1
|
Roy S, Parveen M, Bala A, Sur D. The 3C (Cell Culture, Computer Simulation, Clinical Trial) Solution for Optimizing the 3R (Replace, Reduction, Refine) Framework during Preclinical Research Involving Laboratory Animals. ACS Pharmacol Transl Sci 2025; 8:1188-1204. [PMID: 40370984 PMCID: PMC12070318 DOI: 10.1021/acsptsci.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 05/16/2025]
Abstract
Preclinical research has traditionally utilized laboratory animals to elucidate the safety, tolerability, pharmacokinetics, and pharmacodynamics of new chemical entities prior to human trials. The use of animal models has been pivotal in advancing scientific knowledge and medical breakthroughs, contributing significantly to our understanding of the complex biological processes and human diseases. However, many promising treatments that have demonstrated efficacy in animal studies have failed to translate to human subjects during clinical trials. Consequently, animal testing faces ethical concerns and criticism regarding its predictive reliability for human responses. This has led to the development of 3R principles (Replacement, Reduction, Refinement), introduced in 1959, advocating for alternative methods and improved animal welfare in research. Furthermore, regulatory frameworks and recent legislation, such as the 2022 FDA Modernisation Act, emphasize modern scientific alternatives to traditional animal testing. Emerging approaches, known as the 3Cs-cell culture, computer simulation, and phase 0 clinical trials-offer promising nonanimal solutions that could accelerate drug development and address ethical concerns, potentially rendering preclinical research more humane and efficient.
Collapse
Affiliation(s)
- Susmita Roy
- Haldia
Institute of Pharmacy, ICARE Complex, Haldia Purba Medinipur 721657, India
| | - Mehnaz Parveen
- Division
of Pharmacology, Guru Nanak Institute of
Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, India
| | - Asis Bala
- Pharmacology
and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology,
an Autonomous Institute under the Department of Science and Technology
(Govt. of India), Vigyan Path, Guwahati, Assam 781035, India
| | - Debjeet Sur
- Division
of Pharmacology, Guru Nanak Institute of
Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, India
| |
Collapse
|
2
|
Al-Qadami G, Raposo A, Chien CC, Ma C, Priebe I, Hor M, Fung K. Intestinal organoid coculture systems: current approaches, challenges, and future directions. Am J Physiol Gastrointest Liver Physiol 2025; 328:G252-G276. [PMID: 39716040 DOI: 10.1152/ajpgi.00203.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
The intestinal microenvironment represents a complex and dynamic ecosystem, comprising a diverse range of epithelial and nonepithelial cells, a protective mucus layer, and a diverse community of gut microbiota. Understanding the intricate interplay between these components is essential for uncovering the mechanisms underlying intestinal health and disease. The development of intestinal organoids, three-dimensional (3-D) mini-intestines that closely mimic the architecture, cellular diversity, and functionality of the intestine, offers a powerful platform for investigating different aspects of intestinal physiology and pathology. However, current intestinal organoid models, mainly adult stem cell-derived organoids, lack the nonepithelial and microbial components of the intestinal microenvironment. As such, several coculture systems have been developed to coculture intestinal organoids with other intestinal elements including microbes (bacteria and viruses) and immune, stromal, and neural cells. These coculture models allow researchers to recreate the complex intestinal environment and study the intricate cross talk between different components of the intestinal ecosystem under healthy and pathological conditions. Currently, there are several approaches and methodologies to establish intestinal organoid cocultures, and each approach has its own strengths and limitations. This review discusses the existing methods for coculturing intestinal organoids with different intestinal elements, focusing on the methodological approaches, strengths and limitations, and future directions.
Collapse
Affiliation(s)
| | - Anita Raposo
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| | - Chia-Chi Chien
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Chenkai Ma
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| | - Ilka Priebe
- Health and Biosecurity, CSIRO, Adelaide, South Australia, Australia
| | - Maryam Hor
- Health and Biosecurity, CSIRO, Adelaide, South Australia, Australia
| | - Kim Fung
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
De Martinis ECP, Alves VF, Pereira MG, Andrade LN, Abichabki N, Abramova A, Dannborg M, Bengtsson-Palme J. Applying 3D cultures and high-throughput technologies to study host-pathogen interactions. Front Immunol 2025; 16:1488699. [PMID: 40051624 PMCID: PMC11882522 DOI: 10.3389/fimmu.2025.1488699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Recent advances in cell culturing and DNA sequencing have dramatically altered the field of human microbiome research. Three-dimensional (3D) cell culture is an important tool in cell biology, in cancer research, and for studying host-microbe interactions, as it mimics the in vivo characteristics of the host environment in an in vitro system, providing reliable and reproducible models. This work provides an overview of the main 3D culture techniques applied to study interactions between host cells and pathogenic microorganisms, how these systems can be integrated with high-throughput molecular methods, and how multi-species model systems may pave the way forward to pinpoint interactions among host, beneficial microbes and pathogens.
Collapse
Affiliation(s)
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Neves Andrade
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathália Abichabki
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Abramova
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
| | - Mirjam Dannborg
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Zhou C, Zou Y, Huang H, Zhao F, Fan X, Bai L, Zhang X, Ye K. Virulence expression difference to intestinal cells of different pathogenic Listeria monocytogenes contaminating sausages after simulated digestive tract. Int J Food Microbiol 2025; 430:111067. [PMID: 39813952 DOI: 10.1016/j.ijfoodmicro.2025.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
This study investigated the difference in survival among Listeria monocytogenes (LM) 10403S (highly pathogenic strain) and M7 (low pathogenic strain) in sausage under a simulated digestive environment, and established intestinal organoids and macrophages co-culture model to further explore the virulence expression difference to intestinal cells between LM 10403S and M7 after in vitro gastrointestinal digestion. Results showed that, compared with LM M7, LM 10403S exhibited a high survival rate during in vitro digestion, which may be due to the increased expression of stress response-related genes. In addition, the expression of virulence genes in LM 10403S was significantly higher than in LM M7 under the gastrointestinal environment. Furthermore, in the intestinal organoids and macrophages co-culture model infected by LM 10403S and M7 after in vitro gastrointestinal digestion, results showed that, compared with the LM M7 group, the LM 10403S group had significantly lower budding rate and significantly higher mortality of organoids. Also, the significantly increased LDH release and inflammatory factors (TNF-α and IL-1β) in the LM 10403S group were observed, and the main virulence genes (iap, inlA, inlB, actA, hly, plcA, and plcB) of 10403S were significantly highly expressed than LM M7 during the cell infection. These results reflected that the reason for the different pathogenicity between LM 10403S and M7 may be due to the high tolerance and the expression of virulence genes than LM M7 during gastrointestinal digestion and cell infection, which would be expected to provide a better understanding of the infection mechanisms among different pathogenic strains of L. monocytogenes in food.
Collapse
Affiliation(s)
- Cong Zhou
- China National Center for Food Safety Risk Assessment Key Laboratory of Food Safety Risk Assessment, Beijing, PR China; State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yafang Zou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Haorui Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Fanwen Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xia Fan
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Li Bai
- China National Center for Food Safety Risk Assessment Key Laboratory of Food Safety Risk Assessment, Beijing, PR China
| | - Xinhao Zhang
- China National Center for Food Safety Risk Assessment Key Laboratory of Food Safety Risk Assessment, Beijing, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
5
|
Kawagishi T, Sánchez-Tacuba L, Feng N, Greenberg HB, Ding S. Reverse Genetics of Murine Rotavirus: A Comparative Analysis of the Wild-Type and Cell-Culture-Adapted Murine Rotavirus VP4 in Replication and Virulence in Neonatal Mice. Viruses 2024; 16:767. [PMID: 38793648 PMCID: PMC11125933 DOI: 10.3390/v16050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Small-animal models and reverse genetics systems are powerful tools for investigating the molecular mechanisms underlying viral replication, virulence, and interaction with the host immune response in vivo. Rotavirus (RV) causes acute gastroenteritis in many young animals and infants worldwide. Murine RV replicates efficiently in the intestines of inoculated suckling pups, causing diarrhea, and spreads efficiently to uninoculated littermates. Because RVs derived from human and other non-mouse animal species do not replicate efficiently in mice, murine RVs are uniquely useful in probing the viral and host determinants of efficient replication and pathogenesis in a species-matched mouse model. Previously, we established an optimized reverse genetics protocol for RV and successfully generated a murine-like RV rD6/2-2g strain that replicates well in both cultured cell lines and in the intestines of inoculated pups. However, rD6/2-2g possesses three out of eleven gene segments derived from simian RV strains, and these three heterologous segments may attenuate viral pathogenicity in vivo. Here, we rescued the first recombinant RV with all 11 gene segments of murine RV origin. Using this virus as a genetic background, we generated a panel of recombinant murine RVs with either N-terminal VP8* or C-terminal VP5* regions chimerized between a cell-culture-adapted murine ETD strain and a non-tissue-culture-adapted murine EW strain and compared the diarrhea rate and fecal RV shedding in pups. The recombinant viruses with VP5* domains derived from the murine EW strain showed slightly more fecal shedding than those with VP5* domains from the ETD strain. The newly characterized full-genome murine RV will be a useful tool for dissecting virus-host interactions and for studying the mechanism of pathogenesis in neonatal mice.
Collapse
Affiliation(s)
- Takahiro Kawagishi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Liliana Sánchez-Tacuba
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Ningguo Feng
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Harry B. Greenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Collado MC, Stewart CJ. Editorial overview: A critical crossroad in microbiome research: Where do we go? Curr Opin Microbiol 2024; 78:102438. [PMID: 38377654 DOI: 10.1016/j.mib.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | | |
Collapse
|