1
|
Walling LK, Gamache MH, González-Pech RA, Harwood VJ, Ibrahim-Hashim A, Jung JH, Lewis DB, Margres MJ, McMinds R, Rasheed K, Reis F, van Riemsdijk I, Santiago-Alarcon D, Sarmiento C, Whelan CJ, Zalamea PC, Parkinson JE, Richards CL. Incorporating microbiome analyses can enhance conservation of threatened species and ecosystem functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178826. [PMID: 40054249 DOI: 10.1016/j.scitotenv.2025.178826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 03/17/2025]
Abstract
Conservation genomics is a rapidly growing subdiscipline of conservation biology that uses genome-wide information to inform management of biodiversity at all levels. Such efforts typically focus on species or systems of conservation interest, but rarely consider associated microbes. At least three major approaches have been used to study how microorganisms broadly contribute to conservation areas: (1) diversity surveys map out microbial species distribution patterns in a variety of hosts, natural environments or regions; (2) functional surveys associate microbial communities with factors of interest, such as host health, symbiotic interactions, environmental characteristics, ecosystem processes, and biological invasions; and (3) manipulative experiments examine the response of changes to microbial communities or determine the functional roles of specific microbes within hosts or communities by adding, removing, or genetically modifying microbes. In practice, multiple approaches are often applied simultaneously. The results from all three conservation genomics approaches can be used to help design practical interventions and improve management actions, some of which we highlight below. However, experimental manipulations allow for more robust causal inferences and should be the ultimate goal of future work. Here we discuss how further integration of microbial research of a host's microbiome and of free living microbes into conservation biology will be an essential advancement for conservation of charismatic organisms and ecosystem functions in light of ongoing global environmental change.
Collapse
Affiliation(s)
| | - Matthew H Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Raúl A González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Arig Ibrahim-Hashim
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Faculty of Education and Arts, Sohar University, Sohar, Oman
| | - Jun Hee Jung
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany
| | - David B Lewis
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Ryan McMinds
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Center for Global Health and Interdisciplinary Research (GHIDR), University of South Florida, Tampa, FL, USA; Northwest Indian Fisheries Commission
| | - Kiran Rasheed
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Frank Reis
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany
| | - Isolde van Riemsdijk
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany; Biodiversity and Evolution, Lund University, Lund, Sweden
| | | | - Carolina Sarmiento
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Christopher J Whelan
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Paul-Camilo Zalamea
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | | | - Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Huang F, Lei M, Li W. The rhizosphere and root selections intensify fungi-bacteria interaction in abiotic stress-resistant plants. PeerJ 2024; 12:e17225. [PMID: 38638154 PMCID: PMC11025542 DOI: 10.7717/peerj.17225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
The microbial communities, inhabiting around and in plant roots, are largely influenced by the compartment effect, and in turn, promote the growth and stress resistance of the plant. However, how soil microbes are selected to the rhizosphere, and further into the roots is still not well understood. Here, we profiled the fungal, bacterial communities and their interactions in the bulk soils, rhizosphere soils and roots of eleven stress-resistant plant species after six months of growth. The results showed that the root selection (from the rhizosphere soils to the roots) was stronger than the rhizosphere selection (from the bulk soils to the rhizosphere soils) in: (1) filtering stricter on the fungal (28.5% to 40.1%) and bacterial (48.9% to 68.1%) amplicon sequence variants (ASVs), (2) depleting more shared fungal (290 to 56) and bacterial (691 to 2) ASVs measured by relative abundance, and (3) increasing the significant fungi-bacteria crosskingdom correlations (142 to 110). In addition, the root selection, but not the rhizosphere selection, significantly increased the fungi to bacteria ratios (f:b) of the observed species and shannon diversity index, indicating unbalanced effects to the fungal and bacteria communities exerted by the root selection. Based on the results of network analysis, the unbalanced root selection effects were associated with increased numbers of negative interaction (140 to 99) and crosskingdom interaction (123 to 92), suggesting the root selection intensifies the negative fungi-bacteria interactions in the roots. Our findings provide insights into the complexity of crosskingdom interactions and improve the understanding of microbiome assembly in the rhizosphere and roots.
Collapse
Affiliation(s)
- Feng Huang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, Guangdong, China
| | - Mengying Lei
- Guangdong Eco-Engineering Polytechnic, Guangzhou, Guangdong, China
| | - Wen Li
- Key Laboratory of Plant Development and City College of Vocational Technology·Utilization of Ningbo, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Haney CH, Malone JG. Editorial overview: Unraveling microbiome complexity. Curr Opin Microbiol 2023; 75:102356. [PMID: 37421707 DOI: 10.1016/j.mib.2023.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Affiliation(s)
- Cara H Haney
- Department of Microbiology & Immunology, Faculty of Science, 1365 - 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada..
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
4
|
Schäfer M, Pacheco AR, Künzler R, Bortfeld-Miller M, Field CM, Vayena E, Hatzimanikatis V, Vorholt JA. Metabolic interaction models recapitulate leaf microbiota ecology. Science 2023; 381:eadf5121. [PMID: 37410834 DOI: 10.1126/science.adf5121] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
Resource allocation affects the structure of microbiomes, including those associated with living hosts. Understanding the degree to which this dependency determines interspecies interactions may advance efforts to control host-microbiome relationships. We combined synthetic community experiments with computational models to predict interaction outcomes between plant-associated bacteria. We mapped the metabolic capabilities of 224 leaf isolates from Arabidopsis thaliana by assessing the growth of each strain on 45 environmentally relevant carbon sources in vitro. We used these data to build curated genome-scale metabolic models for all strains, which we combined to simulate >17,500 interactions. The models recapitulated outcomes observed in planta with >89% accuracy, highlighting the role of carbon utilization and the contributions of niche partitioning and cross-feeding in the assembly of leaf microbiomes.
Collapse
Affiliation(s)
- Martin Schäfer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Alan R Pacheco
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Rahel Künzler
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | | |
Collapse
|