1
|
Huang X, Xie M, Lu X, Mei F, Song W, Liu Y, Chen L. The Roles of Periodontal Bacteria in Atherosclerosis. Int J Mol Sci 2023; 24:12861. [PMID: 37629042 PMCID: PMC10454115 DOI: 10.3390/ijms241612861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory vascular disease that constitutes a major underlying cause of cardiovascular diseases (CVD) and stroke. Infection is a contributing risk factor for AS. Epidemiological evidence has implicated individuals afflicted by periodontitis displaying an increased susceptibility to AS and CVD. This review concisely outlines several prevalent periodontal pathogens identified within atherosclerotic plaques, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. We review the existing epidemiological evidence elucidating the association between these pathogens and AS-related diseases, and the diverse mechanisms for which these pathogens may engage in AS, such as endothelial barrier disruption, immune system activation, facilitation of monocyte adhesion and aggregation, and promotion of foam cell formation, all of which contribute to the progression and destabilization of atherosclerotic plaques. Notably, the intricate interplay among bacteria underscores the complex impact of periodontitis on AS. In conclusion, advancing our understanding of the relationship between periodontal pathogens and AS will undoubtedly offer invaluable insights and potential therapeutic avenues for the prevention and management of AS.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yang Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
2
|
Visentin D, Gobin I, Maglica Ž. Periodontal Pathogens and Their Links to Neuroinflammation and Neurodegeneration. Microorganisms 2023; 11:1832. [PMID: 37513004 PMCID: PMC10385044 DOI: 10.3390/microorganisms11071832] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Pathogens that play a role in the development and progression of periodontitis have gained significant attention due to their implications in the onset of various systemic diseases. Periodontitis is characterized as an inflammatory disease of the gingival tissue that is mainly caused by bacterial pathogens. Among them, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Tannerella forsythia are regarded as the main periodontal pathogens. These pathogens elicit the release of cytokines, which in combination with their virulence factors induce chronic systemic inflammation and subsequently impact neural function while also altering the permeability of the blood-brain barrier. The primary objective of this review is to summarize the existing information regarding periodontal pathogens, their virulence factors, and their potential association with neuroinflammation and neurodegenerative diseases. We systematically reviewed longitudinal studies that investigated the association between periodontal disease and the onset of neurodegenerative disorders. Out of the 24 studies examined, 20 showed some degree of positive correlation between periodontal disease and neurodegenerative disorders, with studies focusing on cognitive function demonstrating the most robust effects. Therefore, periodontal pathogens might represent an exciting new approach to develop novel preventive treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- David Visentin
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Željka Maglica
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. Treponema denticola Has the Potential to Cause Neurodegeneration in the Midbrain via the Periodontal Route of Infection-Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6049. [PMID: 37297653 PMCID: PMC10252855 DOI: 10.3390/ijerph20116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common example of dementia. The neuropathological features of AD are the abnormal deposition of extracellular amyloid-β (Aβ) and intraneuronal neurofibrillary tangles with hyperphosphorylated tau protein. It is recognized that AD starts in the frontal cerebral cortex, and then it progresses to the entorhinal cortex, the hippocampus, and the rest of the brain. However, some studies on animals suggest that AD could also progress in the reverse order starting from the midbrain and then spreading to the frontal cortex. Spirochetes are neurotrophic: From a peripheral route of infection, they can reach the brain via the midbrain. Their direct and indirect effect via the interaction of their virulence factors and the microglia potentially leads to the host peripheral nerve, the midbrain (especially the locus coeruleus), and cortical damage. On this basis, this review aims to discuss the hypothesis of the ability of Treponema denticola to damage the peripheral axons in the periodontal ligament, to evade the complemental pathway and microglial immune response, to determine the cytoskeletal impairment and therefore causing the axonal transport disruption, an altered mitochondrial migration and the consequent neuronal apoptosis. Further insights about the central neurodegeneration mechanism and Treponema denticola's resistance to the immune response when aggregated in biofilm and its quorum sensing are suggested as a pathogenetic model for the advanced stages of AD.
Collapse
Affiliation(s)
- Flavio Pisani
- Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Valerio Pisani
- IRCCS, “Santa Lucia” Foundation, Neurology and Neurorehabilitation Unit, Via Ardeatina, 306, 00179 Rome, Italy
| | - Francesca Arcangeli
- Azienda Sanitaria Locale ASLRM1, Nuovo Regina Margherita Hospital, Geriatric Department, Advanced Centre for Dementia and Cognitive Disorders, Via Emilio Morosini, 30, 00153 Rome, Italy
| | - Alice Harding
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Simarjit Kaur Singhrao
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
4
|
Treponema denticola Induces Interleukin-36γ Expression in Human Oral Gingival Keratinocytes via the Parallel Activation of NF-κB and Mitogen-Activated Protein Kinase Pathways. Infect Immun 2022; 90:e0024722. [PMID: 36040155 PMCID: PMC9584330 DOI: 10.1128/iai.00247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oral epithelial barrier acts as both a physical barrier to the abundant oral microbiome and a sentry for the immune system that, in health, constrains the accumulation of the polymicrobial plaque biofilm. The immune homeostasis during gingivitis that is largely protective becomes dysregulated, unproductive, and destructive to gingival tissue as periodontal disease progresses to periodontitis. The progression to periodontitis is associated with the dysbiosis of the oral microbiome, with increasing prevalences and abundances of periodontal pathogens such as Treponema denticola. Despite the association of T. denticola with a chronic inflammatory disease, relatively little is known about gingival epithelial cell responses to T. denticola infection. Here, we characterized the transcriptome of gingival keratinocytes following T. denticola challenge and identified interleukin-36γ (IL-36γ) as the most differentially expressed cytokine. IL-36γ expression is regulated by p65 NF-κB and the activation of both the Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways downstream of Toll-like receptor 2 (TLR2). Finally, we demonstrate for the first time that mitogen- and stress-activated kinase 1 (MSK1) contributes to IL-36γ expression and may link the activation of MAPK and NF-κB signaling. These findings suggest that the interactions of T. denticola with the gingival epithelium lead to elevated IL-36γ expression, which may be a critical inducer and amplifier of gingival inflammation and subsequent alveolar bone loss.
Collapse
|
5
|
Mirmohammadsadegh N, Mashreghi N, Amin M. Potential Treponema denticola-based periodontal vaccine to resolve a global public health challenge: a narrative literature review. Expert Rev Vaccines 2022; 21:621-632. [PMID: 35195497 DOI: 10.1080/14760584.2022.2044798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Periodontitis is a diseased condition of the gum which imposes considerable costs on healthcare systems. It progresses further beyond the inflammation of supportive tissues of the teeth, and the collateral damages are closely associated with Alzheimer's disease, cardiovascular disease, and diabetes mellitus. AREAS COVERED A comprehensive literature review was performed to summarize published studies in English during the period of 1990-2021 to discuss the rationales for developing periodontal vaccine, cost-effectiveness analyses on the prevention of periodontitis, Treponema denticola-based vaccine candidates, as well as immunological mechanisms in animal models. EXPERT OPINION Preventive strategies against periodontitis may halt the onset of gum inflammation itself and the consequent chronic diseases. Considering the multi-microbial condition of periodontitis, an ideal periodontal vaccine should target multiple pathological pathways. Preventive approaches compared to surgical treatments evidently have significant impact on the healthcare budget and long-term health of the individuals in different communities. Despite many advances in periodontal vaccine research, there are still significant hurdles to overcome in developing a vaccine. Investment in research and development activities on key periodontal pathogens including Treponema denticola and Porphyromonas gingivalis in the foreseeable future is a worthy and cost-effective approach for the policymakers to prevent deleterious impacts of periodontitis.
Collapse
Affiliation(s)
- Navid Mirmohammadsadegh
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Pharmaceutical Microbiology Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Neshaut Mashreghi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Pharmaceutical Microbiology Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Pharmaceutical Microbiology Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Expression profile of macrophage migration inhibitory factor in periodontitis. Arch Oral Biol 2020; 122:105003. [PMID: 33279833 DOI: 10.1016/j.archoralbio.2020.105003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 10/29/2020] [Accepted: 11/22/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) is a pivotal mediator of host innate immunity and influences the development of several inflammatory diseases. The role of MIF in periodontitis is unclear. METHODS Eighteen periodontally healthy volunteers and 18 patients with stage III or IV periodontitis were enrolled. Blood samples and gingival tissues were collected from all individuals. The serum concentrations of MIF and MCP-1 were measured by ELISA. The protein and mRNA levels of MIF and MCP-1 in gingival tissue were evaluated by immunohistochemical staining and quantitative PCR. The levels of secreted MIF and MCP-1, as well as their mRNA levels, were determined by ELISA and quantitative PCR in oral epithelial cells infected with Porphyromonas gingivalis. RESULTS After adjusting for age, the level of MCP-1 was significantly higher in the serum and gingival tissue of periodontitis patients, as well as in infected epithelial cells. The serum concentration of MIF was increased in periodontitis patients (15.25 ± 2.16 ng/mL, P < 0.05) compared to healthy controls (10.43 ± 1.02 ng/mL). Increased MIF immunoreactivity was found in gingival epithelial tissue but not in the gingival connective tissue of periodontitis patients. The secretion of MIF was 3.82-fold higher in the supernatant of infected cells than in the supernatant of control (P < 0.01). No increase in the MIF mRNA level was found in either gingival tissue or epithelial cells. CONCLUSIONS Based on our limited evidence, we showed the level of MIF was related to periodontal conditions. P. gingivalis may contribute to the development and progression of periodontitis through MIF.
Collapse
|
7
|
Bloch S, Thurnheer T, Murakami Y, Belibasakis GN, Schäffer C. Behavior of two Tannerella forsythia strains and their cell surface mutants in multispecies oral biofilms. Mol Oral Microbiol 2017; 32:404-418. [PMID: 28382776 PMCID: PMC5600126 DOI: 10.1111/omi.12182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
As a member of subgingival multispecies biofilms, Tannerella forsythia is commonly associated with periodontitis. The bacterium has a characteristic cell surface (S-) layer modified with a unique O-glycan. Both the S-layer and the O-glycan were analyzed in this study for their role in biofilm formation by employing an in vitro multispecies biofilm model mimicking the situation in the oral cavity. Different T. forsythia strains and mutants with characterized defects in cell surface composition were incorporated into the model, together with nine species of select oral bacteria. The influence of the T. forsythia S-layer and attached glycan on the bacterial composition of the biofilms was analyzed quantitatively using colony-forming unit counts and quantitative real-time polymerase chain reaction, as well as qualitatively by fluorescence in situ hybridization and confocal laser scanning microscopy. This revealed that changes in the T. forsythia cell surface did not affect the quantitative composition of the multispecies consortium, with the exception of Campylobacter rectus cell numbers. The localization of T. forsythia within the bacterial agglomeration varied depending on changes in the S-layer glycan, and this also affected its aggregation with Porphyromonas gingivalis. This suggests a selective role for the glycosylated T. forsythia S-layer in the positioning of this species within the biofilm, its co-localization with P. gingivalis, and the prevalence of C. rectus. These findings might translate into a potential role of T. forsythia cell surface structures in the virulence of this species when interacting with host tissues and the immune system, from within or beyond the biofilm.
Collapse
Affiliation(s)
- Susanne Bloch
- Department of NanoBiotechnologyNanoGlycobiology unitUniversität für Bodenkultur ViennaViennaAustria
| | - Thomas Thurnheer
- Division of Oral Microbiology and ImmunologyInstitute of Oral BiologyCenter of Dental MedicineUniversity of ZürichZürichSwitzerland
| | - Yukitaka Murakami
- Department of Oral MicrobiologyAsahi University School of DentistryMizuhoGifuJapan
| | - Georgios N. Belibasakis
- Division of Cariology and EndodonticsDepartment of Dental MedicineKarolinska InstituteHuddingeSweden
| | - Christina Schäffer
- Department of NanoBiotechnologyNanoGlycobiology unitUniversität für Bodenkultur ViennaViennaAustria
| |
Collapse
|
8
|
Invasion of oral and aortic tissues by oral spirochete Treponema denticola in ApoE(-/-) mice causally links periodontal disease and atherosclerosis. Infect Immun 2014; 82:1959-67. [PMID: 24566627 DOI: 10.1128/iai.01511-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Treponema denticola is a predominantly subgingival oral spirochete closely associated with periodontal disease and has been detected in atherosclerosis. This study was designed to evaluate causative links between periodontal disease induced by chronic oral T. denticola infection and atherosclerosis in hyperlipidemic ApoE(-/-) mice. ApoE(-/-) mice (n = 24) were orally infected with T. denticola ATCC 35404 and were euthanized after 12 and 24 weeks. T. denticola genomic DNA was detected in oral plaque samples, indicating colonization of the oral cavity. Infection elicited significantly (P = 0.0172) higher IgG antibody levels and enhanced intrabony defects than sham infection. T. denticola-infected mice had higher levels of horizontal alveolar bone resorption than sham-infected mice and an associated significant increase in aortic plaque area (P ≤ 0.05). Increased atherosclerotic plaque correlated with reduced serum nitric oxide (NO) levels and increased serum-oxidized low-density lipoprotein (LDL) levels compared to those of sham-infected mice. T. denticola infection altered the expression of genes known to be involved in atherosclerotic development, including the leukocyte/endothelial cell adhesion gene (Thbs4), the connective tissue growth factor gene (Ctgf), and the selectin-E gene (Sele). Fluorescent in situ hybridization (FISH) revealed T. denticola clusters in both gingival and aortic tissue of infected mice. This is the first study examining the potential causative role of chronic T. denticola periodontal infection and vascular atherosclerosis in vivo in hyperlipidemic ApoE(-/-) mice. T. denticola is closely associated with periodontal disease and the rapid progression of atheroma in ApoE(-/-) mice. These studies confirm a causal link for active oral T. denticola infection with both atheroma and periodontal disease.
Collapse
|
9
|
Chaparro A, Blanlot C, Ramírez V, Sanz A, Quintero A, Inostroza C, Bittner M, Navarro M, Illanes SE. Porphyromonas gingivalis, Treponema denticola and toll-like receptor 2 are associated with hypertensive disorders in placental tissue: a case-control study. J Periodontal Res 2013; 48:802-9. [PMID: 23711357 DOI: 10.1111/jre.12074] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 11/29/2022]
Abstract
AIM(S) To explore the associations between the presence of periodontal pathogens and the expression of toll-like receptors (TLR-2 and TLR-4) in the placental tissue of patients with hypertensive disorders compared to the placentas of healthy normotensive patients. MATERIAL AND METHODS A case-control study was performed. From a cohort composed of 126 pregnant women, 33 normotensive healthy pregnant women were randomly selected, and 25 cases of patients with hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, were selected. Placental biopsy was obtained after aseptic placental collection at the time of delivery. All of the samples were processed and analysed for the detection of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Treponema denticola and Tannerella forsythia using the polymerase chain reaction (PCR) technique. Determination of the expressions of TLR-2 and TLR-4 was performed in samples of total purified protein isolated from placental tissues and analysed by ELISA. The data were assessed using descriptive statistics. The associations among variables were estimated through multiple logistic regression models and the Mann-Whitney test to evaluate the differences between the two groups. RESULTS A significant increase was observed in the expression of TLR-2 in the placentas of patients with hypertensive disorders (p = 0.04). Additionally, the multiple logistic regression models demonstrated an association between the presence of T. denticola and P. gingivalis in placental tissues and hypertensive disorders (OR: 9.39, p = 0.001, CI 95% 2.39-36.88 and OR: 7.59, p = 0.019, CI 95% 1.39-41.51, respectively). CONCLUSIONS In the present study, pregnant women with periodontal disease presented an association in the placental tissue between the presence of T. denticola and P. gingivalis and hypertensive disorders. Additionally, increased expression of TLR-2 was observed. However, further studies are required to determine the specific roles of periodontal pathogens and TLRs in the placental tissue of patients with pregnancy-related hypertensive disorders.
Collapse
Affiliation(s)
- A Chaparro
- Department of Periodontology, Dentistry Faculty, Universidad de los Andes, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Dashper SG, Seers CA, Tan KH, Reynolds EC. Virulence factors of the oral spirochete Treponema denticola. J Dent Res 2010; 90:691-703. [PMID: 20940357 DOI: 10.1177/0022034510385242] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is compelling evidence that treponemes are involved in the etiology of several chronic diseases, including chronic periodontitis as well as other forms of periodontal disease. There are interesting parallels with other chronic diseases caused by treponemes that may indicate similar virulence characteristics. Chronic periodontitis is a polymicrobial disease, and recent animal studies indicate that co-infection of Treponema denticola with other periodontal pathogens can enhance alveolar bone resorption. The bacterium has a suite of molecular determinants that could enable it to cause tissue damage and subvert the host immune response. In addition to this, it has several non-classic virulence determinants that enable it to interact with other pathogenic bacteria and the host in ways that are likely to promote disease progression. Recent advances, especially in molecular-based methodologies, have greatly improved our knowledge of this bacterium and its role in disease.
Collapse
Affiliation(s)
- S G Dashper
- Cooperative Research Centre for Oral Health, Melbourne Dental School and Bio21 Institute, The University of Melbourne, 720 Swanston Street, Victoria 3010, Australia
| | | | | | | |
Collapse
|
12
|
Bernardini C, Gaibani P, Zannoni A, Vocale C, Bacci ML, Piana G, Forni M, Sambri V. Treponema denticola alters cell vitality and induces HO-1 and Hsp70 expression in porcine aortic endothelial cells. Cell Stress Chaperones 2010; 15:509-16. [PMID: 20091146 PMCID: PMC3006620 DOI: 10.1007/s12192-009-0164-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/19/2009] [Accepted: 11/23/2009] [Indexed: 02/07/2023] Open
Abstract
Treponema denticola is an oral spirochete that is associated with periodontal disease and detected occasionally in extraoral lesions associated with systemic disorders such as cardiovascular diseases. The effect of specific bacterial products from oral treponemes on endothelium is poorly investigated. This study analyzed the ability of components of the outer membrane of T. denticola (OMT) to induce apoptosis and heat shock proteins (HO-1 and Hsp70) in porcine aortic endothelial cells (pAECs), compared with results obtained with classical pro-inflammatory lipopolysaccharide (LPS) treatment. Cellular apoptosis was detected when pAECs were treated with either OMT or LPS, suggesting that OMT can damage endothelium integrity by reducing endothelial cell vitality. Stimulation with OMT, similarly to LPS response, increased HO-1 and Hsp-70 protein expression in a time-dependent manner, correlating with a rise in HO-1 and Hsp-70 mRNA. Collectively, these results support the hypothesis that T. denticola alters endothelial cell function. Moreover, our in vitro experiments represent a preliminary investigation to further in vivo study using a pig model to elucidate how T. denticola leaves the initial endodontic site and participates in the development of several systemic diseases.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Morphophysiology and Animal Production (DIMORFIPA), University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ishihara K, Wawrzonek K, Shaw LN, Inagaki S, Miyamoto M, Potempa J. Dentipain, a Streptococcus pyogenes IdeS protease homolog, is a novel virulence factor of Treponema denticola. Biol Chem 2010; 391:1047-55. [PMID: 20635859 PMCID: PMC3153314 DOI: 10.1515/bc.2010.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Treponema denticola is a major pathogen of chronic periodontitis. Analysis of the T. denticola genome revealed a gene orthologous with a cysteine protease-encoding gene from Streptococcus pyogenes (IdeS). IdeS interferes with IgG-dependent opsonophagocytosis by specific cleavage of IgG molecules. Analysis of this gene (termed ideT) revealed it to encode a two-domain protein whose N-terminus is composed of tandem immunoglobulin-like domains followed by a C-terminal IdeS-like protease domain. In this study we show that during secretion the IdeT protein is processed into an N-terminal fragment which remains associated with the cell, and a C-terminal part released into the medium. Although the secreted domain of IdeT, termed dentipain, shows only 25% identity to the IdeS protease, the putative catalytic cysteine and histidine residues are strongly conserved. Recombinant dentipain cleaves the insulin β-chain, an activity which is inhibited by E-64, a diagnostic inhibitor of cysteine proteases. Apart from insulin no cleavage of other protein substrates was detected, suggesting that dentipain has oligopeptidase activity. A mutant strain was constructed expressing a modified IdeT variant, the dentipain domain of which was deleted. This strain was found to be significantly reduced in its abscess-forming activity compared with the parental strain in a murine abscess model, suggesting that dentipain contributes to the virulence of T. denticola.
Collapse
Affiliation(s)
- Kazuyuki Ishihara
- Oral Health Science Center, Tokyo Dental College, Chiba 261-8502, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Takayama S, Saitoh E, Kimizuka R, Yamada S, Kato T. Effect of eel galectin AJL-1 on periodontopathic bacterial biofilm formation and their lipopolysaccharide-mediated inflammatory cytokine induction. Int J Antimicrob Agents 2009; 34:355-9. [PMID: 19505801 DOI: 10.1016/j.ijantimicag.2009.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
Porphyromonas gingivalis, Prevotella intermedia and Aggregatibacter actinomycetemcomitans, infectious pathogenic bacteria found in oral biofilm, cause periodontal disease. The inhibitory effect of AJL-1, a galectin present in the skin mucus of the Japanese eel Anguilla japonica, on biofilm formation by each of these strains was investigated by staining adherent bacteria on culture plates with crystal violet. An ATP bioluminescence assay was used to determine whether inhibition of biofilm formation was due to the bactericidal activity of AJL-1. The effect of AJL-1 on cytokine induction in human umbilical vascular endothelial cells (HUVECs) by lipopolysaccharide (LPS) isolated from A. actinomycetemcomitans was also investigated by enzyme-linked immunosorbent assay (ELISA). AJL-1 significantly inhibited biofilm formation by A. actinomycetemcomitans strains Y4, ATCC 29523 and ATCC 29524 but not by any strain of P. gingivalis or P. intermedia, and showed no bactericidal activity against A. actinomycetemcomitans strains. AJL-1 markedly suppressed interleukin (IL)-6 and IL-8 induction in HUVECs by LPS from A. actinomycetemcomitans strains Y4 and ATCC 29523. These observations indicate that AJL-1 is an effective inhibitor of biofilm formation by A. actinomycetemcomitans as well as of inflammatory cytokine induction in HUVECs by LPS. These finding indicate that AJL-1 may be of therapeutic value in A. actinomycetemcomitans-associated periodontal diseases.
Collapse
Affiliation(s)
- Saori Takayama
- Department of Periodontology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba, Japan
| | | | | | | | | |
Collapse
|
15
|
Brissette CA, Pham TTT, Coats SR, Darveau RP, Lukehart SA. Treponema denticola does not induce production of common innate immune mediators from primary gingival epithelial cells. ACTA ACUST UNITED AC 2009; 23:474-81. [PMID: 18954353 DOI: 10.1111/j.1399-302x.2008.00452.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It has been hypothesized that the neutrophil chemoattractant interleukin-8 (IL-8) forms a gradient in the oral cavity, with the highest concentration of IL-8 produced closest to the bacterial biofilm. In periodontitis, this gradient is disrupted, impairing neutrophil chemotaxis to diseased sites. Treponema denticola is prominently associated with periodontal disease, yet little is known about its ability to modulate the production of inflammatory mediators by epithelial cells. Others have shown that dentilisin, the major outer membrane protease of T. denticola, degrades IL-8 in vitro. We now provide evidence that T. denticola also fails to induce IL-8 production from primary gingival epithelial cells (PGEC). The lack of IL-8 production is not explained by IL-8 degradation, because a protease mutant that does not degrade IL-8 does not induce IL-8 production with these stimuli either. The lack of innate immune mediator production may be a more global phenomenon because T. denticola fails to induce IL-6 or intercellular adhesion molecule 1 production from PGEC. T. denticola also fails to induce transcription of IL-8 and human beta-defensin-2 messenger RNA. The lack of immune mediator production is not explained by the failure of T. denticola to interact with Toll-like receptor 2 (TLR-2), as T. denticola stimulates nuclear factor-kappaB nuclear translocation in TLR-2-transfected HEK293 cells. Not only can T. denticola degrade the IL-8 present in the periodontal lesion, but this organism also fails to induce IL-8 production by PGEC. The lack of an epithelial cell response to T. denticola may contribute to the pathogenesis of periodontitis by failing to trigger chemotaxis of neutrophils into the periodontal pocket.
Collapse
Affiliation(s)
- C A Brissette
- Department of Pathobiology, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|