements on plasmids accumulating in microorganisms. These results reveal the power of Hi-C sequencing to catch and surveil the transfer of xenogenetic elements inside microbiomes.
Collapse
Affiliation(s)
| | | | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
13
|
Xiao R, Huang D, Du L, Song B, Yin L, Chen Y, Gao L, Li R, Huang H, Zeng G. Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors, and potential exposure risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161855. [PMID: 36708845 DOI: 10.1016/j.scitotenv.2023.161855] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
As an emerging environmental contaminant, the widespread of antibiotic resistance has caused a series of environmental issues and human health concerns. A load of antibiotic residues induced by agricultural practices have exerted selective pressure to bacterial communities in the soil-plant system, which facilitated the occurrence and dissemination of antibiotic resistance genes (ARGs) through horizontal gene transfer. As a result, the enrichment of ARGs within crops at harvest under the influence of food ingestion could lead to critical concerns of public health. In this review, the prevalence and dissemination of antibiotic resistance in the soil-plant system are highlighted. Moreover, different underlying mechanisms and detection methods for ARGs transfer between the soil environment and plant compartments are summarized and discussed. On the other hand, a wide range of influencing factors for the transfer and distribution of antibiotic resistance within the soil-plant system are also presented and discussed. In response to exposure of antibiotic residues and resistomes, corresponding hazard identification assessments have been summarized, which could provide beneficial guides of the toxicological tolerance for the general population. Finally, further research priorities for detection and management ARGs spread are also suggested.
Collapse
Affiliation(s)
- Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lan Gao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| |
Collapse
|
14
|
Bethke JH, Ma HR, Tsoi R, Cheng L, Xiao M, You L. Vertical and horizontal gene transfer tradeoffs direct plasmid fitness. Mol Syst Biol 2022; 19:e11300. [PMID: 36573357 PMCID: PMC9912019 DOI: 10.15252/msb.202211300] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Plasmid fitness is directed by two orthogonal processes-vertical transfer through cell division and horizontal transfer through conjugation. When considered individually, improvements in either mode of transfer can promote how well a plasmid spreads and persists. Together, however, the metabolic cost of conjugation could create a tradeoff that constrains plasmid evolution. Here, we present evidence for the presence, consequences, and molecular basis of a conjugation-growth tradeoff across 40 plasmids derived from clinical Escherichia coli pathogens. We discover that most plasmids operate below a conjugation efficiency threshold for major growth effects, indicating strong natural selection for vertical transfer. Below this threshold, E. coli demonstrates a remarkable growth tolerance to over four orders of magnitude change in conjugation efficiency. This tolerance fades as nutrients become scarce and horizontal transfer attracts a greater share of host resources. Our results provide insight into evolutionary constraints directing plasmid fitness and strategies to combat the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Jonathan H Bethke
- Department of Molecular Genetics and MicrobiologyDuke UniversityNCDurhamUSA
| | - Helena R Ma
- Department of Biomedical EngineeringDuke UniversityNCDurhamUSA,Center for Quantitative BiodesignDuke UniversityNCDurhamUSA
| | - Ryan Tsoi
- Department of Biomedical EngineeringDuke UniversityNCDurhamUSA
| | - Li Cheng
- BGI‐ShenzhenShenzhenChina,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI‐ShenzhenShenzhenChina,School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Minfeng Xiao
- BGI‐ShenzhenShenzhenChina,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI‐ShenzhenShenzhenChina
| | - Lingchong You
- Department of Molecular Genetics and MicrobiologyDuke UniversityNCDurhamUSA,Department of Biomedical EngineeringDuke UniversityNCDurhamUSA,Center for Quantitative BiodesignDuke UniversityNCDurhamUSA,School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
15
|
Pillay S, Calderón-Franco D, Urhan A, Abeel T. Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. Front Microbiol 2022; 13:1066995. [PMID: 36532424 PMCID: PMC9755710 DOI: 10.3389/fmicb.2022.1066995] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 08/12/2023] Open
Abstract
The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance.
Collapse
Affiliation(s)
- Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | | | - Aysun Urhan
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
16
|
Hernández-Beltrán JCR, San Millán A, Fuentes-Hernández A, Peña-Miller R. Mathematical Models of Plasmid Population Dynamics. Front Microbiol 2021; 12:606396. [PMID: 34803935 PMCID: PMC8600371 DOI: 10.3389/fmicb.2021.606396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
With plasmid-mediated antibiotic resistance thriving and threatening to become a serious public health problem, it is paramount to increase our understanding of the forces that enable the spread and maintenance of drug resistance genes encoded in mobile genetic elements. The relevance of plasmids as vehicles for the dissemination of antibiotic resistance genes, in addition to the extensive use of plasmid-derived vectors for biotechnological and industrial purposes, has promoted the in-depth study of the molecular mechanisms controlling multiple aspects of a plasmids' life cycle. This body of experimental work has been paralleled by the development of a wealth of mathematical models aimed at understanding the interplay between transmission, replication, and segregation, as well as their consequences in the ecological and evolutionary dynamics of plasmid-bearing bacterial populations. In this review, we discuss theoretical models of plasmid dynamics that span from the molecular mechanisms of plasmid partition and copy-number control occurring at a cellular level, to their consequences in the population dynamics of complex microbial communities. We conclude by discussing future directions for this exciting research topic.
Collapse
Affiliation(s)
| | | | | | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|