1
|
Yin M, Guan L, Zhang M, Li X, Qian P. ZFP36 Facilitates Senecavirus A (SVA) replication by inhibiting the production of type I interferon. Virus Res 2024; 350:199498. [PMID: 39547416 PMCID: PMC11736407 DOI: 10.1016/j.virusres.2024.199498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Zinc finger proteins (ZFPs) play an important role in the host-virus interplay. Zinc finger protein 36 is a member of the zinc finger protein 36 family, which includes two other paralogs, namely ZFP36L1 and ZFP36L2. Studies have demonstrated that ZFP36L1 acts as a host defender against influenza A virus and flaviviruses. However, the role of ZFP36 in host-virus interactions has not been thoroughly investigated. Here, we demonstrated that human zinc finger protein 36 (hZFP36) exhibited potent pro-viral activity during Senecavirus A infection. Overexpression of ZFP36 facilitated Senecavirus A infection, while hZFP36 knockdown inhibited viral replication. The ZF motifs of hZFP36 are key for promoting viral proliferation. hZFP36 stabilized Senecavirus A VP1 by binding to it. Furthermore, hZFP36 inhibited SeV-mediated IFN-β production through inducing caspase-dependent cleavage for MAVS. These findings provide insights into the mechanism of action of ZFP36 in host-virus interactions.
Collapse
Affiliation(s)
- Mengge Yin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lingyu Guan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Min Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Li J, Yu J, Shen A, Lai S, Liu Z, He TS. The RNA-binding proteins regulate innate antiviral immune signaling by modulating pattern recognition receptors. Virol J 2024; 21:225. [PMID: 39304943 PMCID: PMC11414252 DOI: 10.1186/s12985-024-02503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Viral infections pose significant threats to human health, leading to a diverse spectrum of infectious diseases. The innate immune system serves as the primary barrier against viruses and bacteria in the early stages of infection. A rapid and forceful antiviral innate immune response is triggered by distinguishing between self-nucleic acids and viral nucleic acids. RNA-binding proteins (RBPs) are a diverse group of proteins which contain specific structural motifs or domains for binding RNA molecules. In the last decade, numerous of studies have outlined that RBPs influence viral replication via diverse mechanisms, directly recognizing viral nucleic acids and modulating the activity of pattern recognition receptors (PRRs). In this review, we summarize the functions of RBPs in regulation of host-virus interplay by controlling the activation of PRRs, such as RIG-I, MDA5, cGAS and TLR3. RBPs are instrumental in facilitating the identification of viral RNA or DNA, as well as viral structural proteins within the cellular cytoplasm and nucleus, functioning as co-receptor elements. On the other hand, RBPs are capable of orchestrating the activation of PRRs and facilitating the transmission of antiviral signals to downstream adaptor proteins by post-translational modifications or aggregation. Gaining a deeper comprehension of the interaction between the host and viruses is crucial for the development of novel therapeutics targeting viral infections.
Collapse
Affiliation(s)
- Jianguo Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Graduate School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jingge Yu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Department of Blood Transfusion, Jingmen Central Hospital, Jingmen, China
| | - Ao Shen
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Graduate School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Suwen Lai
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Tian-Sheng He
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
3
|
Yin M, Qian P, Wang H, Zhao Q, Zhang H, Zheng Z, Zhang M, Lu Z, Li X. Foot-and-mouth disease virus (FMDV) negatively regulates ZFP36 protein expression to alleviate its antiviral activity. J Virol 2024; 98:e0111424. [PMID: 39194213 PMCID: PMC11406947 DOI: 10.1128/jvi.01114-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Zinc finger protein 36 (ZFP36) is a key regulator of inflammatory and cytokine production. However, the interplay between swine zinc-finger protein 36 (sZFP36) and foot-and-mouth disease virus (FMDV) has not yet been reported. Here, we demonstrate that overexpression of sZFP36 restricted FMDV replication, while the knockdown of sZFP36 facilitated FMDV replication. To subvert the antagonism of sZFP36, FMDV decreased sZFP36 protein expression through its non-structural protein 3C protease (3Cpro). Our results also suggested that 3Cpro-mediated sZFP36 degradation was dependent on its protease activity. Further investigation revealed that both N-terminal and C-terminal-sZFP36 could be degraded by FMDV and FMDV 3Cpro. In addition, both N-terminal and C-terminal-sZFP36 decreased FMDV replication. Moreover, sZFP36 promotes the degradation of FMDV structural proteins VP3 and VP4 via the CCCH-type zinc finger and NES domains of sZFP36. Together, our results confirm that sZFP36 is a host restriction factor that negatively regulates FMDV replication.IMPORTANCEFoot-and-mouth disease (FMD) is an infectious disease of animals caused by the pathogen foot-and-mouth disease virus (FMDV). FMD is difficult to prevent and control because there is no cross-protection between its serotypes. Thus, we designed this study to investigate virus-host interactions. We first demonstrate that swine zinc-finger protein 36 (sZFP36) impaired FMDV structural proteins VP3 and VP4 to suppress viral replication. To subvert the antagonism of sZFP36, FMDV and FMDV 3Cpro downregulate sZFP36 expression to facilitate FMDV replication. Taken together, the present study reveals a previously unrecognized antiviral mechanism for ZFP36 and elucidates the role of FMDV in counteracting host antiviral activity.
Collapse
Affiliation(s)
- Mengge Yin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| | - Haoyuan Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiongqiong Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huiyan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zixuan Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Min Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| |
Collapse
|
4
|
Nelson EV, Ross SJ, Olejnik J, Hume AJ, Deeney DJ, King E, Grimins AO, Lyons SM, Cifuentes D, Mühlberger E. The 3' Untranslated Regions of Ebola Virus mRNAs Contain AU-Rich Elements Involved in Posttranscriptional Stabilization and Decay. J Infect Dis 2023; 228:S488-S497. [PMID: 37551415 PMCID: PMC10651315 DOI: 10.1093/infdis/jiad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
The 3' untranslated regions (UTRs) of Ebola virus (EBOV) mRNAs are enriched in their AU content and therefore represent potential targets for RNA binding proteins targeting AU-rich elements (ARE-BPs). ARE-BPs are known to fine-tune RNA turnover and translational activity. We identified putative AREs within EBOV mRNA 3' UTRs and assessed whether they might modulate mRNA stability. Using mammalian and zebrafish embryo reporter assays, we show a conserved, ARE-BP-mediated stabilizing effect and increased reporter activity with the tested EBOV 3' UTRs. When coexpressed with the prototypic ARE-BP tristetraprolin (TTP, ZFP36) that mainly destabilizes its target mRNAs, the EBOV nucleoprotein (NP) 3' UTR resulted in decreased reporter gene activity. Coexpression of NP with TTP led to reduced NP protein expression and diminished EBOV minigenome activity. In conclusion, the enrichment of AU residues in EBOV 3' UTRs makes them possible targets for cellular ARE-BPs, leading to modulation of RNA stability and translational activity.
Collapse
Affiliation(s)
- Emily V Nelson
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Stephen J Ross
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Judith Olejnik
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Adam J Hume
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Dylan J Deeney
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Emily King
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Autumn O Grimins
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Shawn M Lyons
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Daniel Cifuentes
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Elke Mühlberger
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Jiang X, Xiao Y, Hou W, Yu J, He TS, Xu LG. The RNA-binding protein ZFP36 strengthens innate antiviral signaling by targeting RIG-I for K63-linked ubiquitination. J Cell Physiol 2023; 238:2348-2360. [PMID: 37565597 DOI: 10.1002/jcp.31088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
Innate immunity is the first line of defense against infections, which functions as a significant role in resisting pathogen invasion. Rapid immune response is initiated by pattern recognition receptors (PRRs) quickly distinguishing "self" and "non-self." Upon evolutionarily conserved pathogen-associated molecular pattern (PAMP) is recognized by PRRs, innate immune response against infection is triggered via an orchestration of molecular interaction, cytokines cascades, and immune cells. RIG-I plays a critical role in type I interferon (IFN-I) production by direct recognition of cytoplasmic double-stranded viral RNA. However, the activation mechanism of RIG-I is incompletely understood. In this study, we reported RNA-binding protein ZFP36 as a positive regulator of RIG-I-mediated IFN-I production. ZFP36 is a member of Zinc finger proteins (ZFPs) characterized by the zinc finger (ZnF) motif, which broadly involved gene transcription and signal transduction. However, its role in regulating antiviral innate immune signaling is still unclear. We found that ZFP36 associates with RIG-I and potentiates the FN-β production induced by SeV. Mechanistically, ZFP36 promotes K63-linked polyubiquitination of RIG-I, mostly at K154/K164/K172, thereby facilitating the activation of RIG-I during infection. While the mutant ZFP36 (C118S/C162S) failed to increase polyubiquitination of RIG-I and SeV induced FN-β. Our findings collectively demonstrated that ZFP36 acts as a positive regulator in antiviral innate immunity by targeting RIG-I for K63-linked ubiquitination, thus improving our understanding of the activation mechanism of RIG-I.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Yanping Xiao
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Wen Hou
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jingge Yu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tian-Sheng He
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liang-Guo Xu
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Damle VG, Wu K, Arouri DJ, Schirhagl R. Detecting free radicals post viral infections. Free Radic Biol Med 2022; 191:8-23. [PMID: 36002131 DOI: 10.1016/j.freeradbiomed.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Free radical generation plays a key role in viral infections. While free radicals have an antimicrobial effect on bacteria or fungi, their interplay with viruses is complicated and varies greatly for different types of viruses as well as different radical species. In some cases, radical generation contributes to the defense against the viruses and thus reduces the viral load. In other cases, radical generation induces mutations or damages the host tissue and can increase the viral load. This has led to antioxidants being used to treat viral infections. Here we discuss the roles that radicals play in virus pathology. Furthermore, we critically review methods that facilitate the detection of free radicals in vivo or in vitro in viral infections.
Collapse
Affiliation(s)
- V G Damle
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - K Wu
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - D J Arouri
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - R Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Zinc finger protein ZFP36L1 inhibits flavivirus infection by both 5'-3' XRN1 and 3'-5' RNA-exosome RNA decay pathways. J Virol 2021; 96:e0166521. [PMID: 34643435 DOI: 10.1128/jvi.01665-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc-finger protein 36, CCCH type-like 1 (ZFP36L1), containing tandem CCCH-type zinc-finger motifs with an RNA-binding property, plays an important role in cellular RNA metabolism mainly via RNA decay pathways. Recently, we demonstrated that human ZFP36L1 has potent antiviral activity against influenza A virus infection. However, its role in the host defense response against flaviviruses has not been addressed. Here, we demonstrate that ZFP36L1 functions as a host innate defender against flaviviruses, including Japanese encephalitis virus (JEV) and dengue virus (DENV). Overexpression of ZFP36L1 reduced JEV and DENV infection, and ZFP36L1 knockdown enhanced viral replication. ZFP36L1 destabilized the JEV genome by targeting and degrading viral RNA mediated by both 5'-3' XRN1 and 3'-5' RNA-exosome RNA decay pathways. Mutation in both zinc-finger motifs of ZFP36L1 disrupted RNA-binding and antiviral activity. Furthermore, the viral RNA sequences specifically recognized by ZFP36L1 were mapped to the 3'-untranslated region of the JEV genome with the AU-rich element (AUUUA) motif. We extend the function of ZFP36L1 to host antiviral defense by directly binding and destabilizing the viral genome via recruiting cellular mRNA decay machineries. Importance Cellular RNA-binding proteins are among the first lines of defense against various viruses, particularly RNA viruses. ZFP36L1 belongs to the CCCH-type zinc-finger protein family and has RNA-binding activity; it has been reported to directly bind to the AU-rich elements (AREs) of a subset of cellular mRNAs and then lead to mRNA decay by recruiting mRNA degrading enzymes. However, the antiviral potential of ZFP36L1 against flaviviruses has not yet been fully demonstrated. Here, we reveal the antiviral potential of human ZFP36L1 against Japanese encephalitis virus (JEV) and dengue virus (DENV). ZFP36L1 specifically targeted the ARE motif within viral RNA and triggered the degradation of viral RNA transcripts via cellular degrading enzymes, 5'-3' XRN1 and 3'-5' RNA exosome. These findings provide mechanistic insights into how human ZFP36L1 serves as a host antiviral factor to restrict flavivirus replication.
Collapse
|
8
|
Wang G, Zheng C. Zinc finger proteins in the host-virus interplay: multifaceted functions based on their nucleic acid-binding property. FEMS Microbiol Rev 2021; 45:fuaa059. [PMID: 33175962 DOI: 10.1093/femsre/fuaa059] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Zinc finger proteins (ZFPs) are a huge family comprised of massive, structurally diverse proteins characterized by zinc ion coordinating. They engage in the host-virus interplay in-depth and occupy a significant portion of the host antiviral arsenal. Nucleic acid-binding is the basic property of certain ZFPs, which draws increasing attention due to their immense influence on viral infections. ZFPs exert multiple roles on the viral replications and host cell transcription profiles by recognizing viral genomes and host mRNAs. Their roles could be either antiviral or proviral and were separately discussed. Our review covers the recent research progress and provides a comprehensive understanding of ZFPs in antiviral immunity based on their DNA/RNA binding property.
Collapse
Affiliation(s)
- Guanming Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xue Yuan Road, University Town, FuZhou Fujian, 350108, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xue Yuan Road, University Town, FuZhou Fujian, 350108, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, Canada, AB T2N 4N1
| |
Collapse
|
9
|
Zhang Y, Zhou J, Wei Z, Dong H, Yang D, Deng Y, Li J, Shi S, Sun Y, Lu H, Yuan J, Ni B, Wu Y, Tian Y, Han C. TTP-mediated regulation of mRNA stability in immune cells contributes to adaptive immunity, immune tolerance and clinical applications. RNA Biol 2021; 18:2150-2156. [PMID: 33866923 DOI: 10.1080/15476286.2021.1917185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Dendritic cells (DCs) form a sentinel network to induce protective immunity against pathogens or self-tolerance. mRNA stability is an important part of the post-transcriptional regulation (PTR) that controls the maturation and function of DCs. In this review, we summarize the effects of TTP-mediated regulation of mRNA stability in DCs, focusing on DC maturation and antigen presentation, T cell activation and differentiation, immune tolerance and inflammation. We also discuss the potential DC-based immune treatment for HIV+ patients through regulation of mRNA stability. This review proposes the regulation of mRNA stability as a novel immune therapy for various inflammatory diseases, such as arthritis and dermatitis.
Collapse
Affiliation(s)
- Yiwei Zhang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jian Zhou
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhiyuan Wei
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yuanyu Deng
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jiahui Li
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Saiyu Shi
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Sun
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Huimin Lu
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jizhao Yuan
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China.,Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China.,School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| |
Collapse
|
10
|
Lin RJ, Huang CH, Liu PC, Lin IC, Huang YL, Chen AY, Chiu HP, Shih SR, Lin LH, Lien SP, Yen LC, Liao CL. Zinc finger protein ZFP36L1 inhibits influenza A virus through translational repression by targeting HA, M and NS RNA transcripts. Nucleic Acids Res 2020; 48:7371-7384. [PMID: 32556261 PMCID: PMC7367194 DOI: 10.1093/nar/gkaa458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
ZFP36L1, a CCCH-type zinc finger protein, is an RNA-binding protein that participates in controlling cellular mRNA abundance and turnover by posttranscriptional regulation. Here, we demonstrated that ZFP36L1 has an important role in host defense against influenza A virus (IAV) infection. Overexpression of ZFP36L1 reduced IAV replication via translational repression of HA, M and NS RNA segment transcripts. IAV infection upregulated cellular ZFP36L1 expression, and endogenous ZFP36L1 knockdown significantly enhanced IAV replication. ZFP36L1 directly binds to IAV NS1 mRNA in the cytoplasm and blocks the expression and function of NS1 protein. Mutation of CCCH-type zinc finger domains of ZFP36L1 lost its antiviral potential and NS1 mRNA binding. Thus, ZFP36L1 can act as a host innate defense by targeting HA, M and NS mRNA transcripts to suppress viral protein translation.
Collapse
Affiliation(s)
- Ren-Jye Lin
- Institutional affiliations: 1National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,Ph.D. Program in Medical Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Chih-Heng Huang
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Ping-Cheng Liu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - I-Chieh Lin
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Yu-Ling Huang
- National institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - An-Yu Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Hsin-Ping Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Hsiung Lin
- Institutional affiliations: 1National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan
| | - Shu-Pei Lien
- National institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Chen Yen
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Len Liao
- Institutional affiliations: 1National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,National institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
11
|
Silwal P, Kim JK, Kim YJ, Jo EK. Mitochondrial Reactive Oxygen Species: Double-Edged Weapon in Host Defense and Pathological Inflammation During Infection. Front Immunol 2020; 11:1649. [PMID: 32922385 PMCID: PMC7457135 DOI: 10.3389/fimmu.2020.01649] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are inevitable sources for the generation of mitochondrial reactive oxygen species (mtROS) due to their fundamental roles in respiration. mtROS were reported to be bactericidal weapons with an innate effector function during infection. However, the controlled generation of mtROS is vital for the induction of efficient immune responses because excessive production of mtROS with mitochondrial damage leads to sustained inflammation, resulting in pathological outcomes such as sepsis. Here, we discuss the beneficial and detrimental roles of mtROS in the innate immune system during bacterial, viral, and fungal infections. Recent evidence suggests that several pathogens have evolved multiple strategies to modulate mtROS for their own benefit. We are just beginning to understand the mechanisms by which mtROS generation is regulated and how mtROS affect protective and pathological responses during infection. Several agents/small molecules that prevent the uncontrolled production of mtROS are known to be beneficial in the maintenance of tissue homeostasis during sepsis. mtROS-targeted approaches need to be incorporated into preventive and therapeutic strategies against a variety of infections.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
12
|
Transcriptional profiling of host cell responses to encephalomyocarditis virus (EMCV). Virol J 2017; 14:45. [PMID: 28259172 PMCID: PMC5336634 DOI: 10.1186/s12985-017-0718-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUD Encephalomyocarditis virus (EMCV) has been discovered on pig farms worldwide and can cause myocarditis in piglets and reproductive failure in sows. However, little is known about the host transcriptional responses to infection and host-pathogen interactions. METHODS In this study, transcription profiling was performed by Illumina RNA-Sequencing (RNA-seq) to identify EMCV induced differentially expressed genes in BHK-21 cells at serial time points (12, 24, and 30 h post infection (hpi)), using mock infected cells as control. RESULTS We identified 237, 241, and 207 differentially expressed genes (DEGs) respectively, majority of which were up-regulated. A large number of DEGs clustered into host defense, cellular signaling and metabolism categories. Moreover, short time series expression analysis revealed that 12 hpi was an important time point for expression change, indicating host virus resistance. CONCLUSIONS This RNA-seq analysis provides the first data for understanding the network of virus host interactions under EMCV infection in vitro, and for identifying host components which involved in the virus infection course.
Collapse
|
13
|
Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response. Proc Natl Acad Sci U S A 2017; 114:2681-2686. [PMID: 28213497 DOI: 10.1073/pnas.1621508114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The innate immune system senses RNA viruses by pattern recognition receptors (PRRs) and protects the host from virus infection. PRRs mediate the production of immune modulatory factors and direct the elimination of RNA viruses. Here, we show a unique PRR that mediates antiviral response. Tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP ribose) polymerase (TIPARP), a Cysteine3 Histidine (CCCH)-type zinc finger-containing protein, binds to Sindbis virus (SINV) RNA via its zinc finger domain and recruits an exosome to induce viral RNA degradation. TIPARP typically localizes in the nucleus, but it accumulates in the cytoplasm after SINV infection, allowing targeting of cytoplasmic SINV RNA. Redistribution of TIPARP is induced by reactive oxygen species (ROS)-dependent oxidization of the nuclear pore that affects cytoplasmic-nuclear transport. BCL2-associated X protein (BAX) and BCL2 antagonist/killer 1 (BAK1), B-cell leukemia/lymphoma 2 (BCL2) family members, mediate mitochondrial damage to generate ROS after SINV infection. Thus, TIPARP is a viral RNA-sensing PRR that mediates antiviral responses triggered by BAX- and BAK1-dependent mitochondrial damage.
Collapse
|
14
|
Alves LR, Goldenberg S. RNA-binding proteins related to stress response and differentiation in protozoa. World J Biol Chem 2016; 7:78-87. [PMID: 26981197 PMCID: PMC4768126 DOI: 10.4331/wjbc.v7.i1.78] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/23/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of gene expression. There are several distinct families of RBPs and they are involved in the cellular response to environmental changes, cell differentiation and cell death. The RBPs can differentially combine with RNA molecules and form ribonucleoprotein (RNP) complexes, defining the function and fate of RNA molecules in the cell. RBPs display diverse domains that allow them to be categorized into distinct families. They play important roles in the cellular response to physiological stress, in cell differentiation, and, it is believed, in the cellular localization of certain mRNAs. In several protozoa, a physiological stress (nutritional, temperature or pH) triggers differentiation to a distinct developmental stage. Most of the RBPs characterized in protozoa arise from trypanosomatids. In these protozoa gene expression regulation is mostly post-transcriptional, which suggests that some RBPs might display regulatory functions distinct from those described for other eukaryotes. mRNA stability can be altered as a response to stress. Transcripts are sequestered to RNA granules that ultimately modulate their availability to the translation machinery, storage or degradation, depending on the associated proteins. These aggregates of mRNPs containing mRNAs that are not being translated colocalize in cytoplasmic foci, and their numbers and size vary according to cell conditions such as oxidative stress, nutritional status and treatment with drugs that inhibit translation.
Collapse
|
15
|
Kozaki T, Takahama M, Misawa T, Matsuura Y, Akira S, Saitoh T. Role of zinc-finger anti-viral protein in host defense against Sindbis virus. Int Immunol 2015; 27:357-64. [PMID: 25758257 DOI: 10.1093/intimm/dxv010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/02/2015] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that type I interferon (IFN) mediates the host protective response to RNA viruses. However, the anti-viral effector molecules involved in this response have not been fully identified. Here, we show that zinc-finger anti-viral protein (ZAP), an IFN-inducible gene, plays a critical role in the elimination of Sindbis virus (SINV) in vitro and in vivo. The loss of ZAP greatly enhances the replication of SINV but does not inhibit type I IFN production in primary mouse embryonic fibroblasts (MEFs). ZAP binds and destabilizes SINV RNA, thereby suppressing the replication of SINV. Type I IFN fails to suppress SINV replication in ZAP-deficient MEFs, whereas the ectopic expression of ZAP is sufficient to suppress the replication of SINV in MEFs lacking the expression of type I IFN and the IFN-inducible genes. ZAP-deficient mice are highly susceptible to SINV infection, although they produce sufficient amounts of type I IFN. Therefore, ZAP is an RNA-sensing anti-viral effector molecule that mediates the type-I-IFN-dependent host defense against SINV.
Collapse
Affiliation(s)
- Tatsuya Kozaki
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Michihiro Takahama
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takuma Misawa
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tatsuya Saitoh
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Ertl R, Klein D. Transcriptional profiling of the host cell response to feline immunodeficiency virus infection. Virol J 2014; 11:52. [PMID: 24642186 PMCID: PMC3999937 DOI: 10.1186/1743-422x-11-52] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022] Open
Abstract
Background Feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat and an important animal model for human immunodeficiency virus (HIV) research. In contrast to HIV, only limited information is available on the transcriptional host cell response to FIV infections. This study aims to identify FIV-induced gene expression changes in feline T-cells during the early phase of the infection. Illumina RNA-sequencing (RNA-seq) was used identify differentially expressed genes (DEGs) at 24 h after FIV infection. Results After removal of low-quality reads, the remaining sequencing data were mapped against the cat genome and the numbers of mapping reads were counted for each gene. Regulated genes were identified through the comparison of FIV and mock-infected data sets. After statistical analysis and the removal of genes with insufficient coverage, we detected a total of 69 significantly DEGs (44 up- and 25 down-regulated genes) upon FIV infection. The results obtained by RNA-seq were validated by reverse transcription qPCR analysis for 10 genes. Discussion and conclusion Out of the most distinct DEGs identified in this study, several genes are already known to interact with HIV in humans, indicating comparable effects of both viruses on the host cell gene expression and furthermore, highlighting the importance of FIV as a model system for HIV. In addition, a set of new genes not previously linked to virus infections could be identified. The provided list of virus-induced genes may represent useful information for future studies focusing on the molecular mechanisms of virus-host interactions in FIV pathogenesis.
Collapse
Affiliation(s)
- Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria.
| | | |
Collapse
|
17
|
Exome analysis of HIV patients submitted to dendritic cells therapeutic vaccine reveals an association of CNOT1 gene with response to the treatment. J Int AIDS Soc 2014; 17:18938. [PMID: 24433985 PMCID: PMC3889223 DOI: 10.7448/ias.17.1.18938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/27/2013] [Indexed: 11/24/2022] Open
Abstract
Introduction With the aim of searching genetic factors associated with the response to an immune treatment based on autologous monocyte-derived dendritic cells pulsed with autologous inactivated HIV, we performed exome analysis by screening more than 240,000 putative functional exonic variants in 18 HIV-positive Brazilian patients that underwent the immune treatment. Methods Exome analysis has been performed using the ILLUMINA Infinium HumanExome BeadChip. zCall algorithm allowed us to recall rare variants. Quality control and SNP-centred analysis were done with GenABEL R package. An in-house implementation of the Wang method permitted gene-centred analysis. Results CCR4-NOT transcription complex, subunit 1 (CNOT1) gene (16q21), showed the strongest association with the modification of the response to the therapeutic vaccine (p=0.00075). CNOT1 SNP rs7188697 A/G was significantly associated with DC treatment response. The presence of a G allele indicated poor response to the therapeutic vaccine (p=0.0031; OR=33.00; CI=1.74–624.66), and the SNP behaved in a dominant model (A/A vs. A/G+G/G p=0.0009; OR=107.66; 95% CI=3.85–3013.31), being the A/G genotype present only in weak/transient responders, conferring susceptibility to poor response to the immune treatment. Discussion CNOT1 is known to be involved in the control of mRNA deadenylation and mRNA decay. Moreover, CNOT1 has been recently described as being involved in the regulation of inflammatory processes mediated by tristetraprolin (TTP). The TTP-CCR4-NOT complex (CNOT1 in the CCR4-NOT complex is the binding site for TTP) has been reported as interfering with HIV replication, through post-transcriptional control. Therefore, we can hypothesize that genetic variation occurring in the CNOT1 gene could impair the TTP-CCR4-NOT complex, thus interfering with HIV replication and/or host immune response. Conclusions Being aware that our findings are exclusive to the 18 patients studied with a need for replication, and that the genetic variant of CNOT1 gene, localized at intron 3, has no known functional effect, we propose a novel potential candidate locus for the modulation of the response to the immune treatment, and open a discussion on the necessity to consider the host genome as another potential variant to be evaluated when designing an immune therapy study.
Collapse
|
18
|
Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:666-79. [PMID: 23428348 PMCID: PMC3752887 DOI: 10.1016/j.bbagrm.2013.02.003] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
Abstract
Changes in mRNA stability and translation are critical control points in the regulation of gene expression, particularly genes encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenosine and uridine (AU)-rich elements (ARE), often located in the 3' untranslated regions (3'UTR) of mRNAs, are known to target transcripts for rapid decay. They are also involved in the regulation of mRNA stability and translation in response to extracellular cues. This review focuses on one of the best characterized ARE binding proteins, tristetraprolin (TTP), the founding member of a small family of CCCH tandem zinc finger proteins. In this survey, we have reviewed the current status of TTP interactions with mRNA and proteins, and discussed current thinking about TTP's mechanism of action to promote mRNA decay. We also review the proposed regulation of TTP's functions by phosphorylation. Finally, we have discussed emerging evidence for TTP operating as a translational regulator. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Seth A. Brooks
- Veterans Affairs Medical Center, White River Junction, Vermont, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Perry J. Blackshear
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
19
|
Kitagawa Y, Maeda-Sato M, Tanaka K, Tobiume M, Sawa H, Hasegawa H, Kojima A, Hall WW, Kurata T, Sata T, Takahashi H. Covalent bonded Gag multimers in human immunodeficiency virus type-1 particles. Microbiol Immunol 2009; 53:609-20. [PMID: 19903261 DOI: 10.1111/j.1348-0421.2009.00164.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The oligomerization of HIV-1 Gag and Gag-Pol proteins, which are assembled at the plasma membrane, leads to viral budding. The budding generally places the viral components under non-reducing conditions. Here the effects of non-reducing conditions on Gag structures and viral RNA protection were examined. Using different reducing conditions and SDS-PAGE, it was shown that oligomerized Gag possesses intermolecular covalent bonds under non-reducing conditions. In addition, it was demonstrated that the mature viral core contains a large amount of covalent bonded Gag multimers, as does the immature core. Viral genomic RNA becomes sensitive to ribonuclease in reducing conditions. These results suggest that, under non-reducing conditions, covalent bonded Gag multimers are formed within the viral particles and play a role in protection of the viral genome.
Collapse
Affiliation(s)
- Yoshinori Kitagawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
There have been recent, significant advances about the role of mRNA turnover in controlling gene expression in immune cells. Post‐transcriptional regulation of gene expression contributes to the characteristics of many of the processes underlying the immune response by ensuring early, rapid, and transient action. The emphasis of this review is on current work that deals with the regulation of mRNA decay during innate immunity against microbes and T cell activation as a model of the adaptive response.
Collapse
Affiliation(s)
- Khalid S A Khabar
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, P3354, mBC-03, Riyadh 11211, Saudi Arabia.
| |
Collapse
|