1
|
Xu X, Gu P. Overview of Phage Defense Systems in Bacteria and Their Applications. Int J Mol Sci 2024; 25:13316. [PMID: 39769080 PMCID: PMC11676413 DOI: 10.3390/ijms252413316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
As natural parasites of bacteria, phages have greatly contributed to bacterial evolution owing to their persistent threat. Diverse phage resistance systems have been developed in bacteria during the coevolutionary process with phages. Conversely, phage contamination has a devastating effect on microbial fermentation, resulting in fermentation failure and substantial economic loss. Accordingly, natural defense systems derived from bacteria can be employed to obtain robust phage-resistant host cells that can overcome the threats posed by bacteriophages during industrial bacterial processes. In this review, diverse phage resistance mechanisms, including the remarkable research progress and potential applications, are systematically summarized. In addition, the development prospects and challenges of phage-resistant bacteria are discussed. This review provides a useful reference for developing phage-resistant bacteria.
Collapse
Affiliation(s)
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| |
Collapse
|
2
|
Rackow B, Rolland C, Mohnen I, Wittmann J, Müsken M, Overmann J, Frunzke J. Isolation and characterization of the new Streptomyces phages Kamino, Geonosis, Abafar, and Scarif infecting a broad range of host species. Microbiol Spectr 2024; 12:e0066324. [PMID: 39320111 PMCID: PMC11536984 DOI: 10.1128/spectrum.00663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Streptomyces, a multifaceted genus of soil-dwelling bacteria belonging to the phylum Actinomycetota, features intricate phage-host interactions shaped by its complex life cycle and the synthesis of a diverse array of specialized metabolites. Here, we describe the isolation and characterization of four novel Streptomyces phages infecting a variety of different host species. While phage Kamino, isolated on Streptomyces kasugaensis, is predicted to be temperate and encodes a serine integrase in its genome, phages Geonosis (isolated on Streptomyces griseus) and Abafar and Scarif, isolated on Streptomyces albidoflavus, are virulent phages. Phages Kamino and Geonosis were shown to amplify well in liquid culture leading to a pronounced culture collapse already at low titers. Determination of the host range by testing >40 different Streptomyces species identified phages Kamino, Abafar, and Scarif as broad host-range phages. Overall, the phages described in this study expand the publicly available portfolio of phages infecting Streptomyces and will be instrumental in advancing the mechanistic understanding of the intricate antiviral strategies employed by these multicellular bacteria.IMPORTANCEThe actinobacterial genus Streptomyces is characterized by multicellular, filamentous growth and the synthesis of a diverse range of bioactive molecules. These characteristics also play a role in shaping their interactions with the most abundant predator in the environment, bacteriophages-viruses infecting bacteria. In this study, we characterize four new phages infecting Streptomyces. Out of those, three phages feature a broad host range infecting up to 15 different species. The isolated phages were characterized with respect to plaque and virion morphology, host range, and amplification in liquid culture. In summary, the phages reported in this study contribute to the broader collection of publicly available phages infecting Streptomyces, playing a crucial role in advancing our mechanistic understanding of phage-host interactions of these multicellular bacteria.
Collapse
Affiliation(s)
- Bente Rackow
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Clara Rolland
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Isabelle Mohnen
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
3
|
Erdrich SH, Luthe T, Kever L, Badia Roigé B, Arsova B, Davoudi E, Frunzke J. Expanding the Phage Galaxy: Isolation and Characterization of Five Novel Streptomyces Siphoviruses Ankus, Byblos, DekoNeimoidia, Mandalore, and Naboo. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:153-161. [PMID: 39372360 PMCID: PMC11447395 DOI: 10.1089/phage.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Key features of the actinobacterial genus Streptomyces are multicellular, filamentous growth, and production of a broad portfolio of bioactive molecules. These characteristics appear to play an important role in phage-host interactions and are modulated by phages during infection. To accelerate research of such interactions and the investigation of novel immune systems in multicellular bacteria, phage isolation, sequencing, and characterization are needed. This is a prerequisite for establishing systematic collections that appropriately cover phage diversity for comparative analyses. Material & Methods As part of a public outreach program within the priority program SPP 2330, involving local schools, we describe the isolation and characterization of five novel Streptomyces siphoviruses infecting S. griseus, S. venezuelae, and S. olivaceus. Results All isolates are virulent members of two existing genera and, additionally, establish a new genus in the Stanwilliamsviridae family. In addition to an extensive set of tRNAs and proteins involved in phage replication, about 80% of phage genes encode hypothetical proteins, underlining the yet underexplored phage diversity and genomic dark matter still found in bacteriophages infecting actinobacteria. Conclusions Taken together, phages Ankus, Byblos, DekoNeimoidia, Mandalore, and Naboo expand the phage diversity and contribute to ongoing research in the field of Streptomyces phage-host interactions.
Collapse
Affiliation(s)
- Sebastian H. Erdrich
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Tom Luthe
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Larissa Kever
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Biel Badia Roigé
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Borjana Arsova
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Eva Davoudi
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
4
|
Walton B, Abbondante S, Marshall ME, Dobruchowska JM, Alvi A, Gallagher LA, Vallikat N, Zhang Z, Wozniak DJ, Yu EW, Boons GJ, Pearlman E, Rietsch A. A biofilm-tropic Pseudomonas aeruginosa bacteriophage uses the exopolysaccharide Psl as receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607380. [PMID: 39185188 PMCID: PMC11343166 DOI: 10.1101/2024.08.12.607380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Bacteria in nature can exist in multicellular communities called biofilms. Biofilms also form in the course of many infections. Pseudomonas aeruginosa infections frequently involve biofilms, which contribute materially to the difficulty to treat these infections with antibiotic therapy. Many biofilm-related characteristics are controlled by the second messenger, cyclic-di-GMP, which is upregulated on surface contact. Among these factors is the exopolysaccharide Psl, which is a critically important component of the biofilm matrix. Here we describe the discovery of a P. aeruginosa bacteriophage, which we have called Clew-1, that directly binds to and uses Psl as a receptor. While this phage does not efficiently infect planktonically growing bacteria, it can disrupt P. aeruginosa biofilms and replicate in biofilm bacteria. We further demonstrate that the Clew-1 can reduce the bacterial burden in a mouse model of P. aeruginosa keratitis, which is characterized by the formation of a biofilm on the cornea. Due to its reliance on Psl for infection, Clew-1 does not actually form plaques on wild-type bacteria under standard in vitro conditions. This argues that our standard isolation procedures likely exclude bacteriophage that are adapted to using biofilm markers for infection. Importantly, the manner in which we isolated Clew-1 can be easily extended to other strains of P. aeruginosa and indeed other bacterial species, which will fuel the discovery of other biofilm-tropic bacteriophage and expand their therapeutic use.
Collapse
Affiliation(s)
- Brenna Walton
- Dept. of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Serena Abbondante
- Dept. of Ophthalmology, University of California, Irvine, CA, U.S.A
- Institute of Immunology, University of California, Irvine, CA, U.S.A
| | - Michaela Ellen Marshall
- Dept. of Ophthalmology, University of California, Irvine, CA, U.S.A
- Institute of Immunology, University of California, Irvine, CA, U.S.A
| | - Justyna M. Dobruchowska
- Dept. of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, NL
| | - Amani Alvi
- Dept. of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, U.S.A
| | | | - Nikhil Vallikat
- Dept. of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Zhemin Zhang
- Dept. of Pharmacology, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Daniel J. Wozniak
- Dept. of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, U.S.A
- Dept. of Microbiology, The Ohio State University, Columbus, OH, U.S.A
| | - Edward W. Yu
- Dept. of Pharmacology, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Geert-Jan Boons
- Dept. of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, NL
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, U.S.A
- Dept. of Chemistry, University of Georgia, Athens, GA, U.S.A
| | - Eric Pearlman
- Dept. of Ophthalmology, University of California, Irvine, CA, U.S.A
- Institute of Immunology, University of California, Irvine, CA, U.S.A
| | - Arne Rietsch
- Dept. of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, U.S.A
| |
Collapse
|
5
|
Jaffal H, Kortebi M, Misson P, Tavares P, Ouldali M, Leh H, Lautru S, Lioy VS, Lecointe F, Bury-Moné SG. Prophage induction can facilitate the in vitro dispersal of multicellular Streptomyces structures. PLoS Biol 2024; 22:e3002725. [PMID: 39052683 DOI: 10.1371/journal.pbio.3002725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/06/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Streptomyces are renowned for their prolific production of specialized metabolites with applications in medicine and agriculture. These multicellular bacteria present a sophisticated developmental cycle and play a key role in soil ecology. Little is known about the impact of Streptomyces phage on bacterial physiology. In this study, we investigated the conditions governing the expression and production of "Samy", a prophage found in Streptomyces ambofaciens ATCC 23877. This siphoprophage is produced simultaneously with the activation of other mobile genetic elements. Remarkably, the presence and production of Samy increases bacterial dispersal under in vitro stress conditions. Altogether, this study unveiled a new property of a bacteriophage infection in the context of multicellular aggregate dynamics.
Collapse
Affiliation(s)
- Hoda Jaffal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mounia Kortebi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pauline Misson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Paulo Tavares
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Hervé Leh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sylvie Lautru
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - François Lecointe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Stéphanie G Bury-Moné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
6
|
Zhong Q, Liao B, Liu J, Shen W, Wang J, Wei L, Ma Y, Dong PT, Bor B, McLean JS, Chang Y, Shi W, Cen L, Wu M, Liu J, Li Y, He X, Le S. Episymbiotic Saccharibacteria TM7x modulates the susceptibility of its host bacteria to phage infection and promotes their coexistence. Proc Natl Acad Sci U S A 2024; 121:e2319790121. [PMID: 38593079 PMCID: PMC11032452 DOI: 10.1073/pnas.2319790121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024] Open
Abstract
Bacteriophages (phages) play critical roles in modulating microbial ecology. Within the human microbiome, the factors influencing the long-term coexistence of phages and bacteria remain poorly investigated. Saccharibacteria (formerly TM7) are ubiquitous members of the human oral microbiome. These ultrasmall bacteria form episymbiotic relationships with their host bacteria and impact their physiology. Here, we showed that during surface-associated growth, a human oral Saccharibacteria isolate (named TM7x) protects its host bacterium, a Schaalia odontolytica strain (named XH001) against lytic phage LC001 predation. RNA-Sequencing analysis identified in XH001 a gene cluster with predicted functions involved in the biogenesis of cell wall polysaccharides (CWP), whose expression is significantly down-regulated when forming a symbiosis with TM7x. Through genetic work, we experimentally demonstrated the impact of the expression of this CWP gene cluster on bacterial-phage interaction by affecting phage binding. In vitro coevolution experiments further showed that the heterogeneous populations of TM7x-associated and TM7x-free XH001, which display differential susceptibility to LC001 predation, promote bacteria and phage coexistence. Our study highlights the tripartite interaction between the bacterium, episymbiont, and phage. More importantly, we present a mechanism, i.e., episymbiont-mediated modulation of gene expression in host bacteria, which impacts their susceptibility to phage predation and contributes to the formation of "source-sink" dynamics between phage and bacteria in biofilm, promoting their long-term coexistence within the human microbiome.
Collapse
Affiliation(s)
- Qiu Zhong
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing400038, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan610041, China
| | - Jiazhen Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing400038, China
| | - Wei Shen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University, Chongqing401336, China
| | - Jing Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing400038, China
| | - Leilei Wei
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing400038, China
| | - Yansong Ma
- Department of Orthodontics, Capital Medical University, Beijing100050, China
| | - Pu-Ting Dong
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Batbileg Bor
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Jeffrey S. McLean
- Department of Periodontics, University of Washington, Seattle, WA98119
- Department of Microbiology, University of Washington, Seattle, WA98195
| | - Yunjie Chang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
| | - Wenyuan Shi
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Lujia Cen
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Miaomiao Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan610041, China
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan610041, China
| | - Xuesong He
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Shuai Le
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing400038, China
| |
Collapse
|
7
|
Letarov AV. Bacterial Virus Forcing of Bacterial O-Antigen Shields: Lessons from Coliphages. Int J Mol Sci 2023; 24:17390. [PMID: 38139217 PMCID: PMC10743462 DOI: 10.3390/ijms242417390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In most Gram-negative bacteria, outer membrane (OM) lipopolysaccharide (LPS) molecules carry long polysaccharide chains known as the O antigens or O polysaccharides (OPS). The OPS structure varies highly from strain to strain, with more than 188 O serotypes described in E. coli. Although many bacteriophages recognize OPS as their primary receptors, these molecules can also screen OM proteins and other OM surface receptors from direct interaction with phage receptor-binding proteins (RBP). In this review, I analyze the body of evidence indicating that most of the E. coli OPS types robustly shield cells completely, preventing phage access to the OM surface. This shield not only blocks virulent phages but also restricts the acquisition of prophages. The available data suggest that OPS-mediated OM shielding is not merely one of many mechanisms of bacterial resistance to phages. Rather, it is an omnipresent factor significantly affecting the ecology, phage-host co-evolution and other related processes in E. coli and probably in many other species of Gram-negative bacteria. The phages, in turn, evolved multiple mechanisms to break through the OPS layer. These mechanisms rely on the phage RBPs recognizing the OPS or on using alternative receptors exposed above the OPS layer. The data allow one to forward the interpretation that, regardless of the type of receptors used, primary receptor recognition is always followed by the generation of a mechanical force driving the phage tail through the OPS layer. This force may be created by molecular motors of enzymatically active tail spikes or by virion structural re-arrangements at the moment of infection.
Collapse
Affiliation(s)
- Andrey V Letarov
- Winogradsky Institute of Micrbiology, Research Center Fundamentals of Biotechnology RAS, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow 117312, Russia
| |
Collapse
|
8
|
Mullaivendhan J, Akbar I, Gatasheh MK, Hatamleh AA, Ahamed A, Abuthakir MHS, Gurusamy R. Cu (II)-catalyzed: synthesis of imidazole derivatives and evaluating their larvicidal, antimicrobial activities with DFT and molecular docking studies. BMC Chem 2023; 17:155. [PMID: 37980500 PMCID: PMC10657005 DOI: 10.1186/s13065-023-01067-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023] Open
Abstract
This paper deals with the evaluation of novel imidazole molecules for their antimicrobial and larvicidal activities. A series of imidazole derivatives 1(a-f) and 2(a-e) were prepared by the Mannich base technique using a Cu(II) catalyst. The Cu(phen)Cl2 catalyst was found to be more effective than other methods. FTIR, elemental analyses, mass spectrometry, 1H NMR, and 13C NMR spectroscopy were performed to elucidate the structures of the synthesised compounds. Antimicrobial and larvicidal activities were investigated for all compounds. The antibacterial activity of compounds (2d) and (2a) were highly active in S.aureus (MIC: 0.25 μg/mL) and K.pneumoniae (MIC: 0.25 μg/mL) compared to ciprofloxacin. Compound (1c) was significantly more effective than clotrimazole in C.albicans (MIC: 0.25 μg/mL). Molecular docking studies of compound 2d showed a higher binding affinity for the 1BDD protein (- 3.4 kcal/mol) than ciprofloxacin (- 4.4 kcal/mol). Compound 1c had a higher binding affinity (- 6.0 kcal/mol) than clotrimazole (- 3.1 kcal/mol) with greater frontier molecular orbital energy and reactivity properties of compound 1c (∆E gap = 0.13 eV). The activity of compound 1a (LD50: 34.9 μg/mL) was more effective in the Culex quinquefasciatus than permethrin (LD50: 35.4 μg/mL) and its molecular docking binding affinity for 3OGN protein (- 6.1 kcal/mol). These newly synthesised compounds can act as lead molecules for the development of larvicides and antibiotic agents.
Collapse
Affiliation(s)
- Janani Mullaivendhan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, 621007, Tamil Nadu, India
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, 621007, Tamil Nadu, India.
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany & Microbiology, College of Sciences, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Anis Ahamed
- Department of Botany & Microbiology, College of Sciences, King Saud University (KSU), Riyadh, Saudi Arabia
| | | | - Raman Gurusamy
- Department of Lifescience, Yeungnan University, Gyeondsan, Gyeondsan-Buk, 38541, South Korea
| |
Collapse
|
9
|
Ongenae V, Kempff A, van Neer V, Shomar H, Tesson F, Rozen D, Briegel A, Claessen D. Genome sequence and characterization of Streptomyces phages Vanseggelen and Verabelle, representing two new species within the genus Camvirus. Sci Rep 2023; 13:20153. [PMID: 37978256 PMCID: PMC10656467 DOI: 10.1038/s41598-023-47634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Despite the rising interest in bacteriophages, little is known about their infection cycle and lifestyle in a multicellular host. Even in the model system Streptomyces, only a small number of phages have been sequenced and well characterized so far. Here, we report the complete characterization and genome sequences of Streptomyces phages Vanseggelen and Verabelle isolated using Streptomyces coelicolor as a host. A wide range of Streptomyces strains could be infected by both phages, but neither of the two phages was able to infect members of the closely related sister genus Kitasatospora. The phages Vanseggelen and Verabelle have a double-stranded DNA genome with lengths of 48,720 and 48,126 bp, respectively. Both phage genomes contain 72 putative genes, and the presence of an integrase encoding protein indicates a lysogenic lifestyle. Characterization of the phages revealed their stability over a wide range of temperatures (30-45 °C) and pH values (4-10). In conclusion, Streptomyces phage Vanseggelen and Streptomyces phage Verabelle are newly isolated phages that can be classified as new species in the genus Camvirus, within the subfamily Arquattrovirinae.
Collapse
Affiliation(s)
- Véronique Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Annabel Kempff
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Vera van Neer
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Helena Shomar
- MDM Lab, Department Genomes and Genetics, Pasteur Institute, Paris, France
- INSERM, U1284, Université Paris-Cité, Paris, France
| | | | - Daniël Rozen
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
10
|
Khunti P, Chantakorn K, Tantibhadrasapa A, Htoo HH, Thiennimitr P, Nonejuie P, Chaikeeratisak V. A novel coli myophage and antibiotics synergistically inhibit the growth of the uropathogenic E. coli strain CFT073 in stoichiometric niches. Microbiol Spectr 2023; 11:e0088923. [PMID: 37732769 PMCID: PMC10580823 DOI: 10.1128/spectrum.00889-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/20/2023] [Indexed: 09/22/2023] Open
Abstract
Urinary tract infections are widespread bacterial infections affecting millions of people annually, with Escherichia coli being the most prevalent. Although phage therapy has recently gained interest as a promising alternative therapy for antibiotic-resistant bacteria, several studies have raised concerns regarding the evolution of phage resistance, making the therapy ineffective. In this study, we discover a novel coli myophage designated as Killian that targets E. coli strains, including the uropathogenic E. coli (UPEC) strain CFT073. It requires at least 20 minutes for 90% of its particles to adsorb to the host cells, undergoes subcellular activities for replication for 30 minutes, and eventually lyses the cells with a burst size of about 139 particles per cell. Additionally, Killian can withstand a wide variety of temperatures (4-50°C) and pHs (4-10). Genome analysis reveals that Killian's genome consists of 169,905 base pairs with 35.5% GC content, encoding 276 open reading frames; of these, 209 are functionally annotated with no undesirable genes detected, highlighting its potential as an antibiotic alternative against UPEC. However, after an 8-hour phage treatment at high multiplicities of infection, bacterial density continuously increases, indicating an onset of bacterial growth revival. Thus, the combination study between the phage and three different antibiotics, including amikacin, ciprofloxacin, and piperacillin, was performed and showed that certain pairs of phage and antibiotics exhibited synergistic interactions in suppressing the bacterial growth revival. These findings suggest that Killian-antibiotic combinations are effective in inhibiting the growth of UPEC. IMPORTANCE Phage therapy has recently been in the spotlight as a viable alternative therapy for bacterial infections. However, several studies have raised concerns about the emergence of phage resistance that occurs during treatment, making the therapy not much effective. Here, we present the discovery of a novel E. coli myophage that, by itself, can effectively kill the uropathogenic E. coli, but the emergence of bacterial growth revival was detected during the treatment. Phage and antibiotics are then combined to improve the efficiency of the phage in suppressing the bacterial re-growth. This research would pave the way for the future development of phage-antibiotic cocktails for the sustainable use of phages for therapeutic purposes.
Collapse
Affiliation(s)
- Patiphan Khunti
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | |
Collapse
|
11
|
Mayo-Muñoz D, Pinilla-Redondo R, Birkholz N, Fineran PC. A host of armor: Prokaryotic immune strategies against mobile genetic elements. Cell Rep 2023; 42:112672. [PMID: 37347666 DOI: 10.1016/j.celrep.2023.112672] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
Prokaryotic adaptation is strongly influenced by the horizontal acquisition of beneficial traits via mobile genetic elements (MGEs), such as viruses/bacteriophages and plasmids. However, MGEs can also impose a fitness cost due to their often parasitic nature and differing evolutionary trajectories. In response, prokaryotes have evolved diverse immune mechanisms against MGEs. Recently, our understanding of the abundance and diversity of prokaryotic immune systems has greatly expanded. These defense systems can degrade the invading genetic material, inhibit genome replication, or trigger abortive infection, leading to population protection. In this review, we highlight these strategies, focusing on the most recent discoveries. The study of prokaryotic defenses not only sheds light on microbial evolution but also uncovers novel enzymatic activities with promising biotechnological applications.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
12
|
Blasco L, López-Hernández I, Rodríguez-Fernández M, Pérez-Florido J, Casimiro-Soriguer CS, Djebara S, Merabishvili M, Pirnay JP, Rodríguez-Baño J, Tomás M, López Cortés LE. Case report: Analysis of phage therapy failure in a patient with a Pseudomonas aeruginosa prosthetic vascular graft infection. Front Med (Lausanne) 2023; 10:1199657. [PMID: 37275366 PMCID: PMC10235614 DOI: 10.3389/fmed.2023.1199657] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Clinical case of a patient with a Pseudomonas aeruginosa multidrug-resistant prosthetic vascular graft infection which was treated with a cocktail of phages (PT07, 14/01, and PNM) in combination with ceftazidime-avibactam (CZA). After the application of the phage treatment and in absence of antimicrobial therapy, a new P. aeruginosa bloodstream infection (BSI) with a septic residual limb metastasis occurred, now involving a wild-type strain being susceptible to ß-lactams and quinolones. Clinical strains were analyzed by microbiology and whole genome sequencing techniques. In relation with phage administration, the clinical isolates of P. aeruginosa before phage therapy (HE2011471) and post phage therapy (HE2105886) showed a clonal relationship but with important genomic changes which could be involved in the resistance to this therapy. Finally, phenotypic studies showed a decrease in Minimum Inhibitory Concentration (MIC) to ß-lactams and quinolones as well as an increase of the biofilm production and phage resistant mutants in the clinical isolate of P. aeruginosa post phage therapy.
Collapse
Affiliation(s)
- Lucia Blasco
- Translational and Multidisciplinary Microbiology (MicroTM)-Biomedical Research Institute (INIBIC), University of A Coruña (UDC), A Coruña, Spain
- Microbiology Service, A Coruña Hospital (HUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Inmaculada López-Hernández
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Departamentos de Medicina y Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Rodríguez-Fernández
- Unit of Infectious Diseases and Microbiology, Valme University Hospital, Institute of Biomedicine of Sevilla, Seville, Spain
| | - Javier Pérez-Florido
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, Seville, Spain
| | - Carlos S. Casimiro-Soriguer
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, Seville, Spain
| | - Sarah Djebara
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Jesús Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Departamentos de Medicina y Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Tomás
- Translational and Multidisciplinary Microbiology (MicroTM)-Biomedical Research Institute (INIBIC), University of A Coruña (UDC), A Coruña, Spain
- Microbiology Service, A Coruña Hospital (HUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Luis Eduardo López Cortés
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Departamentos de Medicina y Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|