1
|
Neu J, Stewart CJ. Neonatal microbiome in the multiomics era: development and its impact on long-term health. Pediatr Res 2025:10.1038/s41390-025-03953-x. [PMID: 40021924 DOI: 10.1038/s41390-025-03953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
The neonatal microbiome has been the focus of considerable research over the past two decades and studies have added fascinating information in terms of early microbial patterns and how these relate to various disease processes. One difficulty with the interpretation of these relationships is that such data is associative and provides little in terms of proof of causality or the underpinning mechanisms. Integrating microbiome data with other omics such as the proteome, inflammatory mediators, and the metabolome is an emerging approach to address this gap. Here we discuss these omics, their integration, and how they can be applied to improve our understanding, treatment, and prevention of disease. IMPACT: This review introduces the concept of multiomics in neonatology and how emerging technologies can be integrated improve understanding, treatment, and prevention of disease. We highlight considerations for performing multiomic research in neonates and the need for validation in separate cohorts and/or relevant model systems. We summarise how the use of multiomics is expanding and lay out steps to bring this to the clinic to enable precision medicine.
Collapse
Affiliation(s)
- Josef Neu
- University of Florida, Gainesville, FL, USA
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Abdill RJ, Graham SP, Rubinetti V, Ahmadian M, Hicks P, Chetty A, McDonald D, Ferretti P, Gibbons E, Rossi M, Krishnan A, Albert FW, Greene CS, Davis S, Blekhman R. Integration of 168,000 samples reveals global patterns of the human gut microbiome. Cell 2025; 188:1100-1118.e17. [PMID: 39848248 PMCID: PMC11848717 DOI: 10.1016/j.cell.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 09/09/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025]
Abstract
The factors shaping human microbiome variation are a major focus of biomedical research. While other fields have used large sequencing compendia to extract insights requiring otherwise impractical sample sizes, the microbiome field has lacked a comparably sized resource for the 16S rRNA gene amplicon sequencing commonly used to quantify microbiome composition. To address this gap, we processed 168,464 publicly available human gut microbiome samples with a uniform pipeline. We use this compendium to evaluate geographic and technical effects on microbiome variation. We find that regions such as Central and Southern Asia differ significantly from the more thoroughly characterized microbiomes of Europe and Northern America and that composition alone can be used to predict a sample's region of origin. We also find strong associations between microbiome variation and technical factors such as primers and DNA extraction. We anticipate this growing work, the Human Microbiome Compendium, will enable advanced applied and methodological research.
Collapse
Affiliation(s)
- Richard J Abdill
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Samantha P Graham
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Vincent Rubinetti
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA; Center for Health Artificial Intelligence (CHAI), University of Colorado School of Medicine, Aurora, CO, USA
| | - Mansooreh Ahmadian
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, School of Public Health, Aurora, CO, USA
| | - Parker Hicks
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashwin Chetty
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Pamela Ferretti
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Elizabeth Gibbons
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Marco Rossi
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA; Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, School of Public Health, Aurora, CO, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Casey S Greene
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA; Center for Health Artificial Intelligence (CHAI), University of Colorado School of Medicine, Aurora, CO, USA
| | - Sean Davis
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA; Center for Health Artificial Intelligence (CHAI), University of Colorado School of Medicine, Aurora, CO, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Condori-Catachura S, Ahannach S, Ticlla M, Kenfack J, Livo E, Anukam KC, Pinedo-Cancino V, Collado MC, Dominguez-Bello MG, Miller C, Vinderola G, Merten S, Donders GGG, Gehrmann T, Lebeer S. Diversity in women and their vaginal microbiota. Trends Microbiol 2025:S0966-842X(24)00328-7. [PMID: 39919958 DOI: 10.1016/j.tim.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 02/09/2025]
Abstract
Women's health is essential to global societal and economic wellbeing, yet health disparities remain prevalent. The vaginal microbiota plays a critical role in health, with research indicating that reduced levels of core bacteria, such as lactobacilli, are associated with conditions like bacterial vaginosis (BV) and increased infection susceptibility. Lower levels of vaginal lactobacilli are reported more frequently in women of African and Latin American descent compared with women of European and Asian descent. However, geographical and other study inclusion and analysis biases influence current research. This opinion highlights the need for a more comprehensive understanding of a 'healthy' vaginal microbiome. It underscores efforts to broaden global research on microbiome diversity in socially relevant contexts, avoiding inappropriate applications of terms such as race and ethnicity.
Collapse
Affiliation(s)
- Sandra Condori-Catachura
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sarah Ahannach
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; U-MaMi Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Monica Ticlla
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Unit Society, Gender and Health - Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Josiane Kenfack
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon; Centre for Research on Emerging and Reemerging Diseases, Institute of Medical Research and Medicinal Plant Studies, Yaounde, Cameroon; The Biotechnology Center, University of Yaounde I, Yaounde, Cameroon
| | - Esemu Livo
- Centre for Research on Emerging and Reemerging Diseases, Institute of Medical Research and Medicinal Plant Studies, Yaounde, Cameroon; The Biotechnology Center, University of Yaounde I, Yaounde, Cameroon; Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon; Strengthening Health and Applied Research, Yaounde, Cameroon
| | - Kingsley C Anukam
- Department of Medical Microbiology and Public Health, Faculty of Medical Laboratory Science, Nnamdi Azikiwe University, Nigeria
| | - Viviana Pinedo-Cancino
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonía (LIPNAA), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru; Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology - National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA; Department of Anthropology, Rutgers University, New Brunswick, NJ, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Corrie Miller
- Department of Obstetrics, Gynecology, and Women's Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sonja Merten
- Unit Society, Gender and Health - Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Gilbert G G Donders
- Department of Obstetrics and Gynaecology, University Hospital Antwerp, Edegem, Belgium.; Regional Hospital Heilig Hart, Tienen, Belgium; Femicare Clinical Research for Women, Tienen, Belgium
| | - Thies Gehrmann
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sarah Lebeer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; U-MaMi Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Bajaj A, Markandey M, Samal A, Goswami S, Vuyyuru SK, Mohta S, Kante B, Kumar P, Makharia G, Kedia S, Ghosh TS, Ahuja V. Depletion of core microbiome forms the shared background against diverging dysbiosis patterns in Crohn's disease and intestinal tuberculosis: insights from an integrated multi-cohort analysis. Gut Pathog 2024; 16:65. [PMID: 39511674 PMCID: PMC11545864 DOI: 10.1186/s13099-024-00654-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/06/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND/AIMS Crohn's disease (CD) and intestinal tuberculosis (ITB) are gastrointestinal (GI) inflammatory disorders with overlapping clinical presentations but diverging etiologies. The study aims to decipher CD and ITB-associated gut dysbiosis signatures and identify disease-associated co-occurring modules to evaluate whether this dysbiosis signature is a disease-specific trait or is a shared feature across diseases of diverging etiologies. METHODS Disease-associated gut microbial modules were identified using statistical machine learning and co-abundance network analysis in controls, CD and ITB patients recruited as part of this study. Module reproducibility was reinvestigated through meta-network analysis encompassing >5400 bacteriomes and ~900 mycobiomes. Subsequently, >1600 Indian gut microbiomes were analyzed to identify a central-core gut microbiome of 46 taxa, whose abundances aided in the formulation of an India-specific Core Gut Microbiome Score (CGMS) to measure the degree of core retention. RESULTS Both diseases witness similar patterns of alterations in [alpha]-diversity, characterized by a significant reduction in gut bacterial (i.e., bacterial/archaeal) diversity and a concomitant increase in the fungal [alpha]-diversity. Specific bacterial taxa, along with the diverging mycobiome enabled distinction between the diseases. Co-abundance network analysis of these taxa, validated by integrated meta-network analysis, revealed a 'disease-depleted' module, consistent across multiple cohorts, with >75% of this module constituting the central-core Indian gut microbiome. CGMS robustly assessed the core-microbiome loss across different stages of gut inflammatory disorders, in Indian and international cohorts. CONCLUSIONS While the disease-specific gain of detrimental bacteria forms an important component of gut dysbiosis, loss of the core microbiome is a shared phenomenon contributing to various GI disorders.
Collapse
Affiliation(s)
- Aditya Bajaj
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Manasvini Markandey
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Samal
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, New Delhi, India
| | - Sourav Goswami
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, New Delhi, India
| | - Sudheer K Vuyyuru
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Srikant Mohta
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bhaskar Kante
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Peeyush Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Govind Makharia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, New Delhi, India.
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
5
|
Buytaers FE, Berger N, Van der Heyden J, Roosens NHC, De Keersmaecker SCJ. The potential of including the microbiome as biomarker in population-based health studies: methods and benefits. Front Public Health 2024; 12:1467121. [PMID: 39507669 PMCID: PMC11538166 DOI: 10.3389/fpubh.2024.1467121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
The key role of our microbiome in influencing our health status, and its relationship with our environment and lifestyle or health behaviors, have been shown in the last decades. Therefore, the human microbiome has the potential to act as a biomarker or indicator of health or exposure to health risks in the general population, if information on the microbiome can be collected in population-based health surveys or cohorts. It could then be associated with epidemiological participant data such as demographic, clinical or exposure profiles. However, to our knowledge, microbiome sampling has not yet been included as biological evidence of health or exposure to health risks in large population-based studies representative of the general population. In this mini-review, we first highlight some practical considerations for microbiome sampling and analysis that need to be considered in the context of a population study. We then present some examples of topics where the microbiome could be included as biological evidence in population-based health studies for the benefit of public health, and how this could be developed in the future. In doing so, we aim to highlight the benefits of having microbiome data available at the level of the general population, combined with epidemiological data from health surveys, and hence how microbiological data could be used in the future to assess human health. We also stress the challenges that remain to be overcome to allow the use of this microbiome data in order to improve proactive public health policies.
Collapse
|
6
|
Vich Vila A, Zhang J, Liu M, Faber KN, Weersma RK. Untargeted faecal metabolomics for the discovery of biomarkers and treatment targets for inflammatory bowel diseases. Gut 2024; 73:1909-1920. [PMID: 39002973 PMCID: PMC11503092 DOI: 10.1136/gutjnl-2023-329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.
Collapse
Affiliation(s)
- Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong (SAR), People's Republic of China
- Microbiota I-Center (MagIC), Hong Kong (SAR), People's Republic of China
| | - Moting Liu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Akorli J, Opoku M, Appiah-Twum F, Akpo MS, Ismail RY, Boamah GYK, Obeng-Aboagye E, Adu-Asamoah D, Donkor IO. High abundance of butyrate-producing bacteria in the naso-oropharynx of SARS-CoV-2-infected persons in an African population: implications for low disease severity. BMC Infect Dis 2024; 24:1020. [PMID: 39304808 DOI: 10.1186/s12879-024-09948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The association of the oral microbiome with SARS-CoV-2 infections and disease progression has been documented in European, Asian, and American populations but not in Africa. METHODS We conducted a study in Ghana to evaluate and compare the naso-oropharyngeal microbiome in SARS-CoV-2-infected and uninfected persons before (pre-vaccine) and after vaccine availability (post-vaccine) in the country. 16S rRNA V3-V4 variable region was sequenced and analysed from DNA extracted from naso-oropharyngeal swabs. RESULTS Considering only the infection status, infected and uninfected groups had no difference in their within-group diversity and was evident in the study population pre- and post-vaccine availability. The introduction of vaccines reduced the diversity of the naso-oropharyngeal microbiome particularly among SARS-CoV-2 positive persons and, vaccinated individuals (both infected and uninfected) had higher microbial diversity compared to their unvaccinated counterparts. SARS-CoV-2-positive and -negative individuals were largely compositionally similar varying by 4-7% but considering vaccination*infection statuses, the genetic distance increased to 12% (P = 0.003) and was mainly influenced by vaccination. Common among the pre- and post-vaccine samples, Atopobium and Finegoldia were abundant in infected and uninfected individuals, respectively. Bacteria belonging to major butyrate-producing phyla, Bacillota (particularly class Clostridia) and Bacteroidota showed increased abundance more strikingly in infected individuals before vaccines were available. They reduced significantly after vaccines were introduced into the country with Fusobacterium and Lachnoanaerobaculum being the only common bacteria between pre-vaccine infected persons and vaccinated individuals, suggesting that natural infection and vaccination correlate with high abundance of short-chain fatty acids. CONCLUSION Our results show, in an African cohort, the abundance of bacteria taxa known for their protective pathophysiological processes, especially during infection, suggesting that this population is protected against severe COVID-19. The immune-related roles of the members of Bacillota and Bacteroidota that were found associated with infection and vaccination require further studies, and how these may be linked to ethnicity, diet and age. We also recommend expansion of microbiome-disease association studies across Africa to identify possible bacterial-mediated therapeutics for emerging infections.
Collapse
Affiliation(s)
- Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana.
| | - Millicent Opoku
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
- Present address Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Francis Appiah-Twum
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Margaret Sena Akpo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Rahmat Yusif Ismail
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Georgina Yaa Kwartemaa Boamah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Elizabeth Obeng-Aboagye
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Dina Adu-Asamoah
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Irene Owusu Donkor
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| |
Collapse
|
8
|
Cano R, Bermúdez V, Galban N, Garrido B, Santeliz R, Gotera MP, Duran P, Boscan A, Carbonell-Zabaleta AK, Durán-Agüero S, Rojas-Gómez D, González-Casanova J, Díaz-Vásquez W, Chacín M, Angarita Dávila L. Dietary Polyphenols and Gut Microbiota Cross-Talk: Molecular and Therapeutic Perspectives for Cardiometabolic Disease: A Narrative Review. Int J Mol Sci 2024; 25:9118. [PMID: 39201807 PMCID: PMC11354808 DOI: 10.3390/ijms25169118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The intricate interplay between the gut microbiota and polyphenols has emerged as a captivating frontier in understanding and potentially harnessing the therapeutic potential of these bioactive compounds. Phenolic compounds, renowned for their antioxidant, anti-inflammatory, antidiabetic, and anticancer properties, are subject to intricate transformations within the gut milieu, where the diverse microbial ecosystem exerts profound effects on their metabolism and bioavailability. Conversely, polyphenols exhibit a remarkable capacity to modulate the composition and activity of the gut microbiota, fostering a bidirectional relationship that extends beyond mere nutrient processing. This symbiotic interaction holds significant implications for human health, particularly in cardiometabolic diseases such as diabetes mellitus, metabolic-dysfunction-associated steatotic liver disease, and cardiovascular disease. Through a comprehensive exploration of molecular interactions, this narrative review elucidates the reciprocal dynamics between the gut microbiota and polyphenols, unveiling novel avenues for therapeutic intervention in cardiometabolic disorders. By unravelling the intricate cross-talk between these two entities, this review underscores the multifaceted roles of polyphenols in overall health and the pivotal role of gut microbiota modulation as a promising therapeutic strategy in mitigating the burden of cardiometabolic diseases.
Collapse
Affiliation(s)
- Raquel Cano
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Nestor Galban
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Bermary Garrido
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Raquel Santeliz
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Maria Paula Gotera
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Pablo Duran
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Arturo Boscan
- Escuela de Medicina, Facultad de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela;
| | | | - Samuel Durán-Agüero
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 7511111, Chile
| | - Diana Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile;
| | - Jorge González-Casanova
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Waldo Díaz-Vásquez
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 7511111, Chile
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Lissé Angarita Dávila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| |
Collapse
|
9
|
Sugino KY, Hernandez TL, Barbour LA, Kofonow JM, Frank DN, Friedman JE. Distinct Plasma Metabolomic and Gut Microbiome Profiles after Gestational Diabetes Mellitus Diet Treatment: Implications for Personalized Dietary Interventions. Microorganisms 2024; 12:1369. [PMID: 39065137 PMCID: PMC11278888 DOI: 10.3390/microorganisms12071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diabetes mellitus (GDM) triggers alterations in the maternal microbiome. Alongside metabolic shifts, microbial products may impact clinical factors and influence pregnancy outcomes. We investigated maternal microbiome-metabolomic changes, including over 600 metabolites from a subset of the "Choosing Healthy Options in Carbohydrate Energy" (CHOICE) study. Women diagnosed with GDM were randomized to a diet higher in complex carbohydrates (CHOICE, n = 18, 60% complex carbohydrate/25% fat/15% protein) or a conventional GDM diet (CONV, n = 16, 40% carbohydrate/45% fat/15% protein). All meals were provided. Diets were eucaloric, and fiber content was similar. CHOICE was associated with increases in trimethylamine N-oxide, indoxyl sulfate, and several triglycerides, while CONV was associated with hippuric acid, betaine, and indole propionic acid, suggestive of a healthier metabolome. Conversely, the microbiome of CHOICE participants was enriched with carbohydrate metabolizing genes and beneficial taxa such as Bifidobacterium adolescentis, while CONV was associated with inflammatory pathways including antimicrobial resistance and lipopolysaccharide biosynthesis. We also identified latent metabolic groups not associated with diet: a metabolome associated with less of a decrease in fasting glucose, and another associated with relatively higher fasting triglycerides. Our results suggest that GDM diets produce specific microbial and metabolic responses during pregnancy, while host factors also play a role in triglycerides and glucose metabolism.
Collapse
Affiliation(s)
- Kameron Y. Sugino
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Teri L. Hernandez
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (T.L.H.); (L.A.B.)
- College of Nursing, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Linda A. Barbour
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (T.L.H.); (L.A.B.)
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Jennifer M. Kofonow
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (J.M.K.); (D.N.F.)
| | - Daniel N. Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (J.M.K.); (D.N.F.)
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Warren A, Nyavor Y, Zarabian N, Mahoney A, Frame LA. The microbiota-gut-brain-immune interface in the pathogenesis of neuroinflammatory diseases: a narrative review of the emerging literature. Front Immunol 2024; 15:1365673. [PMID: 38817603 PMCID: PMC11137262 DOI: 10.3389/fimmu.2024.1365673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Importance Research is beginning to elucidate the sophisticated mechanisms underlying the microbiota-gut-brain-immune interface, moving from primarily animal models to human studies. Findings support the dynamic relationships between the gut microbiota as an ecosystem (microbiome) within an ecosystem (host) and its intersection with the host immune and nervous systems. Adding this to the effects on epigenetic regulation of gene expression further complicates and strengthens the response. At the heart is inflammation, which manifests in a variety of pathologies including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis (MS). Observations Generally, the research to date is limited and has focused on bacteria, likely due to the simplicity and cost-effectiveness of 16s rRNA sequencing, despite its lower resolution and inability to determine functional ability/alterations. However, this omits all other microbiota including fungi, viruses, and phages, which are emerging as key members of the human microbiome. Much of the research has been done in pre-clinical models and/or in small human studies in more developed parts of the world. The relationships observed are promising but cannot be considered reliable or generalizable at this time. Specifically, causal relationships cannot be determined currently. More research has been done in Alzheimer's disease, followed by Parkinson's disease, and then little in MS. The data for MS is encouraging despite this. Conclusions and relevance While the research is still nascent, the microbiota-gut-brain-immune interface may be a missing link, which has hampered our progress on understanding, let alone preventing, managing, or putting into remission neurodegenerative diseases. Relationships must first be established in humans, as animal models have been shown to poorly translate to complex human physiology and environments, especially when investigating the human gut microbiome and its relationships where animal models are often overly simplistic. Only then can robust research be conducted in humans and using mechanistic model systems.
Collapse
Affiliation(s)
- Alison Warren
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yvonne Nyavor
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Nikkia Zarabian
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Aidan Mahoney
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Undergraduate College, Princeton University, Princeton, NJ, United States
| | - Leigh A. Frame
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
11
|
O'Toole PW. Ageing, microbes and health. Microb Biotechnol 2024; 17:e14477. [PMID: 38801344 PMCID: PMC11129672 DOI: 10.1111/1751-7915.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
The human gut microbiome is a modifier of the risk for many non-communicable diseases throughout the lifespan. In ageing, the effect of the microbiome appears to be more pronounced because of the lower physiological reserve. Microbial metabolites and other bioactive products act upon some of the key physiological processes involved in the Hallmarks of Ageing. Dietary interventions that delay age-related change in the microbiome have also led to delayed onset of ageing-related health loss, and improved levels of cognitive function, inflammatory status and frailty. Cross-sectional analysis of thousands of gut microbiome datasets from around the world has identified key taxa that are depleted during accelerated health loss, and other taxa that become more abundant, but these signatures differ in some geographical regions. The key challenges for research in this area are to experimentally prove that particular species or strains directly contribute to health-related ageing outcomes, and to develop practical ways of retaining or re-administering them on a population basis. The promotion of a health-associated gut microbiome in ageing mirrors the challenge of maintaining planetary microbial ecosystems in the face of anthropogenic effects and climate change. Lessons learned from acting at the individual level can inform microbiome-targeting strategies for achieving Sustainable Development Goals at a global level.
Collapse
Affiliation(s)
- Paul W. O'Toole
- School of MicrobiologyUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
12
|
Collado MC, Stewart CJ. Editorial overview: A critical crossroad in microbiome research: Where do we go? Curr Opin Microbiol 2024; 78:102438. [PMID: 38377654 DOI: 10.1016/j.mib.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | | |
Collapse
|
13
|
Abdill RJ, Graham SP, Rubinetti V, Albert FW, Greene CS, Davis S, Blekhman R. Integration of 168,000 samples reveals global patterns of the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.560955. [PMID: 37873416 PMCID: PMC10592789 DOI: 10.1101/2023.10.11.560955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Understanding the factors that shape variation in the human microbiome is a major goal of research in biology. While other genomics fields have used large, pre-compiled compendia to extract systematic insights requiring otherwise impractical sample sizes, there has been no comparable resource for the 16S rRNA sequencing data commonly used to quantify microbiome composition. To help close this gap, we have assembled a set of 168,484 publicly available human gut microbiome samples, processed with a single pipeline and combined into the largest unified microbiome dataset to date. We use this resource, which is freely available at microbiomap.org, to shed light on global variation in the human gut microbiome. We find that Firmicutes, particularly Bacilli and Clostridia, are almost universally present in the human gut. At the same time, the relative abundance of the 65 most common microbial genera differ between at least two world regions. We also show that gut microbiomes in undersampled world regions, such as Central and Southern Asia, differ significantly from the more thoroughly characterized microbiomes of Europe and Northern America. Moreover, humans in these overlooked regions likely harbor hundreds of taxa that have not yet been discovered due to this undersampling, highlighting the need for diversity in microbiome studies. We anticipate that this new compendium can serve the community and enable advanced applied and methodological research.
Collapse
Affiliation(s)
- Richard J. Abdill
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Samantha P. Graham
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vincent Rubinetti
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Health Artificial Intelligence (CHAI), University of Colorado School of Medicine, Aurora, CO, USA
| | - Frank W. Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Casey S. Greene
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Health Artificial Intelligence (CHAI), University of Colorado School of Medicine, Aurora, CO, USA
| | - Sean Davis
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Health Artificial Intelligence (CHAI), University of Colorado School of Medicine, Aurora, CO, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
O'Toole PW, Paoli M. The human microbiome, global health and the Sustainable Development Goals: opportunities and challenges. Nat Rev Microbiol 2023; 21:624-625. [PMID: 37328672 DOI: 10.1038/s41579-023-00924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Paul W O'Toole
- School of Microbiology, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Max Paoli
- The World Academy of Sciences (UNESCO), Trieste, Italy
| |
Collapse
|
15
|
Salas-Espejo E, Terrón-Camero LC, Ruiz JL, Molina NM, Andrés-León E. Exploring the Microbiome in Human Reproductive Tract: High-Throughput Methods for the Taxonomic Characterization of Microorganisms. Semin Reprod Med 2023; 41:125-143. [PMID: 38320576 DOI: 10.1055/s-0044-1779025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Microorganisms are important due to their widespread presence and multifaceted roles across various domains of life, ecology, and industries. In humans, they underlie the proper functioning of multiple systems crucial to well-being, including immunological and metabolic functions. Emerging research addressing the presence and roles of microorganisms within human reproduction is increasingly relevant. Studies implementing new methodologies (e.g., to investigate vaginal, uterine, and semen microenvironments) can now provide relevant insights into fertility, reproductive health, or pregnancy outcomes. In that sense, cutting-edge sequencing techniques, as well as others such as meta-metabolomics, culturomics, and meta-proteomics, are becoming more popular and accessible worldwide, allowing the characterization of microbiomes at unprecedented resolution. However, they frequently involve rather complex laboratory protocols and bioinformatics analyses, for which researchers may lack the required expertise. A suitable pipeline would successfully enable both taxonomic classification and functional profiling of the microbiome, providing easy-to-understand biological interpretations. However, the selection of an appropriate methodology would be crucial, as it directly impacts the reproducibility, accuracy, and quality of the results and observations. This review focuses on the different current microbiome-related techniques in the context of human reproduction, encompassing niches like vagina, endometrium, and seminal fluid. The most standard and reliable methods are 16S rRNA gene sequencing, metagenomics, and meta-transcriptomics, together with complementary approaches including meta-proteomics, meta-metabolomics, and culturomics. Finally, we also offer case examples and general recommendations about the most appropriate methods and workflows and discuss strengths and shortcomings for each technique.
Collapse
Affiliation(s)
- Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura C Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - José L Ruiz
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| |
Collapse
|