1
|
Luo F, Wen Y, Zhao L, Su S, Lei W, Chen L, Chen C, Huang Q, Li Z. LncRNA ZEB1-AS1/miR-1224-5p / MAP4K4 axis regulates mitochondria-mediated HeLa cell apoptosis in persistent Chlamydia trachomatis infection. Virulence 2022; 13:444-457. [PMID: 35266440 PMCID: PMC8920228 DOI: 10.1080/21505594.2022.2044666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Persistent infection of Chlamydia trachomatis is thought to be responsible for the debilitating sequelae of blinding trachoma and infertility. Inhibition of host cell apoptosis is a persistent C. trachomatis infection mechanism. ZEB1-AS1 is a long non-coding RNA (lncRNA), which was up-regulated in persistent C. trachomatis infection in our previous work. In this study, we investigated the role of ZEB1-AS1 in persistent infection and the potential mechanisms. The results showed that ZEB1-AS1 was involved in the regulation of apoptosis, and targeted silencing of ZEB1-AS1 could increase the apoptosis rate of persistently infected cells. Mechanically, interference ZEB1-AS1 caused an apparent down-regulation of the Bcl-2/Bax ratio and the repression of the mitochondrial membrane potential with the remarkable release of cytochrome c, resulting in the significant elevation level of caspase-3 activation. Meanwhile, the luciferase reporter assay confirmed that ZEB1-AS1 acted as a sponge for miR-1224-5p to target MAP4K4. The regulatory effect of miR-1224-5p/MAP4K4 on persistent infection-induced antiapoptosis was regulated by ZEB1-AS1. In addition, ZEB1-AS1 inhibited the apoptosis of Chlamydia-infected cells by activating the MAPK/ERK pathway. In conclusion, we found a new molecular mechanism that the ZEB1-AS1/miR-1224-5p/MAP4K4 axis contributes to apoptosis resistance in persistent C. trachomatis infection. This work may help understand the pathogenic mechanisms of persistent C. trachomatis infection and reveal a potential therapeutic strategy for its treatment.
Collapse
Affiliation(s)
- Fangzhen Luo
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, P. R. China.,College of Medical Technology, Hunan Polytechnic of Environment and Biology, Hengyang, P. R. China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, P. R. China
| | - Lanhua Zhao
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, P. R. China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, P. R. China
| | - Wenbo Lei
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, P. R. China
| | - Lili Chen
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, P. R. China
| | - Chaoqun Chen
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, P. R. China
| | - Qiulin Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, P. R. China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, P. R. China
| |
Collapse
|
2
|
Sixt BS. Host cell death during infection with Chlamydia: a double-edged sword. FEMS Microbiol Rev 2021; 45:5902849. [PMID: 32897321 PMCID: PMC7794043 DOI: 10.1093/femsre/fuaa043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
The phylum Chlamydiae constitutes a group of obligate intracellular bacteria that infect a remarkably diverse range of host species. Some representatives are significant pathogens of clinical or veterinary importance. For instance, Chlamydia trachomatis is the leading infectious cause of blindness and the most common bacterial agent of sexually transmitted diseases. Chlamydiae are exceptionally dependent on their eukaryotic host cells as a consequence of their developmental biology. At the same time, host cell death is an integral part of the chlamydial infection cycle. It is therefore not surprising that the bacteria have evolved exquisite and versatile strategies to modulate host cell survival and death programs to their advantage. The recent introduction of tools for genetic modification of Chlamydia spp., in combination with our increasing awareness of the complexity of regulated cell death in eukaryotic cells, and in particular of its connections to cell-intrinsic immunity, has revived the interest in this virulence trait. However, recent advances also challenged long-standing assumptions and highlighted major knowledge gaps. This review summarizes current knowledge in the field and discusses possible directions for future research, which could lead us to a deeper understanding of Chlamydia's virulence strategies and may even inspire novel therapeutic approaches.
Collapse
Affiliation(s)
- Barbara S Sixt
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
3
|
Zhong W, Darville T, Zheng X, Fine J, Li Y. Generalized multi-SNP mediation intersection-union test. Biometrics 2020; 78:364-375. [PMID: 33316078 DOI: 10.1111/biom.13418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
To elucidate the molecular mechanisms underlying genetic variants identified from genome-wide association studies (GWAS) for a variety of phenotypic traits encompassing binary, continuous, count, and survival outcomes, we propose a novel and flexible method to test for mediation that can simultaneously accommodate multiple genetic variants and different types of outcome variables. Specifically, we employ the intersection-union test approach combined with the likelihood ratio test to detect mediation effect of multiple genetic variants via some mediator (e.g., the expression of a neighboring gene) on outcome. We fit high-dimensional generalized linear mixed models under the mediation framework, separately under the null and alternative hypothesis. We leverage Laplace approximation to compute the marginal likelihood of outcome and use coordinate descent algorithm to estimate corresponding parameters. Our extensive simulations demonstrate the validity of our proposed methods and substantial, up to 97%, power gains over alternative methods. Applications to real data for the study of Chlamydia trachomatis infection further showcase advantages of our methods. We believe our proposed methods will be of value and general interest in this post-GWAS era to disentangle the potential causal mechanism from DNA to phenotype for new drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Wujuan Zhong
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiaojing Zheng
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason Fine
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Statistics and Operations Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yun Li
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Li L, Wang C, Wen Y, Hu Y, Xie Y, Xu M, Liang M, Liu W, Liu L, Wu Y. ERK1/2 and the Bcl-2 Family Proteins Mcl-1, tBid, and Bim Are Involved in Inhibition of Apoptosis During Persistent Chlamydia psittaci Infection. Inflammation 2018; 41:1372-1383. [PMID: 29666982 DOI: 10.1007/s10753-018-0785-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chlamydia psittaci is an obligate intracellular pathogen that can cause zoonosis. Persistent C. psittaci infection can inhibit apoptosis in host cells, thus extending their survival and enabling them to complete their growth cycle. In this study, the antiapoptotic effects of persistent C. psittaci infection, induced by treatment with IFN-γ, were found to be associated with both the death receptor and the mitochondrial pathways of apoptosis. These effects were mediated by Bcl-2 family members, as evidenced by the decreased expression of proapoptotic proteins, such as tBid and Bim. Simultaneously, the antiapoptotic protein Mcl-1 was upregulated by persistent C. psittaci infection. Increased phosphorylation of ERK1/2 was observed; however, the expression of Bad, unlike that of other proapoptotic proteins, did not seem to be involved in this process. In summary, persistent chlamydial infection exerts antiapoptotic effects through both the death receptor and the mitochondrial pathways, in a process that is regulated by the ERK1/2 and apoptotic proteins of the Bcl-2 family.
Collapse
Affiliation(s)
- Li Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.,Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Chuan Wang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yating Wen
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yuming Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Yafeng Xie
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Man Xu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Mingxing Liang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Wei Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Liangzhuan Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yimou Wu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| |
Collapse
|
5
|
Zou Y, Lei W, Su S, Bu J, Zhu S, Huang Q, Li Z. Chlamydia trachomatis plasmid-encoded protein Pgp3 inhibits apoptosis via the PI3K-AKT-mediated MDM2-p53 axis. Mol Cell Biochem 2018; 452:167-176. [PMID: 30132214 DOI: 10.1007/s11010-018-3422-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/26/2017] [Indexed: 11/24/2022]
Abstract
Chlamydia trachomatis, the most common human pathogen that causes trachoma and sexually transmitted disease, has developed various strategies for inhibiting host cell apoptosis. Activation of the PI3K (phosphoinositide 3-kinase)/AKT-mediated MDM2 (murine double minute 2)-p53 pathway plays a prominent role in the apoptosis resistance arising from C. trachomatis infection. However, the precise upstream mechanisms by which C. trachomatis activates this pathway have not been adequately investigated. Here, we reveal that the secreted C. trachomatis plasmid-encoded protein Pgp3 inhibits apoptosis in HeLa cells. This process requires the activation of the PI3K/AKT signaling pathway, thereby leading to phosphorylation and nuclear entry of MDM2, and p53 degradation. PI3 K inhibitor LY294002 and MDM2 inhibitor Nutlin-3a block Pgp3-induced inhibition of HeLa cell apoptosis, suggesting a critical role for the PI3K/AKT pathway and its effect on the MDM2-p53 axis in Pgp3 anti-apoptotic activity.
Collapse
Affiliation(s)
- Yan Zou
- Institute of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, People's Republic of China.,Clinical Laboratory, Maternity and Child Health Care Hospital in Xiangtan, Xiangtan, 411100, Hunan, People's Republic of China
| | - Wenbo Lei
- Institute of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Shengmei Su
- Institute of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jichang Bu
- Institute of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Shunxin Zhu
- Clinical Laboratory, Maternity and Child Health Care Hospital in Xiangtan, Xiangtan, 411100, Hunan, People's Republic of China
| | - Qiulin Huang
- Department of General Surgery, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| | - Zhongyu Li
- Institute of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Aziz MA, Ushirokita R, Azuma Y. Identification of Chlamydia pneumoniae candidate genes that interact with human apoptotic factor caspase-9. J GEN APPL MICROBIOL 2018; 64:253-257. [PMID: 29760350 DOI: 10.2323/jgam.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chlamydia pneumoniae is an obligate intracellular pathogen responsible for respiratory diseases, including pneumonia and bronchitis, and is highly involved in chronic diseases, including atherosclerosis, asthma, and Alzheimer's disease. We previously showed that the host apoptotic factor caspase-9 played a crucial role for chlamydial multiplication and host apoptosis inhibition by chlamydial infection. To identify chlamydial genes interacting with human caspase-9, yeast two-hybrid screening was performed and 5 chlamydial genes, including Cpj0838 and pmpG were isolated from the C. pneumoniae genomic library. Pull-down experiments showed that caspase-9 physically bound to the Cpj0838 product and chlamydial cells, which contain PmpG proteins. This study could provide a clue to understanding host-Chlamydia interactions, especially the apoptosis repression by Chlamydia infection.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Graduate School of Biology-Oriented Science and Technology, Kindai University
| | - Rie Ushirokita
- Graduate School of Biology-Oriented Science and Technology, Kindai University
| | - Yoshinao Azuma
- Graduate School of Biology-Oriented Science and Technology, Kindai University
| |
Collapse
|
7
|
Waguia Kontchou C, Tzivelekidis T, Gentle IE, Häcker G. Infection of epithelial cells withChlamydia trachomatisinhibits TNF-induced apoptosis at the level of receptor internalization while leaving non-apoptotic TNF-signalling intact. Cell Microbiol 2016; 18:1583-1595. [DOI: 10.1111/cmi.12598] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Collins Waguia Kontchou
- Institute of Medical Microbiology and Hygiene; University Medical Centre Freiburg; Hermann-Herder-Str. 11 D-79104 Freiburg Germany
| | - Tina Tzivelekidis
- Institute of Medical Microbiology and Hygiene; University Medical Centre Freiburg; Hermann-Herder-Str. 11 D-79104 Freiburg Germany
| | - Ian E Gentle
- Institute of Medical Microbiology and Hygiene; University Medical Centre Freiburg; Hermann-Herder-Str. 11 D-79104 Freiburg Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene; University Medical Centre Freiburg; Hermann-Herder-Str. 11 D-79104 Freiburg Germany
| |
Collapse
|
8
|
Fischer A, Rudel T. Subversion of Cell-Autonomous Host Defense by Chlamydia Infection. Curr Top Microbiol Immunol 2016; 412:81-106. [PMID: 27169422 DOI: 10.1007/82_2016_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obligate intracellular bacteria entirely depend on the metabolites of their host cell for survival and generation of progeny. Due to their lifestyle inside a eukaryotic cell and the lack of any extracellular niche, they have to perfectly adapt to compartmentalized intracellular environment of the host cell and counteract the numerous defense strategies intrinsically present in all eukaryotic cells. This so-called cell-autonomous defense is present in all cell types encountering Chlamydia infection and is in addition closely linked to the cellular innate immune defense of the mammalian host. Cell type and chlamydial species-restricted mechanisms point a long-term evolutionary adaptation that builds the basis of the currently observed host and cell-type tropism among different Chlamydia species. This review will summarize the current knowledge on the strategies pathogenic Chlamydia species have developed to subvert and overcome the multiple mechanisms by which eukaryotic cells defend themselves against intracellular pathogens.
Collapse
Affiliation(s)
- Annette Fischer
- Department of Microbiology and Biocenter, University of Würzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Thomas Rudel
- Department of Microbiology and Biocenter, University of Würzburg, Am Hubland, 97074, Wuerzburg, Germany.
| |
Collapse
|
9
|
Messinger JE, Nelton E, Feeney C, Gondek DC. Chlamydia Infection Across Host Species Boundaries Promotes Distinct Sets of Transcribed Anti-Apoptotic Factors. Front Cell Infect Microbiol 2015; 5:96. [PMID: 26779446 PMCID: PMC4688367 DOI: 10.3389/fcimb.2015.00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/07/2015] [Indexed: 12/31/2022] Open
Abstract
Chlamydiae, obligate intracellular bacteria, cause significant human and veterinary associated diseases. Having emerged an estimated 700-million years ago, these bacteria have twice adapted to humans as a host species, causing sexually transmitted infection (C. trachomatis) and respiratory associated disease (C. pneumoniae). The principle mechanism of host cell defense against these intracellular bacteria is the induction of cell death via apoptosis. However, in the "arms race" of co-evolution, Chlamydiae have developed mechanisms to promote cell viability and inhibit cell death. Herein we examine the impact of Chlamydiae infection across multiple host species on transcription of anti-apoptotic genes. We found mostly distinct patterns of gene expression (Mcl1 and cIAPs) elicited by each pathogen-host pair indicating Chlamydiae infection across host species boundaries does not induce a universally shared host response. Understanding species specific host-pathogen interactions is paramount to deciphering how potential pathogens become emerging diseases.
Collapse
|
10
|
Rusconi B, Kebbi-Beghdadi C, Greub G. Trafficking of Estrella lausannensis in human macrophages. Pathog Dis 2015; 73:ftv027. [PMID: 25857735 DOI: 10.1093/femspd/ftv027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 11/14/2022] Open
Abstract
Estrella lausannensis is a new member of the Chlamydiales order. Like other Chlamydia-related bacteria, it is able to replicate in amoebae and in fish cell lines. A preliminary study investigating the pathogenic potential of Chlamydia-related bacteria found a correlation between antibody response to E. lausannensis and pneumonia in children. To further investigate the pathogenic potential of E. lausannensis, we determined its ability to grow in human macrophages and its intracellular trafficking. The replication in macrophages resulted in viable E. lausannensis; however, it caused a significant cytopathic effect. The intracellular trafficking of E. lausannensis was analyzed by determining the interaction of the Estrella-containing inclusions with various endocytic markers as well as host organelles. The E. lausannensis inclusion escaped the endocytic pathway rapidly avoiding maturation into phagolysosomes by preventing both EEA-1 and LAMP-1 accumulation. Compared to Waddlia chondrophila, another Chlamydia-related bacteria, the recruitment of mitochondria and endoplasmic reticulum was minimal for E. lausannensis inclusions. Estrella lausannensis appears to use a distinct source of nutrients and energy compared to other members of the Chlamydiales order. In conclusion, we hypothesize that E. lausannensis has a restricted growth in human macrophages, due to its reduced capacity to control programmed cell death.
Collapse
Affiliation(s)
- Brigida Rusconi
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, 1011, Switzerland
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, 1011, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, 1011, Switzerland
| |
Collapse
|
11
|
Dlugosz A, Muschiol S, Zakikhany K, Assadi G, D'Amato M, Lindberg G. Human enteroendocrine cell responses to infection with Chlamydia trachomatis: a microarray study. Gut Pathog 2014; 6:24. [PMID: 24959205 PMCID: PMC4067063 DOI: 10.1186/1757-4749-6-24] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 06/12/2014] [Indexed: 12/20/2022] Open
Abstract
Background Enteroendocrine cells (EEC) are highly specialized cells producing signalling molecules vital to the normal functions of the gut. Recently, we showed altered protein distribution in Chlamydia infected EEC in vitro. The aim of this study was to perform a microarray analysis of the response pattern of EEC from both large and small bowel to infection in vitro, using Chlamydia trachomatis infection as a model. Methods Two human EEC lines: LCC-18, derived from a neuroendocrine colonic tumour, and CNDT-2, derived from a small intestinal carcinoid, were infected using cultured C. trachomatis serovar LGV II strain 434 (ATCC VR-902B). Penicillin G was used to induce persistent infection. We used microarray analysis (Affymetrix GeneChip®) for studying changes in gene expression at different stages of infection. Results Twenty-four hours after active and persistent infection, 66 and 411 genes in LCC-18 and 68 and 170 genes in CNDT-2 cells, respectively showed mean expression ratios >2-fold compared to non-infected cells. These genes encoded factors regulating apoptosis, cell differentiation, transcription regulation, cytokine activity, amine biosynthesis and vesicular transport. We found significant differences in gene transcription levels between persistently infected and non-infected cells in 10 genes coding for different solute carrier transporters (SLC) and in 5 genes related to endocrine function (GABARAPL1, GRIP1, DRD2, SYT5 and SYT7). Conclusions Infected EEC cells exhibit cell-type specific patterns related to vesicular transport, secretion and neurotransmitters. EEC play a pivotal role in regulation of gut motility and an impairment of enteroendocrine function can contribute to motility disorders.
Collapse
Affiliation(s)
- Aldona Dlugosz
- Karolinska Institutet, Department of Medicine, Division of Gastroenterology and Hepatology, Karolinska University Hospital, Gastrocentrum Huddinge K63, Stockholm, Sweden
| | - Sandra Muschiol
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | | | - Ghazaleh Assadi
- Karolinska Institutet, Department of Biosciences and Nutrition, Stockholm, Sweden
| | - Mauro D'Amato
- Karolinska Institutet, Department of Biosciences and Nutrition, Stockholm, Sweden
| | - Greger Lindberg
- Karolinska Institutet, Department of Medicine, Division of Gastroenterology and Hepatology, Karolinska University Hospital, Gastrocentrum Huddinge K63, Stockholm, Sweden
| |
Collapse
|
12
|
Chlamydia trachomatis infection results in a modest pro-inflammatory cytokine response and a decrease in T cell chemokine secretion in human polarized endocervical epithelial cells. Cytokine 2013; 63:151-65. [PMID: 23673287 DOI: 10.1016/j.cyto.2013.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 01/19/2023]
Abstract
The endocervical epithelium is a major reservoir for Chlamydia trachomatis in women, and genital infections are extended in their duration. Epithelial cells act as mucosal sentinels by secreting cytokines and chemokines in response to pathogen challenge and infection. We therefore determined the signature cytokine and chemokine response of primary-like endocervix-derived epithelial cells in response to a common genital serovar (D) of C. trachomatis. For these studies, we used a recently-established polarized, immortalized, endocervical epithelial cell model (polA2EN) that maintains, in vitro, the architectural and functional characteristics of endocervical epithelial cells in vivo including the production of pro-inflammatory cytokines. PolA2EN cells were susceptible to C. trachomatis infection, and chlamydiae in these cells underwent a normal developmental cycle as determined by a one-step growth curve. IL1α protein levels were increased in both apical and basolateral secretions of C. trachomatis infected polA2EN cells, but this response did not occur until 72h after infection. Furthermore, protein levels of the pro-inflammatory cytokines and chemokines IL6, TNFα and CXCL8 were not significantly different between C. trachomatis infected polA2EN cells and mock infected cells at any time during the chlamydial developmental cycle up to 120h post-infection. Intriguingly, C. trachomatis infection resulted in a significant decrease in the constitutive secretion of T cell chemokines IP10 and RANTES, and this required a productive C. trachomatis infection. Examination of anti-inflammatory cytokines revealed a high constitutive apical secretion of IL1ra from polA2EN cells that was not significantly modulated by C. trachomatis infection. IL-11 was induced by C. trachomatis, although only from the basolateral membrane. These results suggest that C. trachomatis can use evasion strategies to circumvent a robust pro-inflammatory cytokine and chemokine response. These evasion strategies, together with the inherent immune repertoire of endocervical epithelial cells, may aid chlamydiae in establishing, and possibly sustaining, an intracellular niche in microenvironments of the endocervix in vivo.
Collapse
|
13
|
Persistent Chlamydia trachomatis infection of HeLa cells mediates apoptosis resistance through a Chlamydia protease-like activity factor-independent mechanism and induces high mobility group box 1 release. Infect Immun 2011; 80:195-205. [PMID: 22025513 DOI: 10.1128/iai.05619-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intracellular persistence of Chlamydia trachomatis has been implicated in the development of chronic infection that can result in pelvic inflammatory disease and tubal sterility. By inhibition of host cell apoptosis, chlamydiae have evolved a strategy to maintain the intracellular environment for replication and persistence. Both antiapoptotic host cell-derived factors and the chlamydial protease-like activity factor (CPAF) are involved in Chlamydia-mediated apoptosis resistance. Here, we show that in HeLa cells infected with gamma interferon (IFN-γ)-induced persistent C. trachomatis serovar D, the expression of CPAF is downregulated, and proapoptotic protease substrates are not cleaved. Persistent infection protected HeLa cells from apoptosis when they were exposed to staurosporine. Small-interfering RNA-mediated inhibition of myeloid cell leukemia 1 (Mcl-1) protein upregulation sensitized persistently infected cells for apoptosis. The inhibitor of apoptosis protein 2 (IAP-2) seems not to be relevant in this context because IAP-2 protein was not induced in response to IFN-γ treatment. Although apoptosis was inhibited, persistent infection caused cell membrane disintegration, as measured by the increased release of cytokeratin 18 from HeLa cells. Moreover, persistently infected cells released significantly increased amounts of high mobility group box 1 (HMGB1) protein which represents a proinflammatory damage-associated pattern molecule. The data of this study suggest that cells infected with persistent C. trachomatis are protected from apoptosis independently of CPAF but may promote chronic inflammation through HMGB1 release.
Collapse
|
14
|
Karyagina AS, Alexeevsky AV, Spirin SA, Zigangirova NA, Gintsburg AL. Effector proteins of chlamydiae. Mol Biol 2009. [DOI: 10.1134/s0026893309060016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Rajalingam K, Sharma M, Lohmann C, Oswald M, Thieck O, Froelich CJ, Rudel T. Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis-infected cells. PLoS One 2008; 3:e3102. [PMID: 18769617 PMCID: PMC2518856 DOI: 10.1371/journal.pone.0003102] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/29/2008] [Indexed: 02/04/2023] Open
Abstract
Chlamydia are obligate intracellular bacteria that cause variety of human diseases. Host cells infected with Chlamydia are protected against many different apoptotic stimuli. The induction of apoptosis resistance is thought to be an important immune escape mechanism allowing Chlamydia to replicate inside the host cell. Infection with C. trachomatis activates the Raf/MEK/ERK pathway and the PI3K/AKT pathway. Here we show that inhibition of these two pathways by chemical inhibitors sensitized C. trachomatis infected cells to granzyme B-mediated cell death. Infection leads to the Raf/MEK/ERK-mediated up-regulation and PI3K-dependent stabilization of the anti-apoptotic Bcl-2 family member Mcl-1. Consistently, interfering with Mcl-1 up-regulation sensitized infected cells for apoptosis induced via the TNF receptor, DNA damage, granzyme B and stress. Our data suggest that Mcl-1 up-regulation is primarily required to maintain apoptosis resistance in C. trachomatis-infected cells.
Collapse
Affiliation(s)
- Krishnaraj Rajalingam
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Manu Sharma
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Christine Lohmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Monique Oswald
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Oliver Thieck
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Thomas Rudel
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
16
|
Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ, Vucic D. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 2008; 283:24295-9. [PMID: 18621737 DOI: 10.1074/jbc.c800128200] [Citation(s) in RCA: 453] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The inhibitor of apoptosis (IAP) proteins are a family of anti-apoptotic regulators found in viruses and metazoans. c-IAP1 and c-IAP2 are recruited to tumor necrosis factor receptor 1 (TNFR1)-associated complexes where they can regulate receptor-mediated signaling. Both c-IAP1 and c-IAP2 have been implicated in TNFalpha-stimulated NF-kappaB activation. However, individual c-IAP1 and c-IAP2 gene knock-outs in mice did not reveal changes in TNF signaling pathways, and the phenotype of a combined deficiency of c-IAPs has yet to be reported. Here we investigate the role of c-IAP1 and c-IAP2 in TNFalpha-stimulated activation of NF-kappaB. We demonstrate that TNFalpha-induced NF-kappaB activation is severely diminished in the absence of both c-IAP proteins. In addition, combined absence of c-IAP1 and c-IAP2 rendered cells sensitive to TNFalpha-induced cell death. Using cells with genetic ablation of c-IAP1 or cells where the c-IAP proteins were eliminated using IAP antagonists, we show that TNFalpha-induced RIP1 ubiquitination is abrogated in the absence of c-IAPs. Furthermore, we reconstitute the ubiquitination process with purified components in vitro and demonstrate that c-IAP1, in collaboration with the ubiquitin conjugating enzyme (E2) enzyme UbcH5a, mediates polymerization of Lys-63-linked chains on RIP1. Therefore, c-IAP1 and c-IAP2 are required for TNFalpha-stimulated RIP1 ubiquitination and NF-kappaB activation.
Collapse
Affiliation(s)
- Eugene Varfolomeev
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|