1
|
A Stretch of Unpaired Purines in the Leader Region of Simian Immunodeficiency Virus (SIV) Genomic RNA is Critical for its Packaging into Virions. J Mol Biol 2021; 433:167293. [PMID: 34624298 DOI: 10.1016/j.jmb.2021.167293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
Simian immunodeficiency virus (SIV) is an important lentivirus used as a non-human primate model to study HIV replication, and pathogenesis of human AIDS, as well as a potential vector for human gene therapy. This study investigated the role of single-stranded purines (ssPurines) as potential genomic RNA (gRNA) packaging determinants in SIV replication. Similar ssPurines have been implicated as important motifs for gRNA packaging in many retroviruses like, HIV-1, MPMV, and MMTV by serving as Gag binding sites during virion assembly. In examining the secondary structure of the SIV 5' leader region, as recently deduced using SHAPE methodology, we identified four specific stretches of ssPurines (I-IV) in the region that harbors major packaging determinants of SIV. The significance of these ssPurine motifs were investigated by mutational analysis coupled with a biologically relevant single round of replication assay. These analyses revealed that while ssPurine II was essential, the others (ssPurines I, III, & IV) did not significantly contribute to SIV gRNA packaging. Any mutation in the ssPurine II, such as its deletion or substitution, or other mutations that caused base pairing of ssPurine II loop resulted in near abrogation of RNA packaging, further substantiating the crucial role of ssPurine II and its looped conformation in SIV gRNA packaging. Structure prediction analysis of these mutants further corroborated the biological results and further revealed that the unpaired nature of ssPurine II is critical for its function during SIV RNA packaging perhaps by enabling it to function as a specific binding site for SIV Gag.
Collapse
|
2
|
Pitchai FNN, Ali L, Pillai VN, Chameettachal A, Ashraf SS, Mustafa F, Marquet R, Rizvi TA. Expression, purification, and characterization of biologically active full-length Mason-Pfizer monkey virus (MPMV) Pr78 Gag. Sci Rep 2018; 8:11793. [PMID: 30087395 PMCID: PMC6081465 DOI: 10.1038/s41598-018-30142-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
MPMV precursor polypeptide Pr78Gag orchestrates assembly and packaging of genomic RNA (gRNA) into virus particles. Therefore, we have expressed recombinant full-length Pr78Gag either with or without His6-tag in bacterial as well as eukaryotic cultures and purified the recombinant protein from soluble fractions of the bacterial cultures. The recombinant Pr78Gag protein has the intrinsic ability to assemble in vitro to form virus like particles (VLPs). Consistent with this observation, the recombinant protein could form VLPs in both prokaryotes and eukaryotes. VLPs formed in eukaryotic cells by recombinant Pr78Gag with or without His6-tag can encapsidate MPMV transfer vector RNA, suggesting that the inclusion of the His6-tag to the full-length Pr78Gag did not interfere with its expression or biological function. This study demonstrates the expression and purification of a biologically active, recombinant Pr78Gag, which should pave the way to study RNA-protein interactions involved in the MPMV gRNA packaging process.
Collapse
Affiliation(s)
- Fathima Nuzra Nagoor Pitchai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lizna Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Vineeta Narayana Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Syed Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR, 9002, Strasbourg, France.
| | - Tahir Aziz Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
3
|
Wu H, Wang W, Naiyer N, Fichtenbaum E, Qualley DF, McCauley MJ, Gorelick RJ, Rouzina I, Musier-Forsyth K, Williams MC. Single aromatic residue location alters nucleic acid binding and chaperone function of FIV nucleocapsid protein. Virus Res 2014; 193:39-51. [PMID: 24915282 PMCID: PMC4252577 DOI: 10.1016/j.virusres.2014.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus that infects domestic cats, and is an excellent animal model for human immunodeficiency virus type 1 (HIV-1) pathogenesis. The nucleocapsid (NC) protein is critical for replication in both retroviruses. FIV NC has several structural features that differ from HIV-1 NC. While both NC proteins have a single conserved aromatic residue in each of the two zinc fingers, the aromatic residue on the second finger of FIV NC is located on the opposite C-terminal side relative to its location in HIV-1 NC. In addition, whereas HIV-1 NC has a highly charged cationic N-terminal tail and a relatively short C-terminal extension, the opposite is true for FIV NC. To probe the impact of these differences on the nucleic acid (NA) binding and chaperone properties of FIV NC, we carried out ensemble and single-molecule assays with wild-type (WT) and mutant proteins. The ensemble studies show that FIV NC binding to DNA is strongly electrostatic, with a higher effective charge than that observed for HIV-1 NC. The C-terminal basic domain contributes significantly to the NA binding capability of FIV NC. In addition, the non-electrostatic component of DNA binding is much weaker for FIV NC than for HIV-1 NC. Mutation of both aromatic residues in the zinc fingers to Ala (F12A/W44A) further increases the effective charge of FIV NC and reduces its non-electrostatic binding affinity. Interestingly, switching the location of the C-terminal aromatic residue to mimic the HIV-1 NC sequence (N31W/W44A) reduces the effective charge of FIV NC and increases its non-electrostatic binding affinity to values similar to HIV-1 NC. Consistent with the results of these ensemble studies, single-molecule DNA stretching studies show that while WT FIV NC has reduced stacking capability relative to HIV-1 NC, the aromatic switch mutant recovers the ability to intercalate between the DNA bases. Our results demonstrate that altering the position of a single aromatic residue switches the binding mode of FIV NC from primarily electrostatic binding to more non-electrostatic binding, conferring upon it NA interaction properties comparable to that of HIV-1 NC.
Collapse
Affiliation(s)
- Hao Wu
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Wei Wang
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Nada Naiyer
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Eric Fichtenbaum
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Dominic F Qualley
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Micah J McCauley
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioulia Rouzina
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Karin Musier-Forsyth
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Mark C Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Sequences within both the 5' UTR and Gag are required for optimal in vivo packaging and propagation of mouse mammary tumor virus (MMTV) genomic RNA. PLoS One 2012; 7:e47088. [PMID: 23077548 PMCID: PMC3473059 DOI: 10.1371/journal.pone.0047088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 09/07/2012] [Indexed: 01/31/2023] Open
Abstract
Background This study mapped regions of genomic RNA (gRNA) important for packaging and propagation of mouse mammary tumor virus (MMTV). MMTV is a type B betaretrovirus which preassembles intracellularly, a phenomenon distinct from retroviruses that assemble the progeny virion at cell surface just before budding such as the type C human and feline immunodeficiency viruses (HIV and FIV). Studies of FIV and Mason-Pfizer monkey virus (MPMV), a type D betaretrovirus with similar intracellular virion assembly processes as MMTV, have shown that the 5′ untranslated region (5′ UTR) and 5′ end of gag constitute important packaging determinants for gRNA. Methodology Three series of MMTV transfer vectors containing incremental amounts of gag or 5′ UTR sequences, or incremental amounts of 5′ UTR in the presence of 400 nucleotides (nt) of gag were constructed to delineate the extent of 5′ sequences that may be involved in MMTV gRNA packaging. Real time PCR measured the packaging efficiency of these vector RNAs into MMTV particles generated by co-transfection of MMTV Gag/Pol, vesicular stomatitis virus envelope glycoprotein (VSV-G Env), and individual transfer vectors into human 293T cells. Transfer vector RNA propagation was monitored by measuring transduction of target HeLaT4 cells following infection with viral particles containing a hygromycin resistance gene expression cassette on the packaged RNA. Principal Findings MMTV requires the entire 5′ UTR and a minimum of ∼120 nucleotide (nt) at the 5′ end of gag for not only efficient gRNA packaging but also propagation of MMTV-based transfer vector RNAs. Vector RNAs without the entire 5′ UTR were defective for both efficient packaging and propagation into target cells. Conclusions/Significance These results reveal that the 5′ end of MMTV genome is critical for both gRNA packaging and propagation, unlike the recently delineated FIV and MPMV packaging determinants that have been shown to be of bipartite nature.
Collapse
|
5
|
Rizvi TA, Kenyon JC, Ali J, Aktar SJ, Phillip PS, Ghazawi A, Mustafa F, Lever AML. Optimal packaging of FIV genomic RNA depends upon a conserved long-range interaction and a palindromic sequence within gag. J Mol Biol 2010; 403:103-119. [PMID: 20732330 PMCID: PMC2987497 DOI: 10.1016/j.jmb.2010.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 02/06/2023]
Abstract
The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5' 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5' and 3' sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem-loop (SL2) and a small palindromic stem-loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8-5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5-3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV ψ.
Collapse
Key Words
- fiv, feline immunodeficiency virus
- hiv, human immunodeficiency virus
- siv, simian immunodeficiency virus
- utr, untranslated leader region
- msd, major splice donor
- mpmv, mason-pfizer monkey virus
- pal, palindromic
- dis, dimerization initiation site
- rt-pcr, reverse transcriptase
- ltr, long terminal repeat
- rpe, relative packaging efficiency
- feline immunodeficiency virus (fiv)
- retroviral rna packaging
- long-range interaction
- palindromic sequences (pal)
- lentiviral vectors and gene therapy
Collapse
Affiliation(s)
- Tahir A Rizvi
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE.
| | - Julia C Kenyon
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Jahabar Ali
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Suriya J Aktar
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Pretty S Phillip
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Akela Ghazawi
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Farah Mustafa
- Department of Biochemistry, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Andrew M L Lever
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| |
Collapse
|
6
|
Al Shamsi IR, Al Dhaheri NS, Phillip PS, Mustafa F, Rizvi TA. Reciprocal cross-packaging of primate lentiviral (HIV-1 and SIV) RNAs by heterologous non-lentiviral MPMV proteins. Virus Res 2010; 155:352-7. [PMID: 20875467 DOI: 10.1016/j.virusres.2010.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/18/2010] [Accepted: 09/19/2010] [Indexed: 11/18/2022]
Abstract
Retroviral RNA packaging signal (ψ) allows the preferential packaging of genomic RNA into virus particles through its interaction with the nucleocapsid protein. The specificity of this interaction came into question when it was shown that primate retroviruses, such as HIV-1, could cross-package RNA from its simian cousin, SIV, and vice versa and that feline retrovirus, FIV could cross-package RNA from a distantly related primate retrovirus, MPMV. To study the generality of this phenomenon further, we determined whether there is a greater packaging restriction between the lentiviral class of retroviruses (HIV-1 and SIV) and a non-lentivirus, MPMV. Our results revealed that primate lentiviral RNAs can be cross-packaged by primate non-lentiviral particles reciprocally, but the cross-packaged RNAs could not be propagated by the heterologous particles. Packaging of RNA in the context of both retroviral vectors as well as non-retroviral RNA containing SIV, HIV, and MPMV packaging determinants by each others proteins further confirmed the specificity of cross-packaging conferred by the packaging sequences. These results reveal the promiscuous nature of retroviral packaging determinants and raise caution against their wide spread presence on retroviral vectors to be used for human gene therapy.
Collapse
Affiliation(s)
- Iman Rashed Al Shamsi
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | | | | | | | | |
Collapse
|
7
|
Jaballah SA, Aktar SJ, Ali J, Phillip PS, Al Dhaheri NS, Jabeen A, Rizvi TA. A G-C-rich palindromic structural motif and a stretch of single-stranded purines are required for optimal packaging of Mason-Pfizer monkey virus (MPMV) genomic RNA. J Mol Biol 2010; 401:996-1014. [PMID: 20600114 DOI: 10.1016/j.jmb.2010.06.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 01/17/2023]
Abstract
During retroviral RNA packaging, two copies of genomic RNA are preferentially packaged into the budding virus particles whereas the spliced viral RNAs and the cellular RNAs are excluded during this process. Specificity towards retroviral RNA packaging is dependent upon sequences at the 5' end of the viral genome, which at times extend into Gag sequences. It has earlier been suggested that the Mason-Pfizer monkey virus (MPMV) contains packaging sequences within the 5' untranslated region (UTR) and Gag. These studies have also suggested that the packaging determinants of MPMV that lie in the UTR are bipartite and are divided into two regions both upstream and downstream of the major splice donor. However, the precise boundaries of these discontinuous regions within the UTR and the role of the intervening sequences between these dipartite sequences towards MPMV packaging have not been investigated. Employing a combination of genetic and structural prediction analyses, we have shown that region "A", immediately downstream of the primer binding site, is composed of 50 nt, whereas region "B" is composed of the last 23 nt of UTR, and the intervening 55 nt between these two discontinuous regions do not contribute towards MPMV RNA packaging. In addition, we have identified a 14-nt G-C-rich palindromic sequence (with 100% autocomplementarity) within region A that has been predicted to fold into a structural motif and is essential for optimal MPMV RNA packaging. Furthermore, we have also identified a stretch of single-stranded purines (ssPurines) within the UTR and 8 nt of these ssPurines are duplicated in region B. The native ssPurines or its repeat in region B when predicted to refold as ssPurines has been shown to be essential for RNA packaging, possibly functioning as a potential nucleocapsid binding site. Findings from this study should enhance our understanding of the steps involved in MPMV replication including RNA encapsidation process.
Collapse
Affiliation(s)
- Soumeya Ali Jaballah
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Infection of domestic cats with virulent strains of the feline immunodeficiency virus (FIV) leads to an acquired immunodeficiency syndrome (AIDS), similar to the pathogenesis induced in humans by infection with human immunodeficiency virus type 1 (HIV-1). Thus, FIV is a highly relevant model for anti-HIV therapy and vaccine development. FIV is not infectious in humans, so it is also a potentially effective non-toxic gene therapy vector. To make better use of this model, it is important to define the cellular machinery utilized by each virus to produce virus particles so that relevant similarities can be identified. It is well understood that all replication-competent retroviruses encode gag, pol, and env genes, which provide core elements for virus replication. As a result, most antiretroviral therapy targets pol-derived enzymes (protease, reverse transcriptase, and integrase) orenv-derived glycoproteins that mediate virus attachment and entry. However, resistance to drugs against these targets is a persistent problem, and novel targets must be identified to produce more effective drugs that can either substitute or be combined with current therapy. Elements of the gag gene (matrix, capsid, nucleocapsid, and "late" domains) have yet to be exploited as antiviral targets, even though the Gag precursor polyprotein is self-sufficient for the assembly and release of virus particles from cells. This process is far better understood in primate lentiviruses, especially HIV-1. However, there has been significant progress in recent years in defining how FIV Gag is targeted to the cellular plasma membrane, assembles into virions, incorporates FIV Env glycoproteins, and utilizes host cell machinery to complete virus release. Recent discoveries of intracellular restriction factors that target HIV-1 and FIV capsids after virus entry have also opened exciting new areas of research. This review summarizes currently known interactions involving HIV-1 and FIV Gag that affect virus release, infectivity, and replication.
Collapse
Affiliation(s)
- Benjamin G Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
9
|
Env-expressing autologous T lymphocytes induce neutralizing antibody and afford marked protection against feline immunodeficiency virus. J Virol 2010; 84:3845-56. [PMID: 20130057 DOI: 10.1128/jvi.02638-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope (Env) glycoproteins of HIV and other lentiviruses possess neutralization and other protective epitopes, yet all attempts to induce protective immunity using Env as the only immunogen have either failed or afforded minimal levels of protection. In a novel prime-boost approach, specific-pathogen-free cats were primed with a plasmid expressing Env of feline immunodeficiency virus (FIV) and feline granulocyte-macrophage colony-stimulating factor and then boosted with their own T lymphocytes transduced ex vivo to produce the same Env and interleukin 15 (3 x 10(6) to 10 x 10(6) viable cells/cat). After the boost, the vaccinees developed elevated immune responses, including virus-neutralizing antibodies (NA). Challenge with an ex vivo preparation of FIV readily infected all eight control cats (four mock vaccinated and four naïve) and produced a marked decline in the proportion of peripheral CD4 T cells. In contrast, five of seven vaccinees showed little or no traces of infection, and the remaining two had reduced viral loads and underwent no changes in proportions of CD4 T cells. Interestingly, the viral loads of the vaccinees were inversely correlated to the titers of NA. The findings support the concept that Env is a valuable immunogen but needs to be administered in a way that permits the expression of its full protective potential.
Collapse
|
10
|
Al Dhaheri NS, Phillip PS, Ghazawi A, Ali J, Beebi E, Jaballah SA, Rizvi TA. Cross-packaging of genetically distinct mouse and primate retroviral RNAs. Retrovirology 2009; 6:66. [PMID: 19602292 PMCID: PMC2723071 DOI: 10.1186/1742-4690-6-66] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 07/14/2009] [Indexed: 12/21/2022] Open
Abstract
Background The mouse mammary tumor virus (MMTV) is unique from other retroviruses in having multiple viral promoters, which can be regulated by hormones in a tissue specific manner. This unique property has lead to increased interest in studying MMTV replication with the hope of developing MMTV based vectors for human gene therapy. However, it has recently been reported that related as well as unrelated retroviruses can cross-package each other's genome raising safety concerns towards the use of candidate retroviral vectors for human gene therapy. Therefore, using a trans complementation assay, we looked at the ability of MMTV RNA to be cross-packaged and propagated by an unrelated primate Mason-Pfizer monkey virus (MPMV) that has intracellular assembly process similar to that of MMTV. Results Our results revealed that MMTV and MPMV RNAs could be cross-packaged by the heterologous virus particles reciprocally suggesting that pseudotyping between two genetically distinct retroviruses can take place at the RNA level. However, the cross-packaged RNAs could not be propagated further indicating a block at post-packaging events in the retroviral life cycle. To further confirm that the specificity of cross-packaging was conferred by the packaging sequences (ψ), we cloned the packaging sequences of these viruses on expression plasmids that generated non-viral RNAs. Test of these non-viral RNAs confirmed that the reciprocal cross-packaging was primarily due to the recognition of ψ by the heterologous virus proteins. Conclusion The results presented in this study strongly argue that MPMV and MMTV are promiscuous in their ability to cross-package each other's genome suggesting potential RNA-protein interactions among divergent retroviral RNAs proposing that these interactions are more complicated than originally thought. Furthermore, these observations raise the possibility that MMTV and MPMV genomes could also co-package providing substrates for exchanging genetic information.
Collapse
Affiliation(s)
- Noura Salem Al Dhaheri
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE.
| | | | | | | | | | | | | |
Collapse
|
11
|
Rizvi TA, Ali J, Phillip PS, Ghazawi A, Jayanth P, Mustafa F. Role of a heterologous retroviral transport element in the development of genetic complementation assay for mouse mammary tumor virus (MMTV) replication. Virology 2009; 385:464-72. [PMID: 19157480 DOI: 10.1016/j.virol.2008.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/07/2008] [Accepted: 12/12/2008] [Indexed: 11/27/2022]
Abstract
The mouse mammary tumor virus (MMTV) is a type B retrovirus that is unique from other retroviruses in having multiple "tissue specific" and "hormone inducible" promoters. This unique feature has lead to the increasing interest in studying the biology of MMTV replication with the ultimate goal of developing MMTV based vectors for potentially targeted human gene therapy. In this report, we describe, for the first time, the establishment of an in vivo genetic complementation assay to study various aspects of MMTV replication. In the assay described here, the function of MMTV Rem/RmRE regulatory pathway has been successfully substituted by a heterologous retroviral constitutive transport element (CTE) from Mason Pfizer Monkey Virus (MPMV) for mature MMTV particle production. Our results revealed that in the absence of MPMV CTE or Rem/RmRE, RNA transcribed from MMTV Gag-Pol expression plasmids were efficiently transported to the cytoplasm. However, the presence of CTE was indispensable for Gag-Pol protein expression. In addition, we report the development of MMTV based vectors in which the packageable RNA was transcribed either from MMTV LTR or from a chimeric LTR, which could successfully be packaged and propagated by particles produced from MMTV Gag-Pol expression plasmids containing a heterologous transport element. The role of MPMV CTE in the transport of MMTV transfer vector RNA was not found to be significant. Development of such an assay should not only shed light on how MMTV regulates its gene expression, but also should provide additional molecular tools for delineating the packaging determinants for MMTV, which is imperative for the development of novel vectors for targeted and inducible gene therapy.
Collapse
Affiliation(s)
- Tahir A Rizvi
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), P.O. Box 17666, Al Ain, UAE.
| | | | | | | | | | | |
Collapse
|
12
|
Faure E. Could FIV zoonosis responsible of the breakdown of the pathocenosis which has reduced the European CCR5-Delta32 allele frequencies? Virol J 2008; 5:119. [PMID: 18925940 PMCID: PMC2575341 DOI: 10.1186/1743-422x-5-119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/16/2008] [Indexed: 02/04/2023] Open
Abstract
Background In Europe, the north-south downhill cline frequency of the chemokine receptor CCR5 allele with a 32-bp deletion (CCR5-Δ32) raises interesting questions for evolutionary biologists. We had suggested first that, in the past, the European colonizers, principally Romans, might have been instrumental of a progressively decrease of the frequencies southwards. Indeed, statistical analyses suggested strong negative correlations between the allele frequency and historical parameters including the colonization dates by Mediterranean civilisations. The gene flows from colonizers to native populations were extremely low but colonizers are responsible of the spread of several diseases suggesting that the dissemination of parasites in naive populations could have induced a breakdown rupture of the fragile pathocenosis changing the balance among diseases. The new equilibrium state has been reached through a negative selection of the null allele. Results Most of the human diseases are zoonoses and cat might have been instrumental in the decrease of the allele frequency, because its diffusion through Europe was a gradual process, due principally to Romans; and that several cat zoonoses could be transmitted to man. The possible implication of a feline lentivirus (FIV) which does not use CCR5 as co-receptor is discussed. This virus can infect primate cells in vitro and induces clinical signs in macaque. Moreover, most of the historical regions with null or low frequency of CCR5-Δ32 allele coincide with historical range of the wild felid species which harbor species-specific FIVs. Conclusion We proposed the hypothesis that the actual European CCR5 allelic frequencies are the result of a negative selection due to a disease spreading. A cat zoonosis, could be the most plausible hypothesis. Future studies could provide if CCR5 can play an antimicrobial role in FIV pathogenesis. Moreover, studies of ancient DNA could provide more evidences regarding the implications of zoonoses in the actual CCR5-Δ32 distribution.
Collapse
Affiliation(s)
- Eric Faure
- LATP, CNRS-UMR 6632, IFR48 Infectiopole, Evolution biologique et modélisation, Université de Provence, Marseille, France.
| |
Collapse
|
13
|
A dormant internal ribosome entry site controls translation of feline immunodeficiency virus. J Virol 2008; 82:3574-83. [PMID: 18234788 DOI: 10.1128/jvi.02038-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The characterization of internal ribosome entry sites (IRESs) in virtually all lentiviruses prompted us to investigate the mechanism used by the feline immunodeficiency virus (FIV) to produce viral proteins. Various in vitro translation assays with mono- and bicistronic constructs revealed that translation of the FIV genomic RNA occurred both by a cap-dependent mechanism and by weak internal entry of the ribosomes. This weak IRES activity was confirmed in feline cells expressing bicistronic RNAs containing the FIV 5' untranslated region (UTR). Surprisingly, infection of feline cells with FIV, but not human immunodeficiency virus type 1, resulted in a great increase in FIV translation. Moreover, a change in the cellular physiological condition provoked by heat stress resulted in the specific stimulation of expression driven by the FIV 5' UTR while cap-dependent initiation was severely repressed. These results reveal the presence of a "dormant" IRES that becomes activated by viral infection and cellular stress.
Collapse
|
14
|
Pistello M, Vannucci L, Ravani A, Bonci F, Chiuppesi F, Del Santo B, Freer G, Bendinelli M. Streamlined design of a self-inactivating feline immunodeficiency virus vector for transducing ex vivo dendritic cells and T lymphocytes. GENETIC VACCINES AND THERAPY 2007; 5:8. [PMID: 17880683 PMCID: PMC2075492 DOI: 10.1186/1479-0556-5-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/19/2007] [Indexed: 11/24/2022]
Abstract
Background Safe and efficient vector systems for delivering antigens or immunomodulatory molecules to dendritic cells (DCs), T lymphocytes or both are considered effective means of eliciting adaptive immune responses and modulating their type, extent, and duration. As a possible tool toward this end, we have developed a self-inactivating vector derived from feline immunodeficiency virus (FIV) showing performance characteristics similar to human immunodeficiency virus-derived vectors but devoid of the safety concerns these vectors have raised. Methods The pseudotyped FIV particles were generated with a three-plasmid system consisting of: the packaging construct, providing Gag, Pol and the accessory proteins; the vector(s), basically containing FIV packaging signal (ψ), Rev responsive element, R-U5 region at both ends, and the green fluorescent protein as reporter gene; and the Env plasmid, encoding the G protein of vesicular stomatitis virus (VSV-G) or the chimeric RD114 protein. Both packaging and vector constructs were derived from p34TF10, a replication competent molecular clone of FIV. The pseudotyped particles were produced by transient transfection in the Crandell feline fibroblast kidney (CrFK) or the human epithelial (293T) cell line. Results To broaden its species tropism, the final vector construct was achieved through a series of intermediate constructs bearing a longer ψ, the FIV central polypurin tract sequence (cPPT), or the woodchuck hepatitis post-regulatory element (WPRE). These constructs were compared for efficiency and duration of transduction in CrFK or 293T cells and in the murine fibroblast cell line NIH-3T3. Whereas ψ elongation and cPPT addition did not bring any obvious benefit, insertion of WPRE downstream GFP greatly improved vector performances. To maximize the efficiency of transduction for ex-vivo murine DCs and T-lymphocytes, this construct was tested with VSV-G or RD114 and using different transduction protocols. The results indicated that the FIV construct derived herein stably transduced both cell types, provided that appropriate vector makeup and transduction protocol were used. Further, transduced DCs underwent changes suggestive of an induced maturation. Conclusion In contrast to previously described FIV vectors that were poorly efficient in delivering genetic material to DCs and T lymphocytes, the vector developed herein has potential for use in experimental immunization strategies.
Collapse
Affiliation(s)
- Mauro Pistello
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Laura Vannucci
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Alessia Ravani
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Francesca Bonci
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Flavia Chiuppesi
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Barbara Del Santo
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Giulia Freer
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Mauro Bendinelli
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Pistello M, Bonci F, Flynn JN, Mazzetti P, Isola P, Zabogli E, Camerini V, Matteucci D, Freer G, Pelosi P, Bendinelli M. AIDS vaccination studies with an ex vivo feline immunodeficiency virus model: analysis of the accessory ORF-A protein and DNA as protective immunogens. J Virol 2006; 80:8856-68. [PMID: 16940498 PMCID: PMC1563914 DOI: 10.1128/jvi.00397-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Determining which antigen must be included in AIDS vaccines to confer maximum protection is of utmost importance. In primate models, vaccines consisting of or including accessory viral proteins have yielded conflicting results. We investigated the protective potential of the accessory protein ORF-A of feline immunodeficiency virus (FIV) in cats. All three immunization strategies used (protein alone in alum adjuvant, DNA alone, or DNA prime-protein boost) clearly generated detectable immune responses. Upon challenge with ex vivo homologous FIV, ORF-A-immunized cats showed distinct enhancement of acute-phase infection relative to mock-immunized animals given alum or empty vector DNA. This effect was tentatively attributed to increased expression of the FIV receptor CD134 that was observed in the immunized cats. However, at subsequent sampling points that were continued for up to 10 months postchallenge, the average plasma viral loads of the ORF-A-immunized animals were slightly but consistently reduced relative to those of the control animals. In addition, CD4(+) T lymphocytes in the circulation system declined more slowly in immunized animals than in control animals. These findings support the contention that immunization with lentiviral accessory proteins can improve the host's ability to control virus replication and slow down disease progression but also draw attention to the fact that even simple immunogens that eventually contribute to protective activity can transiently exacerbate subsequent lentiviral infections.
Collapse
Affiliation(s)
- Mauro Pistello
- Dipartimento di Patologia Sperimentale, Università di Pisa, Via San Zeno 37, I-56127 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ghazawi A, Mustafa F, Phillip PS, Jayanth P, Ali J, Rizvi TA. Both the 5' and 3' LTRs of FIV contain minor RNA encapsidation determinants compared to the two core packaging determinants within the 5' untranslated region and gag. Microbes Infect 2006; 8:767-78. [PMID: 16513389 DOI: 10.1016/j.micinf.2005.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/08/2005] [Accepted: 09/27/2005] [Indexed: 11/17/2022]
Abstract
This study was undertaken to address the role of feline immunodeficiency virus (FIV) long terminal repeats (LTR) as potential packaging determinants. A number of studies in the recent past have clearly demonstrated that the core packaging determinants of FIV reside within at least two distinct regions at the 5' end of the viral genome, from R in the 5' LTR to approximately 150 bp within the 5' untranslated region (5' UTR) and within the first 100 bp of gag; however, there have been conflicting observations as to the role of the LTR regions in packaging and whether they contain the principal packaging determinants of FIV. Using a semi-quantitative RT-PCR approach on heterologous non-viral vector RNAs in an in vivo packaging assay, this study demonstrates that the principal packaging determinants of FIV reside within the first 150 bp of 5' UTR and 100 bp of gag (the two core regions) and not the viral 5' LTR. Furthermore, it shows that in addition to the 5' LTR, the 3' LTR also contains packaging determinants, but of a less significant nature compared to the core packaging determinants. This study defines the relative contribution of the various regions implicated in FIV genomic RNA packaging, and reveals that like other primate lentiviruses, the packaging determinants of FIV are multipartite and spread out, an observation that has implications for safer and more streamlined design of FIV-based gene transfer vectors.
Collapse
Affiliation(s)
- Akela Ghazawi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), P.O. Box 17666, Al Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
17
|
Mustafa F, Ghazawi A, Jayanth P, Phillip PS, Ali J, Rizvi TA. Sequences intervening between the core packaging determinants are dispensable for maintaining the packaging potential and propagation of feline immunodeficiency virus transfer vector RNAs. J Virol 2005; 79:13817-21. [PMID: 16227303 PMCID: PMC1262595 DOI: 10.1128/jvi.79.21.13817-13821.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The packaging determinants of feline immunodeficiency virus (FIV) consist of two discontinuous core regions, extending from R to approximately 150 bp of the 5' untranslated region and the first approximately 100 bp of gag. However, the role of sequences intervening between the core regions in packaging has not been clear. A mutational analysis was conducted to determine whether the intervening sequences played a role in FIV RNA packaging, using an in vivo packaging assay complemented with semiquantitative reverse transcriptase PCR. Our analyses reveal that the intervening sequences are dispensable not only for vector RNA packaging but also for propagation, confirming the discontinuous nature of the FIV packaging signal.
Collapse
Affiliation(s)
- Farah Mustafa
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|