1
|
Hara C, Kubota S, Nishida T, Hiasa M, Hattori T, Aoyama E, Moriyama Y, Kamioka H, Takigawa M. Involvement of multiple CCN family members in platelets that support regeneration of joint tissues. Mod Rheumatol 2016; 26:940-949. [PMID: 26915735 DOI: 10.3109/14397595.2016.1155255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Platelet-rich plasma (PRP) has been widely used to enhance the regeneration of damaged joint tissues, such as osteoarthritic and rheumatoid arthritic cartilage. The aim of this study is to clarify the involvement of all of the CCN family proteins that are crucially associated with joint tissue regeneration. METHODS Cyr61-CTGF-NOV (CCN) family proteins in human platelets and megakaryocytic cells were comprehensively analyzed by Western blotting analysis. Production of CCN family proteins in megakaryocytes in vivo was confirmed by immunofluorescence analysis of mouse bone marrow cells. Effects of CCN family proteins found in platelets on chondrocytes were evaluated by using human chondrocytic HCS-2/8 cells. RESULTS Inclusion of CCN2, a mesenchymal tissue regenerator, was confirmed. Of note, CCN3, which counteracts CCN2, was newly found to be encapsulated in platelets. Interestingly, these two family members were not detectable in megakaryocytic cells, but their external origins were suggested. Furthermore, we found for the first time CCN5 and CCN1 that inhibits ADAMTS4 in both platelets and megakaryocytes. Finally, application of a CCN family cocktail mimicking platelets onto HCS-2/8 cells enhanced their chondrocytic phenotype. CONCLUSIONS Multiple inclusion of CCN1, 2 and 3 in platelets was clarified, which supports the harmonized regenerative potential of PRP in joint therapeutics.
Collapse
Affiliation(s)
- Chikako Hara
- a Department of Biochemistry and Molecular Dentistry , and.,b Department of Orthodontics , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Satoshi Kubota
- a Department of Biochemistry and Molecular Dentistry , and.,c Advanced Research Center for Oral and Craniofacial Sciences , Okayama University Dental School , Okayama , Japan , and
| | | | - Miki Hiasa
- d Department of Membrane Biochemistry , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Takako Hattori
- a Department of Biochemistry and Molecular Dentistry , and
| | - Eriko Aoyama
- c Advanced Research Center for Oral and Craniofacial Sciences , Okayama University Dental School , Okayama , Japan , and
| | - Yoshinori Moriyama
- d Department of Membrane Biochemistry , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hiroshi Kamioka
- b Department of Orthodontics , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Masaharu Takigawa
- a Department of Biochemistry and Molecular Dentistry , and.,c Advanced Research Center for Oral and Craniofacial Sciences , Okayama University Dental School , Okayama , Japan , and
| |
Collapse
|
2
|
Stabilization of human interferon-α1 mRNA by its antisense RNA. Cell Mol Life Sci 2012; 70:1451-67. [PMID: 23224365 PMCID: PMC3607724 DOI: 10.1007/s00018-012-1216-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 10/31/2012] [Accepted: 11/19/2012] [Indexed: 12/15/2022]
Abstract
Antisense transcription is a widespread phenomenon in the mammalian genome and is believed to play a role in regulating gene expression. However, the exact functional significance of antisense transcription is largely unknown. Here, we show that natural antisense (AS) RNA is an important modulator of interferon-α1 (IFN-α1) mRNA levels. A ~4-kb, spliced IFN-α1 AS RNA targets a single-stranded region within a conserved secondary structure element of the IFN-α1 mRNA, an element which was previously reported to function as the nuclear export element. Following infection of human Namalwa lymphocytes with Sendai virus or infection of guinea pig 104C1 fetal fibroblasts with influenza virus A/PR/8/34, expression of IFN-α1 AS RNA becomes elevated. This elevated expression results in increased IFN-α1 mRNA stability because of the cytoplasmic (but not nuclear) interaction of the AS RNA with the mRNA at the single-stranded region. This results in increased IFN-α protein production. The silencing of IFN-α1 AS RNA by sense oligonucleotides or over-expression of antisense oligoribonucleotides, which were both designed from the target region, confirmed the critical role of the AS RNA in the post-transcriptional regulation of IFN-α1 mRNA levels. This AS RNA stabilization effect is caused by the prevention of the microRNA (miRNA)-induced destabilization of IFN-α1 mRNA due to masking of the miR-1270 binding site. This discovery not only reveals a regulatory pathway for controlling IFN-α1 gene expression during the host innate immune response against virus infection but also suggests a reason for the large number of overlapping complementary transcripts with previously unknown function.
Collapse
|
3
|
Abstract
Nonhemolytic transfusion reactions (NHTRs) are the most common transfusion reactions and include transfusion-related acute lung injury (TRALI) and allergic and febrile reactions. White blood cell (WBC) antibodies (Abs) against human leukocyte antigen (HLA) and human neutrophil antigen (HNA) in blood components are frequently implicated in NHTRs, especially in TRALI. Recently, we established a five-cell-lineage immunofluorescence test, a modified granulocyte immunofluorescence test, and a panel of cell lines stably expressing HNAs for efficient detection of Abs against well-known HNA-1 to HNA-5, and also Abs against neutrophil antigens other than HNA-1 to HNA-5. Using these techniques, we found that most of the non-HLA WBC Abs detected in NHTR cases were against antigens other than HNA-1 to HNA-5. In addition, using our newly established neutrophil activation test, which assesses neutrophil activation elicited by immunologic stimuli such as WBC Abs and immune complex, we found that heparin-binding protein is a potential final effector molecule that induces NHTRs, including TRALI. More recently, we reported that the basophil activation test, which was originally developed to identify allergens in the field of allergic diseases, might be useful in transfusion medicine. In this review, we summarize these new techniques and other related tests.
Collapse
Affiliation(s)
- Fumiya Hirayama
- Japanese Red Cross Osaka Blood Center, Morinomiya, Joto-ku, Osaka, Japan.
| |
Collapse
|
4
|
Sumiyoshi K, Kubota S, Furuta RA, Yasui K, Aoyama E, Kawaki H, Kawata K, Ohgawara T, Yamashiro T, Takigawa M. Thrombopoietic-mesenchymal interaction that may facilitate both endochondral ossification and platelet maturation via CCN2. J Cell Commun Signal 2009; 4:5-14. [PMID: 19798594 PMCID: PMC2821475 DOI: 10.1007/s12079-009-0067-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 09/09/2009] [Indexed: 11/27/2022] Open
Abstract
CCN2 plays a central role in the development and growth of mesenchymal tissue and promotes the regeneration of bone and cartilage in vivo. Of note, abundant CCN2 is contained in platelets, which is thought to play an important role in the tissue regeneration process. In this study, we initially pursued the possible origin of the CCN2 in platelets. First, we examined if the CCN2 in platelets was produced by megakaryocyte progenitors during differentiation. Unexpectedly, neither megakaryocytic CMK cells nor megakaryocytes that had differentiated from human haemopoietic stem cells in culture showed any detectable CCN2 gene expression or protein production. Together with the fact that no appreciable CCN2 was detected in megakaryocytes in vivo, these results suggest that megakaryocytes themselves do not produce CCN2. Next, we suspected that mesenchymal cells situated around megakaryocytes in the bone marrow were stimulated by the latter to produce CCN2, which was then taken up by platelets. To evaluate this hypothesis, we cultured human chondrocytic HCS-2/8 cells with medium conditioned by differentiating megakaryocyte cultures, and then monitored the production of CCN2 by the cells. As suspected, CCN2 production by HCS-2/8 was significantly enhanced by the conditioned medium. We further confirmed that human platelets were able to absorb/uptake exogenous CCN2 in vitro. These findings indicate that megakaryocytes secrete some unknown soluble factor(s) during differentiation, which factor stimulates the mesenchymal cells to produce CCN2 for uptake by the platelets. We also consider that, during bone growth, such thrombopoietic-mesenchymal interaction may contribute to the hypertrophic chondrocyte-specific accumulation of CCN2 that conducts endochondral ossification.
Collapse
Affiliation(s)
- Kumi Sumiyoshi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525 Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525 Japan
| | | | | | - Eriko Aoyama
- Biodental Research Center, Okayama University Dental School, Okayama, Japan
| | - Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525 Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525 Japan
| | - Toshihiro Ohgawara
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525 Japan
| | - Takashi Yamashiro
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525 Japan
- Biodental Research Center, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
5
|
Yin D, Wang Z, Gao Q, Sundaresan R, Parrish C, Yang Q, Krebsbach PH, Lichtler AC, Rowe DW, Hock J, Liu P. Determination of the fate and contribution of ex vivo expanded human bone marrow stem and progenitor cells for bone formation by 2.3ColGFP. Mol Ther 2009; 17:1967-78. [PMID: 19603005 DOI: 10.1038/mt.2009.151] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bone marrow transplantation can provide an effective cell-based strategy to enhance bone repair. However, the fate of implanted cells and the extent of their contribution to bone osteoinduction remain uncertain. To define the fate of bone marrow-derived cells and their contribution in vivo, we used a bone-specific collagen I promoter (2.3Col) driving green fluorescent protein (GFP) (2.3ColGFP) within a lentiviral vector. Prior to in vivo cell fate determination, we verified a high efficiency of lentiviral transduction in human bone marrow stromal cells (hBMSCs), without altering the proliferation or differentiation potential of these cells. We showed that the 2.3ColGFP marker responded to endogenous transcriptional regulation signals. In a mouse ossicle model, we demonstrated that the 2.3ColGFP marker is able to specifically define human bone marrow-derived stem cells that enter the osteoblast lineage in vivo. In addition, cells labeled with 2.3ColGFP with the donor origin, directly make a major contribution to bone formation. Furthermore, we also demonstrated in a calvarial defect model that a mixture of human bone marrow-derived populations, have stronger bone regenerative potential than that of hBMSCs, and an optimal dose is required for bone regeneration by the mixed populations.
Collapse
Affiliation(s)
- Dezhong Yin
- Aastrom Biosciences Inc., Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
During recent decades there have been major advances in the fields of thrombosis and haemostasis, in part through development of powerful molecular and genetic technologies. Nevertheless, genetic modification of megakaryocytes and generation of mutant platelets in vitro remains a highly specialized area of research. Developments are hampered by the low frequency of megakaryocytes and their progenitors, a poor efficiency of transfection and a lack of understanding with regard to the mechanism by which megakaryocytes release platelets. Current methods used in the generation of genetically modified megakaryocytes and platelets include mutant mouse models, cell line studies and use of viruses to transform primary megakaryocytes or haematopoietic precursor cells. This review summarizes the advantages, limitations and technical challenges of such methods, with a particular focus on recent successes and advances in this rapidly progressing field including the potential for use in gene therapy for treatment of patients with platelet disorders.
Collapse
Affiliation(s)
- Caroline Pendaries
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | |
Collapse
|
7
|
Yasui K, Miyazaki T, Matsuyama N, Kojima Y, Furuta RA, Fujisawa JI, Tani Y, Shibata H, Sato SI, Kato T, Ikeda H, Hirayama F. Establishment of cell lines stably expressing HNA-1a, -1b, and -2a antigen with low background reactivity in flow cytometric analysis. Transfusion 2007; 47:478-85. [PMID: 17319829 DOI: 10.1111/j.1537-2995.2006.01139.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Antibodies to neutrophil antigens have been implicated in neonatal alloimmune neutropenia, autoimmune neutropenia, and transfusion-related acute lung injury. Most often, neutrophil-specific antibodies are directed toward human neutrophil antigen (HNA)-1 (Fcgamma receptor 3b) and HNA-2a (CD177) in these disorders. STUDY DESIGN AND METHODS To detect the alloantibodies in the serum samples, a panel of cell lines was established in which the HNA-1a, HNA-1b (polymorphisms of HNA-1), or HNA-2a gene was transduced with a retrovirus vector to confer stable transgene expression in K562 cells that exhibited low background reactivity to human serum samples obtained from healthy donors in flow cytometric analysis. RESULTS It was shown that several well-characterized human serum samples containing antibodies against HNA-1a, -1b, and -2a were unambiguously identified by the established panel cell lines and observed a lower background reactivity and longer shelf life of the K562 panel cell lines compared with isolated neutrophils, which have been used for the cell panel to identify antibodies against HNA in human serum samples. CONCLUSION These results indicate that the K562 panel cell lines provide a good panel for detecting HNA-reactive neutrophil antibodies in human serum samples.
Collapse
Affiliation(s)
- Kazuta Yasui
- Japanese Red Cross Osaka Blood Center, and the Kansai Medical University, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|