1
|
Monteiro R, Chafsey I, Leroy S, Chambon C, Hébraud M, Livrelli V, Pizza M, Pezzicoli A, Desvaux M. Differential biotin labelling of the cell envelope proteins in lipopolysaccharidic diderm bacteria: Exploring the proteosurfaceome of Escherichia coli using sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin. J Proteomics 2018; 181:16-23. [PMID: 29609094 DOI: 10.1016/j.jprot.2018.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/15/2018] [Accepted: 03/23/2018] [Indexed: 12/28/2022]
Abstract
Surface proteins are the major factor for the interaction between bacteria and its environment, playing an important role in infection, colonisation, virulence and adaptation. However, the study of surface proteins has proven difficult mainly due to their hydrophobicity and/or relatively low abundance compared with cytoplasmic proteins. To overcome these issues new proteomic strategies have been developed, such as cell-surface protein labelling using biotinylation reagents. Sulfo-NHS-SS-biotin is the most commonly used reagent to investigate the proteins expressed at the cell surface of various organisms but its use in lipopolysaccharidic diderm bacteria (archetypical Gram-negative bacteria) remains limited to a handful of species. While generally pass over in silence, some periplasmic proteins, but also some inner membrane lipoproteins, integral membrane proteins and cytoplasmic proteins (cytoproteins) are systematically identified following this approach. To limit cell lysis and diffusion of the sulfo-NHS-SS-biotin through the outer membrane, biotin labelling was tested over short incubation times and proved to be as efficient for 1 min at room temperature. To further limit labelling of protein located below the outer membrane, the use of high-molecular weight sulfo-NHS-PEG4-bismannose-SS-biotin appeared to recover differentially cell-envelope proteins compared to low-molecular weight sulfo-NHS-SS-biotin. Actually, the sulfo-NHS-SS-biotin recovers at a higher extent the proteins completely or partly exposed in the periplasm than sulfo-NHS-PEG4-bismannose-SS-biotin, namely periplasmic and integral membrane proteins as well as inner membrane and outer membrane lipoproteins. These results highlight that protein labelling using biotinylation reagents of different sizes provides a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. SIGNIFICANCE While generally pass over in silence, some periplasmic proteins, inner membrane lipoproteins (IMLs), integral membrane proteins (IMPs) and cytoplasmic proteins (cytoproteins) are systematically identified following cell-surface biotin labelling in lipopolysaccharidic diderm bacteria (archetypal Gram-negative bacteria). The use of biotinylation molecules of different sizes, namely sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin, was demonstrated to provide a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria.
Collapse
Affiliation(s)
- Ricardo Monteiro
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France; GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Ingrid Chafsey
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France
| | - Christophe Chambon
- INRA, Plate-Forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France; INRA, Plate-Forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Valérie Livrelli
- Centre de Recherche en Nutrition Humaine Auvergne, UMR UCA INSERM U1071, USC-INRA 2018, Clermont Université - Université d'Auvergne, Faculté de Pharmacie, CHU Clermont-Ferrand, Service Bactériologie Mycologie Parasitologie, Clermont-Ferrand, France
| | | | | | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
2
|
SHIVACHANDRA SB, KUMAR A, MOHANTY NN, YOGISHARADHYA R. Immunogenicity of recombinant Omp16 protein of Pasteurella multocida B:2 in mouse model. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i1.66834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Bacterial peptidoglycan-associated lipoproteins (PAL) are potential targets for the development of diagnostics/subunit vaccines for infectious diseases. Most commonly prevalent Omp16 lipoprotein is absolutely conserved among Pasteurella multocida strains, which are involved in multiple infectious diseases of livestock worldwide. In the present study, we cloned omp16 gene encoding for mature Omp16 of P. multocida B:2 strain P52 and overexpressed as a fusion protein in Escherichia coli. Mice immunized with purified recombinant non-lipidated Omp16 fusion protein (~32 kDa) resulted in elicitation of significant antigen specific serum antibody titres (total IgG and subtypes). A more pronounced increase in Th2 response (IgG1) was noticed. The study indicated the potential possibilities to use lipidated recombinant Omp16 protein in developing a composite subunit vaccine along with suitable adjuvant for haemorrhagic septicaemia/ pasteurellosis in livestock.
Collapse
|
3
|
Homogeneity of VacJ outer membrane lipoproteins among Pasteurella multocida strains and heterogeneity among members of Pasteurellaceae. Res Vet Sci 2014; 96:415-21. [DOI: 10.1016/j.rvsc.2014.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 03/10/2014] [Accepted: 03/25/2014] [Indexed: 11/19/2022]
|
4
|
Corda D, Mosca MG, Ohshima N, Grauso L, Yanaka N, Mariggiò S. The emerging physiological roles of the glycerophosphodiesterase family. FEBS J 2014; 281:998-1016. [PMID: 24373430 DOI: 10.1111/febs.12699] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 01/21/2023]
Abstract
The glycerophosphodiester phosphodiesterases are evolutionarily conserved proteins that have been linked to several patho/physiological functions, comprising bacterial pathogenicity and mammalian cell proliferation or differentiation. The bacterial enzymes do not show preferential substrate selectivities among the glycerophosphodiesters, and they are mainly dedicated to glycerophosphodiester hydrolysis, producing glycerophosphate and alcohols as the building blocks that are required for bacterial biosynthetic pathways. In some cases, this enzymatic activity has been demonstrated to contribute to bacterial pathogenicity, such as with Hemophilus influenzae. Mammalian glyerophosphodiesterases have high substrate specificities, even if the number of potential physiological substrates is continuously increasing. Some of these mammalian enzymes have been directly linked to cell differentiation, such as GDE2, which triggers motor neuron differentiation, and GDE3, the enzymatic activity of which is necessary and sufficient to induce osteoblast differentiation. Instead, GDE5 has been shown to inhibit skeletal muscle development independent of its enzymatic activity.
Collapse
Affiliation(s)
- Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Immunogenicity of highly conserved recombinant VacJ outer membrane lipoprotein of Pasteurella multocida. Vaccine 2014; 32:290-6. [DOI: 10.1016/j.vaccine.2013.10.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/12/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022]
|
6
|
Sarabia F, Chammaa S, García-Ruiz C. Solid Phase Synthesis of Globomycin and SF-1902 A5. J Org Chem 2011; 76:2132-44. [DOI: 10.1021/jo1025145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n 29071, Malaga, Spain
| | - Samy Chammaa
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n 29071, Malaga, Spain
| | - Cristina García-Ruiz
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n 29071, Malaga, Spain
| |
Collapse
|
7
|
Outer membrane proteins of Pasteurella multocida. Vet Microbiol 2010; 144:1-17. [DOI: 10.1016/j.vetmic.2010.01.027] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/23/2010] [Accepted: 01/28/2010] [Indexed: 02/05/2023]
|
8
|
Gouré J, Findlay WA, Deslandes V, Bouevitch A, Foote SJ, MacInnes JI, Coulton JW, Nash JHE, Jacques M. Microarray-based comparative genomic profiling of reference strains and selected Canadian field isolates of Actinobacillus pleuropneumoniae. BMC Genomics 2009; 10:88. [PMID: 19239696 PMCID: PMC2653537 DOI: 10.1186/1471-2164-10-88] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 02/24/2009] [Indexed: 11/12/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is a highly contagious respiratory pathogen that causes severe losses to the swine industry worldwide. Current commercially-available vaccines are of limited value because they do not induce cross-serovar immunity and do not prevent development of the carrier state. Microarray-based comparative genomic hybridizations (M-CGH) were used to estimate whole genomic diversity of representative Actinobacillus pleuropneumoniae strains. Our goal was to identify conserved genes, especially those predicted to encode outer membrane proteins and lipoproteins because of their potential for the development of more effective vaccines. Results Using hierarchical clustering, our M-CGH results showed that the majority of the genes in the genome of the serovar 5 A. pleuropneumoniae L20 strain were conserved in the reference strains of all 15 serovars and in representative field isolates. Fifty-eight conserved genes predicted to encode for outer membrane proteins or lipoproteins were identified. As well, there were several clusters of diverged or absent genes including those associated with capsule biosynthesis, toxin production as well as genes typically associated with mobile elements. Conclusion Although A. pleuropneumoniae strains are essentially clonal, M-CGH analysis of the reference strains of the fifteen serovars and representative field isolates revealed several classes of genes that were divergent or absent. Not surprisingly, these included genes associated with capsule biosynthesis as the capsule is associated with sero-specificity. Several of the conserved genes were identified as candidates for vaccine development, and we conclude that M-CGH is a valuable tool for reverse vaccinology.
Collapse
Affiliation(s)
- Julien Gouré
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Université de Montréal, St-Hyacinthe, Québec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pneumococcal Haemophilus influenzae protein D conjugate vaccine induces antibodies that inhibit glycerophosphodiester phosphodiesterase activity of protein D. Infect Immun 2008; 76:4546-53. [PMID: 18644877 DOI: 10.1128/iai.00418-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae outer membrane protein D (PD) is a glycerophosphodiester phosphodiesterase (GlpQ) activity-possessing virulence factor and a promising vaccine antigen, providing 35.3% efficacy against acute otitis media caused by nontypeable H. influenzae (NTHI) when it was used as a carrier protein in a novel pneumococcal PD conjugate (Pnc-PD) vaccine. To study if PD-induced protection against NTHI could be due to antibodies that inhibit or neutralize its enzymatic activity, a GlpQ enzyme inhibition assay was developed, and serum samples collected from Finnish infants before and after Pnc-PD vaccination were analyzed for enzyme inhibition and anti-PD immunoglobulin G (IgG) antibody concentration. Before vaccination at age 2 months, the majority (84%) of infants (n = 69) had no detectable anti-PD IgG antibodies, and all were enzyme inhibition assay negative (inhibition index, <20). At age 13 to 16 months, all infants receiving three or four doses of Pnc-PD had detectable anti-PD IgG antibodies and 36% (8/22 infants) of the infants receiving three doses and 26% (6/23 infants) of the infants receiving four doses of Pnc-PD were inhibition assay positive (inhibition index, >/=20). No significant rise in anti-PD IgG antibodies or enzyme inhibition among control vaccinees (n = 24) receiving three doses of hepatitis B vaccine was detected. A modest correlation (r(s), approximately 0.66) between anti-PD IgG concentration and enzyme inhibition was detected; however, their kinetics were clearly different. These data suggest that measurement of antibody responses that inhibit PD's enzymatic activity could be a useful tool for assessing Pnc-PD vaccine-induced protective immunity against NTHI.
Collapse
|
10
|
Sthitmatee N, Numee S, Kawamoto E, Sasaki H, Yamashita K, Takahashi N, Kataoka Y, Sawada T. Protection of chickens from fowl cholera by vaccination with recombinant adhesive protein of Pasteurella multocida. Vaccine 2008; 26:2398-407. [PMID: 18403068 DOI: 10.1016/j.vaccine.2008.02.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 12/27/2007] [Accepted: 02/26/2008] [Indexed: 11/28/2022]
Abstract
The recombinant adhesive protein (rCp39) of Pasteurella multocida strain P-1059 (serovar A:3) was prepared and purified with a hybrid condition of affinity chromatography. The rCp39 was highly protective for chickens from fowl cholera by challenge-exposure with parental strain P-1059 or heterologous strain X-73 (serovar A:1) compared to various kind of vaccines. Sixteen groups of ten chickens each were subcutaneously inoculated twice with 100, 200 or 400 microg proteins of rCp39, native Cp39, native outer membrane protein H (OmpH) or recombinant OmpH, or 100 microg proteins of crude capsular extract (CCE) of strains P-1059 or X-73 at 2 weeks interval. Five chickens of each group were challenge-exposed with each strain 2 weeks after the second inoculation. As the results, 60-100% protections were demonstrated in the chickens against both strains. Fisher's exact test indicated no significant differences (P<0.05) in vaccine types and dosages. ELISA and Western blot analysis indicated that the chicken anti-rCp39 sera reacted to whole-cell lysate of parental or heterologous strains. In conclusion, rCp39 is a cross-protective recombinant adhesive antigen of P. multocida capsular serogroup A strains. Moreover, a hybrid condition of affinity chromatography was successfully demonstrated and protected the immunogenicity of recombinant protein.
Collapse
Affiliation(s)
- Nattawooti Sthitmatee
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
AbstractPasteurella multocidais a pathogenic Gram-negative bacterium that has been classified into three subspecies, five capsular serogroups and 16 serotypes.P. multocidaserogroup A isolates are bovine nasopharyngeal commensals, bovine pathogens and common isolates from bovine respiratory disease (BRD), both enzootic calf pneumonia of young dairy calves and shipping fever of weaned, stressed beef cattle.P. multocidaA:3 is the most common serotype isolated from BRD, and these isolates have limited heterogeneity based on outer membrane protein (OMP) profiles and ribotyping. Development ofP. multocida-induced pneumonia is associated with environmental and stress factors such as shipping, co-mingling, and overcrowding as well as concurrent or predisposing viral or bacterial infections. Lung lesions consist of an acute to subacute bronchopneumonia that may or may not have an associated pleuritis. Numerous virulence or potential virulence factors have been described for bovine respiratory isolates including adherence and colonization factors, iron-regulated and acquisition proteins, extracellular enzymes such as neuraminidase, lipopolysaccharide, polysaccharide capsule and a variety of OMPs. Immunity of cattle against respiratory pasteurellosis is poorly understood; however, high serum antibodies to OMPs appear to be important for enhancing resistance to the bacterium. Currently availableP. multocidavaccines for use in cattle are predominately traditional bacterins and a live streptomycin-dependent mutant. The field efficacy of these vaccines is not well documented in the literature.
Collapse
|
12
|
Plesa M, Hernalsteens JP, Vandenbussche G, Ruysschaert JM, Cornelis P. The SlyB outer membrane lipoprotein of Burkholderia multivorans contributes to membrane integrity. Res Microbiol 2006; 157:582-92. [PMID: 16500084 DOI: 10.1016/j.resmic.2005.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/22/2005] [Accepted: 11/29/2005] [Indexed: 11/24/2022]
Abstract
SlyB is a small lipoprotein of 158 amino acids which is conserved in different Gram-negative bacteria. In contrast to other bacteria, where slyB is monocistronic, in Burkholderia multivorans and in B. cenocepacia, slyB is the last gene of an operon comprising three open reading frames encoding a putative thiol peroxidase, a putative sugar kinase and SlyB. B. multivorans slyB mutants produced elongated cells and filaments which were never observed in cultures of wild-type or slyB-complemented cells. The slyB mutant also showed increased sensitivity to EDTA and SDS, and decreased siderophore production. Proteome analysis of a fraction enriched for membrane proteins suggested that SlyB, like the peptidoglycan-associated protein OpcL, is a major protein of the outer membrane. Taken together, these phenotypes suggest that SlyB contributes to the integrity of the cell envelope. By PCR amplification we were also able to demonstrate the conservation of slyB in all B. cepacia complex species tested.
Collapse
Affiliation(s)
- Maria Plesa
- Flanders Interuniversity Institute of Biotechnology (VIB6), Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Building E, room 6.6, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | |
Collapse
|
13
|
Nsofor MN, Ryals PE, Champlin FR. Subcellular distribution of Plp-40, a lipoprotein in a serotype A strain of Pasteurella multocida. Biochim Biophys Acta Gen Subj 2006; 1760:1160-6. [PMID: 16735091 DOI: 10.1016/j.bbagen.2006.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 03/01/2006] [Accepted: 03/03/2006] [Indexed: 11/22/2022]
Abstract
A 40-kDa lipoprotein (Plp-40) is expressed by serotype A strains of Pasteurella multocida in amounts which correlate with the amount of capsular material present. We hypothesized that Plp-40 is exposed at the outer surface of the outer membrane (OM) of the cell and is associated with the serotype A exopolysaccharide material. The objectives of the present study were to confirm the lipoprotein nature of Plp-40 and to determine its subcellular location. Plp-40 maturation was shown to be sensitive to globomycin, thereby confirming it to be a bacterial lipoprotein. Plp-40 was shown to be present in the OM fractions of P. multocida obtained by both sarkosyl extraction and sucrose density gradient centrifugation, as well as in capsule fractions obtained by either hyaluronidase treatment or warm buffer extraction. [(3)H]palmitic acid-labeled Plp-40 could be removed from the surface of whole cells by exposure to proteinase K. Autoradiography of (125)I-labeled cell surface proteins exhibited a 40-kDa band that was prominent in capsulated strains and greatly diminished in a noncapsulated strain. These results support the hypothesis that Plp-40 is a lipid-modified OM protein, which is exposed on the outer cell surface and is likely associated with serotype A extracellular polysaccharide.
Collapse
Affiliation(s)
- Margaret N Nsofor
- Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA.
| | | | | |
Collapse
|
14
|
Boyce JD, Cullen PA, Nguyen V, Wilkie I, Adler B. Analysis of thePasteurella multocida outer membrane sub-proteome and its response to thein vivo environment of the natural host. Proteomics 2006; 6:870-80. [PMID: 16372271 DOI: 10.1002/pmic.200401342] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study describes the identification of outer membrane proteins (OMPs) of the bacterial pathogen Pasteurella multocida and an analysis of how the expression of these proteins changes during infection of the natural host. We analysed the sarcosine-insoluble membrane fractions, which are highly enriched for OMPs, from bacteria grown under a range of conditions. Initially, the OMP-containing fractions were resolved by 2-DE and the proteins identified by MALDI-TOF MS. In addition, the OMP-containing fractions were separated by 1-D SDS-PAGE and protein identifications were made using nano LC MS/MS. Using these two methods a total of 35 proteins was identified from samples obtained from organisms grown in rich culture medium. Six of the proteins were identified only by 2-DE MALDI-TOF MS, whilst 17 proteins were identified only by 1-D LC MS/MS. We then analysed the OMPs from P. multocida which had been isolated from the bloodstream of infected chickens (a natural host) or grown in iron-depleted medium. Three proteins were found to be significantly up-regulated during growth in vivo and one of these (Pm0803) was also up-regulated during growth in iron-depleted medium. After bioinformatic analysis of the protein matches, it was predicted that over one third of the combined OMPs predicted by the bioinformatics sub-cellular localisation tools PSORTB and Proteome Analyst, had been identified during this study. This is the first comprehensive proteomic analysis of the P. multocida outer membrane and the first proteomic analysis of how a bacterial pathogen modifies its outer membrane proteome during infection.
Collapse
Affiliation(s)
- John D Boyce
- Australian Research Council Centre for Structural and Functional Microbial Genomics, Monash University, Victoria, Australia.
| | | | | | | | | |
Collapse
|
15
|
Boyce JD, Adler B. How does Pasteurella multocida respond to the host environment? Curr Opin Microbiol 2006; 9:117-22. [PMID: 16406771 DOI: 10.1016/j.mib.2005.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
Pasteurella multocida is a Gram-negative bacterial pathogen, which causes diseases of economic importance in a wide range of animal species. The response of P. multocida to the host environment has been analysed at the transcription level, using DNA microarrays, and at the protein-expression level, using proteomics techniques. Furthermore, a growing number of P. multocida-directed mutants have been assessed for their ability to cause disease. Although technical impediments mean that it is currently difficult to analyse bacterial responses at the earliest stages of infection, it is clear that during later stages of infection the bacteria encounter host niches that require them to modify the expression of genes involved in central energy metabolism and in the uptake of various nutrients such as iron and amino acids. Furthermore, in vitro experiments have defined the varying bacterial responses to low iron and to different iron sources, including haemoglobin and transferrin. To date, most P. multocida genes shown to be upregulated during infection are involved in nutrient acquisition and metabolic processes, indicating that true virulence genes might be constitutively expressed, upregulated only during initial stages of infection or upregulated at levels below current detection limits.
Collapse
Affiliation(s)
- John D Boyce
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Australian Bacterial Pathogenesis Program, Monash University, Victoria 3800, Australia
| | | |
Collapse
|
16
|
Rediers H, Rainey PB, Vanderleyden J, De Mot R. Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 2005; 69:217-61. [PMID: 15944455 PMCID: PMC1197422 DOI: 10.1128/mmbr.69.2.217-261.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major challenge for microbiologists is to elucidate the strategies deployed by microorganisms to adapt to and thrive in highly complex and dynamic environments. In vitro studies, including those monitoring genomewide changes, have proven their value, but they can, at best, mimic only a subset of the ensemble of abiotic and biotic stimuli that microorganisms experience in their natural habitats. The widely used gene-to-phenotype approach involves the identification of altered niche-related phenotypes on the basis of gene inactivation. However, many traits contributing to ecological performance that, upon inactivation, result in only subtle or difficult to score phenotypic changes are likely to be overlooked by this otherwise powerful approach. Based on the premise that many, if not most, of the corresponding genes will be induced or upregulated in the environment under study, ecologically significant genes can alternatively be traced using the promoter trap techniques differential fluorescence induction and in vivo expression technology (IVET). The potential and limitations are discussed for the different IVET selection strategies and system-specific variants thereof. Based on a compendium of genes that have emerged from these promoter-trapping studies, several functional groups have been distinguished, and their physiological relevance is illustrated with follow-up studies of selected genes. In addition to confirming results from largely complementary approaches such as signature-tagged mutagenesis, some unexpected parallels as well as distinguishing features of microbial phenotypic acclimation in diverse environmental niches have surfaced. On the other hand, by the identification of a large proportion of genes with unknown function, these promoter-trapping studies underscore how little we know about the secret lives of bacteria and other microorganisms.
Collapse
Affiliation(s)
- Hans Rediers
- Centre of Microbial and Plant Genetics, Heverlee, Belgium
| | | | | | | |
Collapse
|