1
|
Zhou DS, Zhang WJ, Song SY, Hong XX, Yang WQ, Li JJ, Xu JQ, Kang JY, Cai TT, Xu YF, Guo SJ, Pan HF, Li HW. Weiwei Decoction alleviates gastric intestinal metaplasia through the olfactomedin 4/nucleotide-binding oligomerization domain 1/caudal-type homeobox gene 2 signaling pathway. World J Gastrointest Oncol 2024; 16:3211-3229. [PMID: 39072182 PMCID: PMC11271767 DOI: 10.4251/wjgo.v16.i7.3211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Gastric intestinal metaplasia (IM) is a precancerous lesion that is associated with an elevated risk of gastric carcinogenesis. Weiwei Decoction (WWD) is a promising traditional Chinese herbal formula widely employed in clinical for treating IM. Previous studies suggested the potential involvement of the olfactomedin 4 (OLFM4)/nucleotide-binding oligomerization domain 1 (NOD1)/caudal-type homeobox gene 2 (CDX2) signaling pathway in IM regulation. AIM To verify the regulation of the OLFM4/NOD1/CDX2 pathway in IM, specifically investigating WWD's effectiveness on IM through this pathway. METHODS Immunohistochemistry for OLFM4, NOD1, and CDX2 was conducted on tissue microarray. GES-1 cells treated with chenodeoxycholic acid were utilized as IM cell models. OLFM4 short hairpin RNA (shRNA), NOD1 shRNA, and OLFM4 pcDNA were transfected to clarify the pathway regulatory relationships. Protein interactions were validated by co-immunoprecipitation. To explore WWD's pharmacological actions, IM rat models were induced using N-methyl-N'-nitro-N-nitrosoguanidine followed by WWD gavage. Gastric cells were treated with WWD-medicated serum. Cytokines and chemokines content were assessed by enzyme-linked immunosorbent assay and quantitative reverse transcription polymerase chain reaction. RESULTS The OLFM4/NOD1/CDX2 axis was a characteristic of IM. OLFM4 exhibited direct binding and subsequent down-regulation of NOD1, thereby sustaining the activation of CDX2 and promoting the progression of IM. WWD improved gastric mucosal histological lesions while suppressing intestinal markers KLF transcription factor 4, villin 1, and MUCIN 2 expression in IM rats. Regarding pharmacological actions, WWD suppressed OLFM4 and restored NOD1 expression, consequently reducing CDX2 at the mRNA and protein levels in IM rats. Parallel regulatory mechanisms were observed at the protein level in IM cells treated with WWD-medicated serum. Furthermore, WWD-medicated serum treatment strengthened OLFM4 and NOD1 interaction. In case of anti-inflammatory, WWD restrained interleukin (IL)-6, interferon-gamma, IL-17, macrophage chemoattractant protein-1, macrophage inflammatory protein 1 alpha content in IM rat serum. WWD-medicated serum inhibited tumor necrosis factor alpha, IL-6, IL-8 transcriptions in IM cells. CONCLUSION The OLFM4/NOD1/CDX2 pathway is involved in the regulation of IM. WWD exerts its therapeutic efficacy on IM through the pathway, additionally attenuating the inflammatory response.
Collapse
Affiliation(s)
- Di-Shu Zhou
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Wei-Jian Zhang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Shu-Ya Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Xin-Xin Hong
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Wei-Qin Yang
- Department of Chinese Medicine, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, Guangdong Province, China
| | - Juan-Juan Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Jian-Qu Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Jian-Yuan Kang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Tian-Tian Cai
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Yi-Fei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Shao-Ju Guo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Hua-Feng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Hai-Wen Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| |
Collapse
|
2
|
Amalia R, Panenggak NSR, Doohan D, Rezkitha YAA, Waskito LA, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. A comprehensive evaluation of an animal model for Helicobacter pylori-associated stomach cancer: Fact and controversy. Helicobacter 2023; 28:e12943. [PMID: 36627714 DOI: 10.1111/hel.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
Even though Helicobacter pylori infection was the most causative factor of gastric cancer, numerous in vivo studies failed to induce gastric cancer using H. pylori infection only. The utilization of established animal studies in cancer research is crucial as they aim to investigate the coincidental association between suspected oncogenes and pathogenesis as well as generate models for the development and testing of potential treatments. The methods to establish gastric cancer using infected animal models remain limited, diverse in methods, and showed different results. This study investigates the differences in animal models, which highlight different pathological results in gaster by literature research. Electronic databases searched were performed in PubMed, Science Direct, and Cochrane, without a period filter. A total of 135 articles were used in this study after a full-text assessment was conducted. The most frequent animal models used for gastric cancer were Mice, while Mongolian gerbils and Transgenic mice were the most susceptible model for gastric cancer associated with H. pylori infection. Additionally, transgenic mice showed that the susceptibility to gastric cancer progression was due to genetic and epigenetic factors. These studies showed that in Mongolian gerbil models, H. pylori could function as a single agent to trigger stomach cancer. However, most gastric cancer susceptibilities were not solely relying on H. pylori infection, and numerous factors are involved in cancer progression. Further study using Mongolian gerbils and Transgenic mice is crucial to conduct and establish the best models for gastric cancer associated H. pylori.
Collapse
Affiliation(s)
- Rizki Amalia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Masrul Lubis
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Texas, Houston, USA
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Barros R, Freund JN, David L, Almeida R. Gastric intestinal metaplasia revisited: function and regulation of CDX2. Trends Mol Med 2012; 18:555-63. [PMID: 22871898 DOI: 10.1016/j.molmed.2012.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 12/16/2022]
Abstract
Intestinal metaplasia of the stomach is a preneoplastic lesion that appears following Helicobacter pylori infection and confers increased risk for gastric cancer development. However, the molecular networks connecting infection to lesion formation and the cellular origin of this lesion remain largely unknown. A more comprehensive understanding of how intestinal metaplasia arises and is maintained will be a major breakthrough towards developing novel therapeutic interventions. Furthermore, after ascertaining the pivotal role of CDX2 in establishing and maintaining intestinal metaplasia, it becomes important to decipher the upstream molecular pathways leading to its ectopic expression. Here, we review the pathophysiology of intestinal metaplasia in the context of the molecular network involved in its establishment and maintenance, with emphasis on CDX2 function and regulation.
Collapse
Affiliation(s)
- Rita Barros
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal.
| | | | | | | |
Collapse
|
4
|
Camilo V, Barros R, Sousa S, Magalhães AM, Lopes T, Mário Santos A, Pereira T, Figueiredo C, David L, Almeida R. Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells. Carcinogenesis 2012; 33:1985-92. [PMID: 22791809 DOI: 10.1093/carcin/bgs233] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Helicobacter pylori infection is the main risk factor for intestinal metaplasia (IM) and gastric cancer development. IM is a pre-neoplastic lesion, induced by the transcription factor CDX2, where the gastric mucosa is converted to an intestinal phenotype. We previously demonstrated that key elements of the bone morphogenetic protein (BMP) pathway co-localize with CDX2 in IM and upregulate CDX2 expression in gastric cell lines. These observations, together with the hypothesis that CDX2 could be repressed by SOX2, led us to test whether H. pylori, through BMPs, SOX2 and CDX2 could participate in a molecular network critical for the development of IM. AGS cells with and without SMAD4 knock-down were co-cultured with H. pylori or BMP2 to assess the expression of BMP pathway members as well as CDX2 and SOX2 by qPCR and western blot. Proximity ligation assay (PLA) was also performed to evaluate SMAD proteins interaction. Immunohistochemistry and western blot were performed in gastric samples from mice infected with Helicobacter spp. to measure Smad4, pSmad1/5/8, Cdx2 and Sox2 expression in vivo. Increased expression and activity of the BMP pathway accompanied by CDX2 upregulation and SOX2 downregulation were observed in AGS cells co-cultured with H. pylori or BMP2. These effects were impaired by downregulation of the BMP pathway. Finally, infected mice present BMP pathway upregulation, focal Cdx2 expression and decreased Sox2. These results provide a novel link between H. pylori infection and the BMP pathway in the regulation of intestinal and gastric-specific genes that might be relevant for gastric IM.
Collapse
Affiliation(s)
- Vânia Camilo
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this “organ” has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Collapse
Affiliation(s)
- Inna Sekirov
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon L. Russell
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - L. Caetano M. Antunes
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Bussière FI, Michel V, Mémet S, Avé P, Vivas JR, Huerre M, Touati E. H. pylori-induced promoter hypermethylation downregulates USF1 and USF2 transcription factor gene expression. Cell Microbiol 2010; 12:1124-33. [PMID: 20180799 DOI: 10.1111/j.1462-5822.2010.01457.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Helicobacter pylori infection is associated with the development of gastric adenocarcinoma. Upstream stimulatory factors USF1 and USF2 regulate the transcription of genes related to immune response, cell cycle and cell proliferation. A decrease in their expression is observed in human gastric epithelial cells infected with H. pylori, associated to a lower binding to their DNA E-box recognition site as shown by electrophoretic mobility shift assay. DNA methylation leads to gene silencing. The treatment of cells with 5'-azacytidine, an inhibitor of DNA methylation, restored the USF1 and USF2 gene expression in the presence of infection. Using promoter PCR methylation assay, a DNA hypermethylation was shown in the promoter region of USF1 and USF2 genes, in infected cells. The inhibition of USF1 and USF2 expression by H. pylori and the DNA hypermethylation in their gene promoter region was confirmed in gastric tissues isolated from 12 to 18 months infected mice. Our study demonstrated the involvement of USF1 and USF2 as molecular targets of H. pylori and the key role of DNA methylation in their regulation. These mechanisms occurred in the context of metaplastic lesions, suggesting that alteration of USF1 and USF2 levels could participate in the promotion of neoplastic process during H. pylori infection.
Collapse
|
7
|
Turner HL, Turner JR. Good fences make good neighbors: Gastrointestinal mucosal structure. Gut Microbes 2010; 1:22-29. [PMID: 21327113 PMCID: PMC3035135 DOI: 10.4161/gmic.1.1.11427] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/01/2010] [Accepted: 02/04/2010] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal lumen is home to over 400 species of microorganisms. The composition of this microbial community varies along the length of the gastrointestinal tract as a function of regional epithelial secretory activity as well as diet and other defined and undefined determinants. Improved understanding of the factors that impact luminal microbial populations and development of means to modulate gut microbes for therapeutic benefit hold great promise. The gastrointestinal epithelium, which regulates interactions between microbes and the mammalian host, is the topic of this review.
Collapse
Affiliation(s)
- Hannah L Turner
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Jerrold R Turner
- Department of Pathology; The University of Chicago; Chicago, IL USA
| |
Collapse
|
8
|
Retracted article: Interleukin-1beta and tumor necrosis factor-alpha regulation of CDX2 homeobox gene through nuclear factor kappa B-dependent pathway in the intestinal-type gastric cancer. Med Oncol 2009; 27:1155. [PMID: 19908169 DOI: 10.1007/s12032-009-9352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
|
9
|
Barros R, Pereira B, Duluc I, Azevedo M, Mendes N, Camilo V, Jacobs RJ, Paulo P, Santos-Silva F, van Seuningen I, van den Brink GR, David L, Freund JN, Almeida R. Key elements of the BMP/SMAD pathway co-localize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. J Pathol 2008; 215:411-20. [PMID: 18498120 DOI: 10.1002/path.2369] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori infection induces intestinal metaplasia of the stomach, a preneoplastic lesion associated with an increased risk for gastric cancer development. Intestinal metaplasia is induced by the intestine-specific transcription factor CDX2 but the mechanisms responsible for this ectopic expression have never been described. We hypothesized that the BMP/SMAD pathway has a role in CDX2 regulation, in this context, for the following reasons: (1) the BMP pathway is crucial for normal intestinal differentiation and (2) there is an influx of BMP2 and BMP4-producing cells to the stomach upon Helicobacter pylori infection. We evaluated the expression of key elements of the BMP pathway in human stomach specimens with IM. Growth factor treatments, with BMP2 and BMP4, were performed in cultured cells and a knock-down experiment of SMAD4 was done using RNAi. We showed overexpression in IM of BMP2/4, BMPR1A, and SMAD4 in 56% of IM foci, and pSMAD1/5/8 in 100% of IM foci as compared to adjacent mucosa. In vitro, treatment of AGS cells with BMP2 and BMP4 increased endogenous CDX2 expression as well as the intestinal differentiation markers MUC2 and LI-cadherin. On the other hand, SMAD4 knock-down led to decreased endogenous CDX2, MUC2, and LI-cadherin in AGS. Treatment of the SMAD4 knock-down cells had no influence on CDX2 expression as opposed to wild-type cells. A 9.3 kb CDX2 promoter could be transactivated by SMAD4 and SMAD1 in a cell-dependent manner. In conclusion, we identified for the first time that the BMP pathway is active in intestinal metaplasia and that BMP2 and BMP4 regulate CDX2 expression and promote intestinal differentiation through the canonical signal transducers.
Collapse
Affiliation(s)
- R Barros
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vauhkonen M, Vauhkonen H, Sipponen P. Helicobacter pylori infection induces a reversible expression of the CDX2 transcription factor protein in human gastric epithelium. Scand J Gastroenterol 2008; 43:915-21. [PMID: 19086163 DOI: 10.1080/00365520802014841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The homeobox gene CDX2 is implicated in the appearance of intestinal metaplasia in Helicobacter pylori gastritis. The aim of this study was to investigate whether CDX2 expression in gastric mucosa occurs before the appearance of overt intestinal metaplasia in H. pylori gastritis, and whether or not this expression is reversible. MATERIAL AND METHODS CDX2 was studied by immunohistochemistry in a cohort of 38 patients with H. pylori gastritis before and after eradication (mean follow-up 6.3 years) of H. pylori. A cohort of 49 individuals with healthy stomachs was analysed as a control. RESULTS In the control group no immunostaining of CDX2 in the epithelial cells of the gastric body was found, while in 57% of the cases a mild, aberrant nuclear immunostaining of CDX2 in the non-metaplastic epithelial cells in antrum, designated as "positive staining of single cells" (PSSC), was found. In H. pylori gastritis, the PSSC was seen in antrum and corpus in 100% and 26% of the cases, respectively. The prevalence of antral PSSC was significantly increased (on average by 4-fold) in H. pylori gastritis as compared with controls. After eradication of H. pylori, the prevalence of PSSC decreased significantly in antrum but not in corpus. CONCLUSIONS Expression of CDX2 at low intensity is common in the epithelium of normal antrum, and this expression is enhanced in H. pylori gastritis. Expression of CDX2 is reversible at least in antrum after eradication of H. pylori infection.
Collapse
Affiliation(s)
- Matti Vauhkonen
- Department ofMedicine, Helsinki University Hospital, Jorvi Hospital, Espoo, Finland.
| | | | | |
Collapse
|
11
|
Matsuda K, Yamauchi K, Matsumoto T, Sano K, Yamaoka Y, Ota H. Quantitative analysis of the effect of Helicobacter pylori on the expressions of SOX2, CDX2, MUC2, MUC5AC, MUC6, TFF1, TFF2, and TFF3 mRNAs in human gastric carcinoma cells. Scand J Gastroenterol 2008; 43:25-33. [PMID: 18938748 PMCID: PMC3128253 DOI: 10.1080/00365520701579795] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the phenotypic characters of carcinoma cells and the response of gastric epithelial cells to Helicobacter pylori (H. pylori) infection using the gastric carcinoma cell lines. MATERIAL AND METHODS Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to assess the effect of H. pylori infection on mRNA levels of transcription factors (SOX2 and CDX2), mucin core proteins (MUC2, MUC5AC, and MUC6), and trefoil factor family peptides (TFF) (TFF1, TFF2, and TFF3) in gastric carcinoma cells (AGS, MKN45, and KATO III cells). H. pylori ATCC 43504 and its isogenic cag pathogenicity island (PAI) deleted mutant were used. RESULTS These cell lines expressed mixed gastric and intestinal phenotypes. The intestinal phenotype predominated in AGS cells and gastric phenotypes in MKN45 and KATO III cells. In all three cell lines, H. pylori infection inhibited SOX2 mRNA expression, but induced the three TFFs mRNAs. In AGS cells, H. pylori induced cag PAI-dependent mRNA expression of CDX2, MUC2, MUC5AC, and MUC6. mRNA expressions of CDX2, MUC5AC, and MUC6 were inhibited in KATO III cells, whereas MUC2 mRNA expression was unchanged. In MKN45 cells, H. pylori induced the three MUCs mRNAs but inhibited CDX2 mRNA expression. CONCLUSIONS This study provides a useful platform for selecting appropriate cell lines to model H. pylori-related changes in the gastric epithelium that mirror the changes seen in vivo. The outcome of H. pylori infection may reflect changes in the mucus gel layer caused by altered expression of mucins and TFF peptides.
Collapse
Affiliation(s)
- Kazuyuki Matsuda
- Department of Laboratory Medicine, Shinshu University Hospital, Asahi, Matsumoto, Japan
| | - Kazuyoshi Yamauchi
- Department of Laboratory Medicine, Shinshu University Hospital, Asahi, Matsumoto, Japan
| | - Takehisa Matsumoto
- Department of Laboratory Medicine, Shinshu University Hospital, Asahi, Matsumoto, Japan
| | - Kenji Sano
- Department of Laboratory Medicine, Shinshu University Hospital, Asahi, Matsumoto, Japan
| | - Yoshio Yamaoka
- Department of Medicine/Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas, USA
| | - Hiroyoshi Ota
- Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
| |
Collapse
|
12
|
Ikeda H, Sasaki M, Ishikawa A, Sato Y, Harada K, Zen Y, Kazumori H, Nakanuma Y. Interaction of Toll-like receptors with bacterial components induces expression of CDX2 and MUC2 in rat biliary epithelium in vivo and in culture. J Transl Med 2007; 87:559-71. [PMID: 17417665 DOI: 10.1038/labinvest.3700556] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mechanism of transformation of biliary epithelium leading to intestinal metaplasia, which is significantly involved in biliary diseases, remains unclear. CDX2, an intestine-specific transcription factor, is thought to regulate intestinal mucin MUC2 (mucus core protein) expression. We took advantage of polycystic kidney (PCK) rats as a model of chronic suppurative cholangitis with intestinal metaplasia and of cultured biliary epithelial cells (BECs) from PCK rats to clarify the causal relation between bacterial components such as pathogen-associated molecular patterns (PAMPs) and the development of intestinal metaplasia of bile ducts. Histological, immunohistochemical, and in situ hybridization studies were conducted in PCK rat livers. In cultured BECs, CDX2 and MUC2 were expressed following treatment with PAMPs and inhibitors (anti-Toll-like receptor (TLR)2/TLR4 antibody, nuclear factor-kappaB (NF-kappaB) inhibitor MG132). Chronic suppurative cholangitis with intestinal metaplasia developed as the PCK rats aged, and intestinal metaplasia and aberrant CDX2 and MUC2 expression developed in parallel. Intraluminal bacteria and the expression of TLR2 and TLR4 in BECs were demonstrated in the bile ducts, showing chronic suppurative cholangitis. In cultured BECs, treatment with PAMPs induced upregulation of CDX2 and MUC2 expression, and this effect was abolished by pretreatment with anti-TLR2 and anti-TLR4 antibody and MG132. A knockdown of CDX2 by CDX2 small interfering RNA inhibited MUC2 expression in cultured BECs induced by PAMPs, and transfection of CDX2 expression vector induced MUC2 expression. In conclusion, bacterial components may induce upregulation of the CDX2 expression followed by MUC2 expression via TLR and the NF-kappaB system in cultured BECs, and could be related to the development of intestinal metaplasia of the bile ducts.
Collapse
Affiliation(s)
- Hiroko Ikeda
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Although chronic Helicobacter pylori infection is the strongest known risk factor for development of gastric adenocarcinoma, only a small proportion of infected individuals will ever develop tumours. This article discusses various bacterial, host and environmental factors which may influence an individual's susceptibility. RECENT FINDINGS Recent research on bacterial virulence factors has focussed upon the cag pathogenicity island, particularly its roles in regulating epithelial growth and adhesion. Studies of host genetic factors have included several analyses of polymorphisms in inflammatory cytokines in human cohorts. Animal studies have recently clarified the roles of dysregulated epithelial apoptosis, proliferation and differentiation pathways during gastric carcinogenesis, and novel experiments involving H. felis infection of bone marrow transplanted irradiated mice have suggested that gastric cancer may originate from bone marrow-derived stem cells. Important roles for signalling between epithelial and mesenchymal cells, particularly myofibroblasts, are also emerging. Recent research on the importance of environmental factors has demonstrated how helminth coinfection may protect against atrophic gastritis and T helper type 1 responses. SUMMARY Complex interactions between several bacterial, host genetic and environmental factors determine whether H. pylori infected individuals develop gastric carcinoma. The importance of bone marrow stem cell engraftment during human gastric neoplasia is an area requiring urgent investigation.
Collapse
Affiliation(s)
- D Mark Pritchard
- Division of Gastroenterology, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|