1
|
Xiao L, Zhang C, Zhang X, Zhao X, Chaeipeima Mahsa G, Ma K, Ji F, Azarpazhooh E, Ajami M, Rui X, Li W. Effects of Lacticaseibacillus paracasei SNB-derived postbiotic components on intestinal barrier dysfunction and composition of gut microbiota. Food Res Int 2024; 175:113773. [PMID: 38129062 DOI: 10.1016/j.foodres.2023.113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The bacterial surface components are considered as effector molecules and show the potential to support intestinal health, but the detailed mechanism of how the gut microbiota changes after the intervention of surface molecules is still unknown. In the present study, capsular polysaccharide (B-CPS) and surface layer protein (B-SLP) were extracted from Lacticaseibacillus paracasei S-NB. The protective effect of direct administration of B-CPS (100 μg/mL) and B-SLP (100 μg/mL) on intestinal epithelial barrier dysfunction was verified based on the LPS-induced Caco-2 cell model. Additionally, the B-CPS and B-SLP could be utilized as carbon source and nitrogen source for the growth of several Lactobacillus strains, respectively. The postbiotic potential of B-CPS and B-SLP was further evaluated by in vitro fermentation with fecal cultures. The B-CPS and a combination of B-CPS and B-SLP regulated the composition of gut microbiota by increasing the relative abundances of Bacteroides, Bifidobacterium, Phascolarctobacterium, Parabacteroides, Subdoligranulum and Collinsella and decreasing the abundance of pathogenic bacteria like Escherichia-Shigella, Blautia, Citrobacter and Fusobacterium. Meanwhile, the total short-chain fatty acid production markedly increased after fermentation with either B-CPS individually or in combination with B-SLP. These results provided an important basis for the application of B-CPS and B-SLP as postbiotics to improve human intestinal health.
Collapse
Affiliation(s)
- Luyao Xiao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Changliang Zhang
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Xueliang Zhang
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaogan Zhao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ghahvechi Chaeipeima Mahsa
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kai Ma
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Feng Ji
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Elham Azarpazhooh
- Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Iran
| | - Marjan Ajami
- National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
2
|
Ding L, Wu X, Lin J, Zhang J, Shi H, Hong M, Fang Z. Butylparaben disordered intestinal homeostasis in Chinese striped-necked turtles (Mauremys sinensis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115193. [PMID: 37392661 DOI: 10.1016/j.ecoenv.2023.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Butylparaben (BuP) is regarded as a widespread pollutant, which has potential risk to aquatic organisms. Turtle species are an important part of aquatic ecosystems, however, the effect of BuP on aquatic turtles is not known. In this study, we evaluated the effect of BuP on intestinal homeostasis of Chinese striped-necked turtle (Mauremys sinensis). We exposed turtles to concentrations of BuP (0, 5, 50, and 500 μg/L) for 20 weeks, then investigated the composition of gut microbiota, the structure of intestine, and the inflammatory and immune status. We found BuP exposure significantly changed the composition of gut microbiota. Specially, the unique genus in three concentrations of BuP-treated groups mainly was Edwardsiella, which was not present in control group (0 μg/L of BuP). In addition, the height of intestinal villus was shortened, and the thickness of muscularis was thinned in BuP-exposed groups. Particularly, the number of goblet cells obviously decreased, the transcription of mucin2 and zonulae occluden-1 (ZO-1) significantly downregulated in BuP-exposed turtles. Meanwhile, neutrophils and natural killer cells in lamina propria of intestinal mucosa increased in BuP-treated groups, especially in high concentration of BuP (500 μg/L). Moreover, the mRNA expression of pro-inflammatory cytokines, especially IL-1β showed a significant upregulation with BuP concentrations. Correlation analysis indicated the abundance of Edwardsiella was positively correlated with IL-1β and IFN-γ expression, whereas its abundance was negatively correlative with the number of goblet cells. Taken together, the present study demonstrated BuP exposure disordered intestinal homeostasis through inducing dysbiosis of gut microbiota, causing inflammatory response and impairing gut physical barrier in turtles, which emphasized the hazard of BuP to health of aquatic organism.
Collapse
Affiliation(s)
- Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Xia Wu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jing Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Zhenhua Fang
- School of Tropical Agricultural Technology, Hainan College of Vocation and Technique, Haikou 570216, China.
| |
Collapse
|
3
|
Tripathi S, Purchase D, Govarthanan M, Chandra R, Yadav S. Regulatory and innovative mechanisms of bacterial quorum sensing-mediated pathogenicity: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:75. [PMID: 36334179 DOI: 10.1007/s10661-022-10564-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/29/2022] [Indexed: 06/16/2023]
Abstract
Quorum sensing (QS) is a system of bacteria in which cells communicate with each other; it is linked to cell density in the microbiome. The high-density colony population can provide enough small molecular signals to enable a range of cellular activities, gene expression, pathogenicity, and antibiotic resistance that cause damage to the hosts. QS is the basis of chronic illnesses in human due to microbial sporulation, expression of virulence factors, biofilm formation, secretion of enzymes, or production of membrane vesicles. The transfer of antimicrobial resistance gene (ARG) among antibiotic resistance bacteria is a major public health concern. QS-mediated biofilm is a hub for ARG horizontal gene transfer. To develop innovative approach to prevent microbial pathogenesis, it is essential to understand the role of QS especially in response to environmental stressors such as exposure to antibiotics. This review provides the latest knowledge on the relationship of QS and pathogenicity and explore the novel approach to control QS via quorum quenching (QQ) using QS inhibitors (QSIs) and QQ enzymes. The state-of-the art knowledge on the role of QS and the potential of using QQ will help to overcome the threats of rapidly emerging bacterial pathogenesis.
Collapse
Affiliation(s)
- Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, UK
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India.
| | - Sangeeta Yadav
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India.
- Department of Botany, Vaishno Devi Prashikshan Mahavidyalaya, Gondahi, Kunda, Pratapgarh, India.
| |
Collapse
|
4
|
Bai X, Zhang M, Zhang Y, Zhang Y, Huo R, Guo X. In vitro fermentation of pretreated oat bran by human fecal inoculum and impact on microbiota. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|