1
|
Pokorzynski ND, Thompson CC, Carabeo RA. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol 2017; 7:394. [PMID: 28951853 PMCID: PMC5599777 DOI: 10.3389/fcimb.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| | - Christopher C Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary's HospitalLondon, United Kingdom
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| |
Collapse
|
2
|
Ferritin heavy chain-mediated iron homoeostasis regulates expression of IL-10 inChlamydia trachomatis-infected HeLa cells. Cell Biol Int 2014; 35:793-8. [DOI: 10.1042/cbi20100463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Bellmann-Weiler R, Schroll A, Engl S, Nairz M, Talasz H, Seifert M, Weiss G. Neutrophil gelatinase-associated lipocalin and interleukin-10 regulate intramacrophage Chlamydia pneumoniae replication by modulating intracellular iron homeostasis. Immunobiology 2012; 218:969-78. [PMID: 23317919 PMCID: PMC3657155 DOI: 10.1016/j.imbio.2012.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 10/31/2012] [Accepted: 11/13/2012] [Indexed: 12/22/2022]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL/Lipocalin-2/Lcn-2) is a 25 kDa protein which is involved in host defence against certain Gram negative bacteria upon binding of iron loaded bacterial siderophores thereby limiting the availability of this essential nutrient to bacteria resulting in inhibition of their growth and pathogenicity. As iron is important for the growth of the intracellular bacterium Chlamydia pneumoniae we questioned whether Lcn-2 affects the course of this infection. We employed primary peritoneal macrophages obtained from wildtype and Lcn-2 −/− mice and RAW 264.7 cells which were infected with C. pneumoniae. In addition, we studied C. pneumoniae multiplication in vivo in mice receiving diets with varying iron contents. We analyzed C. pneumoniae numbers by immunohistochemistry and RT-PCR and studied the expression of iron metabolism and cytokine genes by RT-PCR, Western blot or ELISA. Infection with Chlamydiae ex vivo and in vivo revealed a significantly higher bacterial growth in peritoneal macrophages of Lcn-2 −/− than of wildtype mice. These differences were significantly more pronounced upon iron challenge, which stimulated bacterial growth. Accordingly, treatment with an anti-Lnc-2 antibody increased whereas addition of recombinant Lcn-2 reduced bacterial growth in infected macrophages. When investigating the underlying mechanisms we observed partly different expression of several iron metabolism genes between Lcn-2 +/+ and Lcn-2 −/− macrophages and most strikingly an increased formation of the anti-inflammatory cytokine IL-10 by Lcn-2 −/− macrophages. Upon treatment with an anti-IL10 antibody we experienced a significant increase of Chlamydial growth within Lcn-2 −/− macrophages along with a reduction of the major iron storage protein ferritin. Herein we provide first time evidence that Lcn-2 is involved in host defence against Chlamydia presumably by limiting the availability of iron to the pathogen. In the absence of Lcn-2, increased formation of IL-10 exerts protective effects by increasing the intracellular formation of ferritin, thereby reducing the access of iron for bacteria.
Collapse
Affiliation(s)
- Rosa Bellmann-Weiler
- Department of Internal Medicine VI, Clinical Immunology and Infectious Diseases, Medical University of Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
4
|
Chu H, Slepenkin A, Elofsson M, Keyser P, de la Maza LM, Peterson EM. Candidate vaginal microbicides with activity against Chlamydia trachomatis and Neisseriagonorrhoeae. Int J Antimicrob Agents 2010; 36:145-50. [PMID: 20605703 PMCID: PMC2902681 DOI: 10.1016/j.ijantimicag.2010.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 11/19/2022]
Abstract
Vaginal microbicides with activity towards organisms that cause sexually transmitted infections have been proposed as a strategy to reduce transmission. Small-molecule inhibitors of Chlamydia trachomatis serovar D belonging to the class of salicylidene acylhydrazides (INPs) have been shown to work through a mechanism that involves iron restriction. Expanding on this work, ten INPs were tested against a lymphogranuloma venereum strain of C. trachomatis (serovar L2), Neisseria gonorrhoeae, and hydrogen peroxide-producing Lactobacillus crispatus and Lactobacillus jensenii. Seven INPs had minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations of <50 microM towards C. trachomatis L2. Three INPs had a MIC <12.5 microM against N. gonorrhoeae. Inhibition was reversed by iron, holo-transferrin and holo-lactoferrin but not by the iron-poor forms of these compounds. The compounds exhibited no bactericidal activity toward Lactobacillus. The INPs were not cytotoxic to HeLa 229 cells. When INP 0341 was tested in a mouse model of a Chlamydia vaginal infection there was a significant reduction in the number of mice shedding C. trachomatis up to 4 days after infection (P<0.01). In summary, select INPs are promising vaginal microbicide candidates as they inhibit the growth of two common sexually transmitted organisms in vitro, are active in a mouse model against C. trachomatis, are not cytotoxic and do not inhibit organisms that compose the normal vaginal flora.
Collapse
Affiliation(s)
- Hencelyn Chu
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Anatoly Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | | | - Pia Keyser
- Creative Antibiotics Sweden AB, Umeå, Sweden
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Ellena M. Peterson
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Byrne GI. Chlamydia trachomatis strains and virulence: rethinking links to infection prevalence and disease severity. J Infect Dis 2010; 201 Suppl 2:S126-33. [PMID: 20470049 DOI: 10.1086/652398] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An unanswered question concerning prevalence and disease severity of Chlamydia trachomatis genital infection is whether more prevalent strains or strains more likely to cause serious disease complications are causally associated with specific virulence attributes. The major method for distinguishing chlamydial strains is based on differences in the major outer membrane protein (MOMP). A subset of MOMP serovars (D and E serovars) are easily the most prevalent strains identified worldwide, but MOMP serovar and genovar analyses have not yielded consistent strain-dependent virulence distinctions. Expansion of the definitions of chlamydial strains beyond the MOMP paradigm are needed to better understand virulence properties for this pathogen and how these properties reflect disease severity. Substantive genetic and phenotypic differences have emerged for the 2 major C. trachomatis pathobiotypes associated with either trachoma or sexually transmitted diseases, but differences within the sexually transmitted disease group have not yielded reliable disease severity attributes. A number of candidate virulence factors have been identified, including the polymorphic outer membrane autotransporter family of proteins, the putative large cytotoxin, type III secretion effectors, stress response proteins, and proteins or other regulatory factors produced by the cryptic plasmid. Continued work on development of a chlamydial gene transfer system and application of genomic approaches to large collections of clinical isolates will be required to associate key chlamydial virulence factors with prevalence and disease severity in a definitive way.
Collapse
Affiliation(s)
- Gerald I Byrne
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
6
|
Chlamydia trachomatis alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in HeLa-229 cells. J Biomed Biotechnol 2009; 2009:342032. [PMID: 19688112 PMCID: PMC2727623 DOI: 10.1155/2009/342032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/08/2009] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis (CT) is the leading cause of diseases related to reproductive health and iron plays important role in chlamydial pathogenesis. Iron homeostasis in chlamydia-infected cells is not clear thus far. This study shows that expression of the transferrin receptor (TfR) is downregulated, whereas expression of the ferritin heavy chain is upregulated in CT-infected HeLa-229 cells. Expression of iron-regulatory protein (IRP)-1 predominates over IRP-2 in infected cells. In infected cells, attenuated binding activity of IRP-iron responsive elements (IREs) is observed using the electrophoretic mobility-shift assay. These results suggest that iron homeostasis is modulated in CT-infected HeLa cells at the interface of acquisition and commensal use of iron.
Collapse
|
7
|
Vanover J, Sun J, Deka S, Kintner J, Duffourc MM, Schoborg RV. Herpes simplex virus co-infection-induced Chlamydia trachomatis persistence is not mediated by any known persistence inducer or anti-chlamydial pathway. MICROBIOLOGY-SGM 2008; 154:971-978. [PMID: 18310043 DOI: 10.1099/mic.0.2007/012161-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several inducers of chlamydial persistence have been described, including interferon-gamma (IFN-gamma), IFN-alpha, IFN-beta, and tumour necrosis factor-alpha (TNF-alpha) exposure, and iron, amino acid or glucose deprivation. A tissue-culture model of Chlamydia trachomatis/herpes simplex virus type-2 (HSV-2) co-infection indicates that viral co-infection stimulates the formation of persistent chlamydiae. This study was designed to ascertain whether co-infection-induced persistence is mediated by a previously characterized mechanism. Luminex assays indicate that IFN-gamma, IFN-alpha, and TNF-alpha are not released from co-infected cells. Semiquantitative RT-PCR studies demonstrate that IFN-beta, IFN-gamma, indoleamine 2,3-dioxygenase, lymphotoxin-alpha and inducible nitric oxide synthase are not expressed during co-infection. These data indicate that viral-induced persistence is not stimulated by any persistence-associated cytokine. Supplementation of co-infected cells with excess amino acids, iron-saturated holotransferrin, glucose or a combination of amino acids and iron does not restore chlamydial infectivity, demonstrating that HSV-2-induced persistence is not mediated by depletion of these nutrients. Finally, inclusions within co-infected cells continue to enlarge and incorporate C(6)-NBD-ceramide, indicating that HSV-2 co-infection does not inhibit vesicular transport to the developing inclusion. Collectively these data demonstrate that co-infection-induced persistence is not mediated by any currently characterized persistence inducer or anti-chlamydial pathway. Previous studies indicate that HSV-2 attachment and/or entry into the host cell is sufficient for stimulating chlamydial persistence, suggesting that viral attachment and/or entry may trigger a novel host pathway which restricts chlamydial development.
Collapse
Affiliation(s)
- Jennifer Vanover
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0579, USA
| | - Jingru Sun
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0579, USA
| | | | - Jennifer Kintner
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0579, USA
| | - Michelle M Duffourc
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Robert V Schoborg
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0579, USA
| |
Collapse
|
8
|
Abstract
Many intracellular pathogens infect macrophages and these pathogens require iron for growth. Here we demonstrate in vitro that the intracellular growth of Chlamydia psittaci, trachomatis, and Legionella pneumophila is regulated by the levels of intracellular iron. Macrophages that express cell surface ferroportin, the only known cellular iron exporter, limit the intracellular growth of these bacteria. Hepcidin is an antimicrobial peptide secreted by the liver in response to inflammation. Hepcidin binds to ferroportin mediating its internalization and degradation. Addition of hepcidin to infected macrophages enhanced the intracellular growth of these pathogens. Macrophages from flatiron mice, a strain heterozygous for a loss-of-function ferroportin mutation, showed enhanced intracellular bacterial growth independent of the presence of exogenous hepcidin. Macrophages, from wild-type or flatiron mice, incubated with the oral iron chelator deferriprone or desferasirox showed reduced intracellular bacterial growth suggesting that these chelators might be therapeutic in chronic intracellular bacterial infections.
Collapse
|
9
|
Cellier MF, Courville P, Campion C. Nramp1 phagocyte intracellular metal withdrawal defense. Microbes Infect 2007; 9:1662-70. [PMID: 18024118 DOI: 10.1016/j.micinf.2007.09.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural resistance-associated macrophage proteins (Nramp) are multispecific symporters facilitating proton-dependent import of divalent metals. Nramp1 restricts microbial access to essential micro-nutrients such as iron and manganese within professional phagosomes. Increased understanding of Nramp1 roles in human phagocytes will be useful for future therapeutic approaches against selected infectious and immune diseases.
Collapse
Affiliation(s)
- Mathieu F Cellier
- INRS-Institut Armand-Frappier, 531, Bd des prairies, Laval, Québec H7V 1B7, Canada.
| | | | | |
Collapse
|