1
|
Yang S, Zeng J, Yu J, Sun R, Tuo Y, Bai H. Insights into Chlamydia Development and Host Cells Response. Microorganisms 2024; 12:1302. [PMID: 39065071 PMCID: PMC11279054 DOI: 10.3390/microorganisms12071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Chlamydia infections commonly afflict both humans and animals, resulting in significant morbidity and imposing a substantial socioeconomic burden worldwide. As an obligate intracellular pathogen, Chlamydia interacts with other cell organelles to obtain necessary nutrients and establishes an intracellular niche for the development of a biphasic intracellular cycle. Eventually, the host cells undergo lysis or extrusion, releasing infectious elementary bodies and facilitating the spread of infection. This review provides insights into Chlamydia development and host cell responses, summarizing the latest research on the biphasic developmental cycle, nutrient acquisition, intracellular metabolism, host cell fates following Chlamydia invasion, prevalent diseases associated with Chlamydia infection, treatment options, and vaccine prevention strategies. A comprehensive understanding of these mechanisms will contribute to a deeper comprehension of the intricate equilibrium between Chlamydia within host cells and the progression of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology (The Educational Ministry of China), Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; (S.Y.); (J.Z.); (J.Y.); (R.S.); (Y.T.)
| |
Collapse
|
2
|
Udayasuryan B, Zhou Z, Ahmad RN, Sobol P, Deng C, Nguyen TTD, Kodikalla S, Morrison R, Goswami I, Slade DJ, Verbridge SS, Lu C. Fusobacterium nucleatum infection modulates the transcriptome and epigenome of HCT116 colorectal cancer cells in an oxygen-dependent manner. Commun Biol 2024; 7:551. [PMID: 38720110 PMCID: PMC11079022 DOI: 10.1038/s42003-024-06201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Fusobacterium nucleatum, a gram-negative oral bacterium, has been consistently validated as a strong contributor to the progression of several types of cancer, including colorectal (CRC) and pancreatic cancer. While previous in vitro studies have shown that intracellular F. nucleatum enhances malignant phenotypes such as cell migration, the dependence of this regulation on features of the tumor microenvironment (TME) such as oxygen levels are wholly uncharacterized. Here we examine the influence of hypoxia in facilitating F. nucleatum invasion and its effects on host responses focusing on changes in the global epigenome and transcriptome. Using a multiomic approach, we analyze epigenomic alterations of H3K27ac and global transcriptomic alterations sustained within a hypoxia and normoxia conditioned CRC cell line HCT116 at 24 h following initial infection with F. nucleatum. Our findings reveal that intracellular F. nucleatum activates signaling pathways and biological processes in host cells similar to those induced upon hypoxia conditioning in the absence of infection. Furthermore, we show that a hypoxic TME favors F. nucleatum invasion and persistence and therefore infection under hypoxia may amplify malignant transformation by exacerbating the effects induced by hypoxia alone. These results motivate future studies to investigate host-microbe interactions in tumor tissue relevant conditions that more accurately define parameters for targeted cancer therapies.
Collapse
Affiliation(s)
- Barath Udayasuryan
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Raffae N Ahmad
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Polina Sobol
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Tam T D Nguyen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Shivanie Kodikalla
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Ryan Morrison
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Ishan Goswami
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Daniel J Slade
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Scott S Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Feng SY, Hauck Y, Morgene F, Mohammedi R, Mirouze N. The complex regulation of competence in Staphylococcus aureus under microaerobic conditions. Commun Biol 2023; 6:512. [PMID: 37173437 PMCID: PMC10182052 DOI: 10.1038/s42003-023-04892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
To perform natural transformation, one of the three main Horizontal Gene Transfer mechanisms, bacteria need to enter a physiological differentiated state called genetic competence. Interestingly, new bacteria displaying such aptitude are often discovered, and one of the latest is the human pathogen Staphylococcus aureus.Here, we show an optimized protocol, based on planktonic cells cultures, leading to a large percentage of the population activating the development of competence and a significant improvement of S. aureus natural transformation efficiencies. Taking advantage of these conditions, we perform transcriptomics analyses to characterize the regulon of each central competence regulator. SigH and ComK1 are both found essential for activating natural transformation genes but also important for activation or repression of peripheral functions. Even though ComK2 is not found important for the control of transformation genes, its regulon shows an important overlap with that of SigH and ComK1. Finally, we propose that microaerobic conditions, sensed by the SrrAB two-component system, are key to activate competence in S. aureus.
Collapse
Affiliation(s)
- Shi Yuan Feng
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Yolande Hauck
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Fedy Morgene
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Roza Mohammedi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Nicolas Mirouze
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France.
| |
Collapse
|
4
|
Graspeuntner S, Koethke K, Scholz C, Semmler L, Lupatsii M, Kirchhoff L, Herrmann J, Rox K, Wittstein K, Käding N, Hanker LC, Stadler M, Brönstrup M, Müller R, Shima K, Rupp J. Sorangicin A Is Active against Chlamydia in Cell Culture, Explanted Fallopian Tubes, and Topical In Vivo Treatment. Antibiotics (Basel) 2023; 12:antibiotics12050795. [PMID: 37237698 DOI: 10.3390/antibiotics12050795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Current treatment of Chlamydia trachomatis using doxycycline and azithromycin introduces detrimental side effects on the host's microbiota. As a potential alternative treatment, the myxobacterial natural product sorangicin A (SorA) blocks the bacterial RNA polymerase. In this study we analyzed the effectiveness of SorA against C. trachomatis in cell culture, and explanted fallopian tubes and systemic and local treatment in mice, providing also pharmacokinetic data on SorA. Potential side effects of SorA on the vaginal and gut microbiome were assessed in mice and against human-derived Lactobacillus species. SorA showed minimal inhibitory concentrations of 80 ng/mL (normoxia) to 120 ng/mL (hypoxia) against C. trachomatis in vitro and was eradicating C. trachomatis at a concentration of 1 µg/mL from fallopian tubes. In vivo, SorA reduced chlamydial shedding by more than 100-fold within the first days of infection by topical application corresponding with vaginal detection of SorA only upon topical treatment, but not after systemic application. SorA changed gut microbial composition during intraperitoneal application only and did neither alter the vaginal microbiota in mice nor affect growth of human-derived lactobacilli. Additional dose escalations and/or pharmaceutical modifications will be needed to optimize application of SorA and to reach sufficient anti-chlamydial activity in vivo.
Collapse
Affiliation(s)
- Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| | - Katharina Koethke
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
| | - Celeste Scholz
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
| | - Lea Semmler
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
| | - Mariia Lupatsii
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
| | - Laura Kirchhoff
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
| | - Jennifer Herrmann
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Katharina Rox
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Kathrin Wittstein
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Nadja Käding
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| | - Lars C Hanker
- Department of Obstetrics and Gynecology, University Hospital of Schleswig Holstein, 23538 Luebeck, Germany
| | - Marc Stadler
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mark Brönstrup
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| |
Collapse
|
5
|
Mandras N, Argenziano M, Prato M, Roana J, Luganini A, Allizond V, Tullio V, Finesso N, Comini S, Bressan BE, Pecoraro F, Giribaldi G, Troia A, Cavalli R, Cuffini AM, Banche G. Antibacterial and Antifungal Efficacy of Medium and Low Weight Chitosan-Shelled Nanodroplets for the Treatment of Infected Chronic Wounds. Int J Nanomedicine 2022; 17:1725-1739. [PMID: 35444418 PMCID: PMC9015045 DOI: 10.2147/ijn.s345553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Medium versus low weight (MW vs LW) chitosan-shelled oxygen-loaded nanodroplets (cOLNDs) and oxygen-free nanodroplets (cOFNDs) were comparatively challenged for biocompatibility on human keratinocytes, for antimicrobial activity against four common infectious agents of chronic wounds (CWs) – methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Candida albicans and C. glabrata – and for their physical interaction with cell walls/membranes. Methods cNDs were characterized for morphology and physico-chemical properties by microscopy and dynamic light scattering. In vitro oxygen release from cOLNDs was measured through an oximeter. ND biocompatibility and ability to promote wound healing in human normoxic/hypoxic skin cells were challenged by LDH and MTT assays using keratinocytes. ND antimicrobial activity was investigated by monitoring upon incubation with/without MW or LW cOLNDs/cOFNDs either bacteria or yeast growth over time. The mechanical interaction between NDs and microorganisms was also assessed by confocal microscopy. Results LW cNDs appeared less toxic to keratinocytes than MW cNDs. Based on cell counts, either MW or LW cOLNDs and cOFNDs displayed long-term antimicrobial efficacy against S. pyogenes, C. albicans, and C. glabrata (up to 24 h), whereas a short-term cytostatic effects against MRSA (up to 6 h) was revealed. The internalization of all ND formulations by all four microorganisms, already after 3 h of incubation, was showed, with the only exception to MW cOLNDs/cOFNDs that adhered to MRSA walls without being internalized even after 24 h. Conclusion cNDs exerted bacteriostatic and fungistatic effects, due to the presence of chitosan in the outer shell and independently of oxygen addition in the inner core. The duration of such effects strictly depends on the characteristics of each microbial species, and not on the molecular weight of chitosan in ND shells. However, LW chitosan was better tolerated by human keratinocytes than MW. For these reasons, the use of LW NDs should be recommended in future research to assess cOLND efficacy for the treatment of infected CWs.
Collapse
Affiliation(s)
- Narcisa Mandras
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Turin, 10125, Italy
| | - Mauro Prato
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| | - Janira Roana
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, Turin, 10123, Italy
| | - Valeria Allizond
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
- Correspondence: Valeria Allizond, Department of Public Health and Pediatric Sciences, University of Torino, Via Santena 9, Turin, 10126, Italy, Tel +390116705644, Fax +390112365644, Email
| | - Vivian Tullio
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| | - Nicole Finesso
- Department of Oncology, University of Torino, Turin, 10126, Italy
| | - Sara Comini
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| | | | | | | | - Adriano Troia
- Istituto Nazionale di Ricerca Metrologica, Turin, 10135, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Turin, 10125, Italy
| | - Anna Maria Cuffini
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| | - Giuliana Banche
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| |
Collapse
|
6
|
Wolf EA, Rettig HC, Lupatsii M, Schlüter B, Schäfer K, Friedrich D, Graspeuntner S, Rupp J. Culturomics Approaches Expand the Diagnostic Accuracy for Sexually Transmitted Infections. Int J Mol Sci 2021; 22:ijms221910815. [PMID: 34639153 PMCID: PMC8509341 DOI: 10.3390/ijms221910815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023] Open
Abstract
Sexually transmitted infections (STIs) are a major health concern with clinical manifestations being acknowledged to cause severe reproductive impairment. Research in infectious diseases has been centered around the known major pathogens for decades. However, we have just begun to understand that the microbiota of the female genital tract is of particular importance for disease initiation, infection progression, and pathological outcome. Thus, we are now aware that many poorly described, partially not yet known, or cultured bacteria may pave the way for an infection and/or contribute to disease severity. While sequencing-based methods are an important step in diagnosing STIs, culture-based methods are still the gold-standard method in diagnostic routine, providing the opportunity to distinguish phenotypic traits of bacteria. However, current diagnostic culture routines suffer from several limitations reducing the content of information about vaginal microbiota. A detailed characterization of microbiota-associated factors is needed to assess the impact of single-bacterial isolates from the vaginal community on vaginal health and the containment of STIs. Here we provide current concepts to enable modern culture routines and create new ideas to improve diagnostic approaches with a conjunct usage of bioinformatics. We aim to enable scientists and physicians alike to overcome long-accepted limitations in culturing bacteria of interest to the human health. Eventually, this may improve the quality of culture-based diagnostics, facilitate a research interface, and lead to a broader understanding of the role of vaginal microbiota in reproductive health and STIs.
Collapse
Affiliation(s)
- Ellinor Anna Wolf
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
| | - Hannah Clara Rettig
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
| | - Mariia Lupatsii
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
| | - Britta Schlüter
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany;
| | - Kathrin Schäfer
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
| | - Dirk Friedrich
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
- Correspondence:
| |
Collapse
|
7
|
Comparative Evaluation of Different Chitosan Species and Derivatives as Candidate Biomaterials for Oxygen-Loaded Nanodroplet Formulations to Treat Chronic Wounds. Mar Drugs 2021; 19:md19020112. [PMID: 33672056 PMCID: PMC7919482 DOI: 10.3390/md19020112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Persistent hypoxia is a main clinical feature of chronic wounds. Intriguingly, oxygen-loaded nanodroplets (OLNDs), filled with oxygen-solving 2H,3H-decafluoropentane and shelled with polysaccharides, have been proposed as a promising tool to counteract hypoxia by releasing a clinically relevant oxygen amount in a time-sustained manner. Here, four different types of chitosan (low or medium weight (LW or MW), glycol-(G-), and methylglycol-(MG-) chitosan) were compared as candidate biopolymers for shell manufacturing. The aim of the work was to design OLND formulations with optimized physico-chemical characteristics, efficacy in oxygen release, and biocompatibility. All OLND formulations displayed spherical morphology, cationic surfaces, ≤500 nm diameters (with LW chitosan-shelled OLNDs being the smallest), high stability, good oxygen encapsulation efficiency, and prolonged oxygen release kinetics. Upon cellular internalization, LW, MW, and G-chitosan-shelled nanodroplets did not significantly affect the viability, health, or metabolic activity of human keratinocytes (HaCaT cell line). On the contrary, MG-chitosan-shelled nanodroplets showed very poor biocompatibility. Combining the physico-chemical and the biological results obtained, LW chitosan emerges as the best candidate biopolymer for future OLND application as a skin device to treat chronic wounds.
Collapse
|
8
|
Loeper N, Graspeuntner S, Ledig S, Kaufhold I, Hoellen F, Schiefer A, Henrichfreise B, Pfarr K, Hoerauf A, Shima K, Rupp J. Elaborations on Corallopyronin A as a Novel Treatment Strategy Against Genital Chlamydial Infections. Front Microbiol 2019; 10:943. [PMID: 31134007 PMCID: PMC6514060 DOI: 10.3389/fmicb.2019.00943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/15/2019] [Indexed: 11/13/2022] Open
Abstract
Ascending Chlamydia trachomatis infection causes functional damage to the fallopian tubes, which may lead to ectopic pregnancy and infertility in women. Treatment failures using the standard regimens of doxycycline and azithromycin have been observed. We tested the polyketide-derived α-pyrone antibiotic Corallopyronin A (CorA) that inhibits the bacterial DNA dependent RNA polymerase and has strong activity against various extracellular and some intracellular bacteria. Extensive testing in cell culture infection models and in an ex vivo human fallopian tube model under different oxygen concentrations was performed to assess the anti-chlamydial efficacy of CorA at physiological conditions. CorA showed high efficacy against C. trachomatis (MICN/H: 0.5 μg/mL for serovar D and L2), C. muridarum (MICN/H: 0.5 μg/mL), and C. pneumoniae (MICN/H: 1 μg/mL) under normoxic (N) and hypoxic (H) conditions. Recoverable inclusion forming units were significantly lower already at 0.25 μg/mL for all tested chlamydiae. CorA at a concentration of 1 μg/mL was also effective against already established C. trachomatis and C. pneumoniae infections (up to 24 h.p.i.) in epithelial cells, while efficacy against C. muridarum was limited to earlier time points. A preliminary study using a C. muridarum genital infection model revealed corresponding limitations in the efficacy. Importantly, in an ex vivo human fallopian tube model, the growth of C. trachomatis was significantly inhibited by CorA at concentrations of 1–2 μg/mL under normoxic and hypoxic conditions. The overall high efficacies of CorA against C. trachomatis in cell culture and an ex vivo human fallopian tube model under physiological oxygen concentrations qualifies this drug as a candidate that should be further investigated.
Collapse
Affiliation(s)
- Nathalie Loeper
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Svea Ledig
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Inga Kaufhold
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Friederike Hoellen
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Andrea Schiefer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Sites Bonn-Cologne/Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Beate Henrichfreise
- Institute of Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Sites Bonn-Cologne/Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Sites Bonn-Cologne/Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Partner Sites Bonn-Cologne/Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| |
Collapse
|
9
|
Abstract
Currently, nanotechnology-based products are gaining tremendous interest in the development of nanocarriers for drug delivery and nano-diagnostic devices. Nanodroplets (NDs) emerge as novel carriers for delivery of gases and actives with a wide range of applications in fields of theranostics, drug delivery and diagnostic devices. NDs are multifunctional carriers composed of an outer shell of drug and polymer that encapsulates the inner core of gases and liquid molecules. This review focuses on properties of NDs, mathematical theories, different polymers used in the preparation of NDs, characterisation, animal models, toxicity and applications of NDs. These nanocarriers are advantageous due to their cost-effectiveness and compatibility with both gaseous and liquid core molecules. NDs are increasingly utilised in the field of healthcare due to their properties like large effective surface area for drug loading and target specificity. These nanocarriers are also employed in the treatment of hypoxia, multiple sclerosis and cancer. In the near future, NDs will advance in fields of personalised medicine and precise theranostics.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS , Mumbai , India
| | - Sajal Jain
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS , Mumbai , India
| |
Collapse
|
10
|
Cenci U, Qiu H, Pillonel T, Cardol P, Remacle C, Colleoni C, Kadouche D, Chabi M, Greub G, Bhattacharya D, Ball SG. Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida. Sci Rep 2018; 8:15243. [PMID: 30323231 PMCID: PMC6189191 DOI: 10.1038/s41598-018-33663-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/03/2018] [Indexed: 02/01/2023] Open
Abstract
Menaquinone (vitamin K2) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K1) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K metabolism in algae and plants. We show that Chlamydiales intracellular pathogens made major genetic contributions to the synthesis of the naphthoyl ring core and the isoprenoid side-chain of these quinones. Production of the core in extremophilic red algae is under control of a menaquinone (Men) gene cluster consisting of 7 genes that putatively originated via lateral gene transfer (LGT) from a chlamydial donor to the plastid genome. In other green and red algae, functionally related nuclear genes also originated via LGT from a non-cyanobacterial, albeit unidentified source. In addition, we show that 3-4 of the 9 required steps for synthesis of the isoprenoid side chains are under control of genes of chlamydial origin. These results are discussed in the light of the hypoxic response experienced by the cyanobacterial endosymbiont when it gained access to the eukaryotic cytosol.
Collapse
Affiliation(s)
- U Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - H Qiu
- Department of Ecology, Evolution & Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - T Pillonel
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011, Lausanne, Switzerland
| | - P Cardol
- Laboratoire de Génétique et Physiologie des Microalgues, InBioS/Phytosystems, B22 Institut de Botanique, Université de Liège, 4000, Liège, Belgium
| | - C Remacle
- Laboratoire de Génétique et Physiologie des Microalgues, InBioS/Phytosystems, B22 Institut de Botanique, Université de Liège, 4000, Liège, Belgium
| | - C Colleoni
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - D Kadouche
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - M Chabi
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - G Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011, Lausanne, Switzerland
| | - D Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - S G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France.
| |
Collapse
|
11
|
Schatz V, Neubert P, Rieger F, Jantsch J. Hypoxia, Hypoxia-Inducible Factor-1α, and Innate Antileishmanial Immune Responses. Front Immunol 2018. [PMID: 29520262 PMCID: PMC5827161 DOI: 10.3389/fimmu.2018.00216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low oxygen environments and accumulation of hypoxia-inducible factors (HIFs) are features of infected and inflamed tissues. Here, we summarize our current knowledge on oxygen levels found in Leishmania-infected tissues and discuss which mechanisms potentially contribute to local tissue oxygenation in leishmanial lesions. Moreover, we review the role of hypoxia and HIF-1 on innate antileishmanial immune responses.
Collapse
Affiliation(s)
- Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Franz Rieger
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| |
Collapse
|
12
|
Ebersole JL, Novak MJ, Orraca L, Martinez-Gonzalez J, Kirakodu S, Chen KC, Stromberg A, Gonzalez OA. Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. Immunology 2018; 154:452-464. [PMID: 29338076 DOI: 10.1111/imm.12894] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Hypoxia (i.e. oxygen deprivation) activates the hypoxia-signalling pathway, primarily via hypoxia-inducible transcription factors (HIF) for numerous target genes, which mediate angiogenesis, metabolism and coagulation, among other processes to try to replenish tissues with blood and oxygen. Hypoxia signalling dysregulation also commonly occurs during chronic inflammation. We sampled gingival tissues from rhesus monkeys (Macaca mulatta; 3-25 years old) and total RNA was isolated for microarray analysis. HIF1A, HIF1B and HIF2A were significantly different in healthy aged tissues, and both HIF1A and HIF3A were positively correlated with aging. Beyond these transcription factor alterations, analysis of patterns of gene expression involved in hypoxic changes in tissues showed specific increases in metabolic pathway hypoxia-inducible genes, whereas angiogenesis pathway gene changes were more variable in healthy aging tissues across the animals. With periodontitis, aging tissues showed decreases in metabolic gene expression related to carbohydrate/lipid utilization (GBE1, PGAP1, TPI1), energy metabolism and cell cycle regulation (IER3, CCNG2, PER1), with up-regulation of transcription genes and cellular proliferation genes (FOS, EGR1, MET, JMJD6) that are hypoxia-inducible. The potential clinical implications of these results are related to the epidemiological findings of increased susceptibility and expression of periodontitis with aging. More specifically the findings describe that hypoxic stress may exist in aging gingival tissues before documentation of clinical changes of periodontitis and, so, may provide an explanatory molecular risk factor for an elevated capacity of the tissues to express destructive processes in response to changes in the microbial biofilms characteristic of a more pathogenic microbial challenge.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Michael John Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Luis Orraca
- School of Dentistry, University of Puerto Rico, Sabana Seca, PR, USA
| | | | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Kuey C Chen
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Arnold Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Banche G, Prato M, Magnetto C, Allizond V, Giribaldi G, Argenziano M, Khadjavi A, Gulino GR, Finesso N, Mandras N, Tullio V, Cavalli R, Guiot C, Cuffini AM. Antimicrobial chitosan nanodroplets: new insights for ultrasound-mediated adjuvant treatment of skin infection. Future Microbiol 2016; 10:929-39. [PMID: 26059617 DOI: 10.2217/fmb.15.27] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Chronic wounds, characterized by hypoxia, inflammation and impaired tissue remodeling, are often worsened by bacterial/fungal infections. Intriguingly, chitosan-shelled/decafluoropentane-cored oxygen-loaded nanodroplets (OLNs) have proven effective in delivering oxygen to hypoxic tissues. AIM The present work aimed at investigating nanodroplet antimicrobial properties against methicillin-resistant Staphylococcus aureus (MRSA) or Candida albicans, toxicity on human keratinocytes (HaCaT) and ultrasound (US)-triggered transdermal delivery. MATERIALS & METHODS Nanodroplet antibacterial/antifungal properties, human cytotoxicity, and US-triggered transdermal delivery were measured through microbiological, biochemical, and sonophoresis assays, respectively. RESULTS OLNs and oxygen-free nanodroplets (OFNs) displayed short- or long-term cytostatic activity against MRSA or Candida albicans, respectively. OLNs were not toxic to keratinocytes, whereas OFNs slightly affected cell viability. Complementary US treatment promoted OLN transdermal delivery. CONCLUSION As such, US-activated chitosan-shelled OLNs appear as promising, nonconventional and innovative tools for adjuvant treatment of infected chronic wounds.
Collapse
Affiliation(s)
- Giuliana Banche
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| | - Mauro Prato
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy.,Dipartimento di Neuroscienze, Università di Torino, Torino, Italy
| | - Chiara Magnetto
- Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
| | - Valeria Allizond
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| | | | - Monica Argenziano
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Amina Khadjavi
- Dipartimento di Neuroscienze, Università di Torino, Torino, Italy
| | | | - Nicole Finesso
- Dipartimento di Oncologia, Università di Torino, Torino, Italy
| | - Narcisa Mandras
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| | - Vivian Tullio
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Caterina Guiot
- Dipartimento di Neuroscienze, Università di Torino, Torino, Italy
| | - Anna Maria Cuffini
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| |
Collapse
|
14
|
Transcription regulates HIF-1α expression in CD4(+) T cells. Immunol Cell Biol 2015; 94:109-13. [PMID: 26150319 DOI: 10.1038/icb.2015.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/03/2015] [Indexed: 12/11/2022]
Abstract
The transcription factor hypoxia inducible factor-1α (HIF-1α) mediates the metabolic adaptation of cells to hypoxia and T-helper cell fate. However, HIF-1α regulation in CD4(+) T cells (T cells) remains elusive. Here we observed that depletion of oxygen (O2⩽2%) alone was not sufficient to induce HIF-1α expression in T cells. However, when hypoxic T cells were stimulated, HIF-1α was expressed and this was dependent on nuclear factor-κB- and nuclear factor of activated T cell (NFAT)-mediated transcriptional upregulation of Hif-1α mRNA. HIF-1α upregulation could be blocked by drugs inhibiting NF-κB, NFAT or mammalian target of rapamycin precluding CD4(+) T-cell stimulation or translation in T cells, as well as by blocking transcription. CD3, CD28, phorbol-12-myristat-13-acetat (PMA) or ionomycin-stimulated T cells did not express HIF-1α under normoxic conditions. In conclusion, regulation of HIF-1α expression in CD4(+) T cells in hypoxia gravely relies on its transcriptional upregulation and subsequent enhanced protein stabilization.
Collapse
|
15
|
2H,3H-decafluoropentane-based nanodroplets: new perspectives for oxygen delivery to hypoxic cutaneous tissues. PLoS One 2015; 10:e0119769. [PMID: 25781463 PMCID: PMC4362938 DOI: 10.1371/journal.pone.0119769] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/16/2015] [Indexed: 01/20/2023] Open
Abstract
Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues.
Collapse
|
16
|
The virtues of oxygenation: low tissue oxygen adversely affects the killing of Leishmania. J Invest Dermatol 2014; 134:2303-2305. [PMID: 25120145 DOI: 10.1038/jid.2014.232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypoxia contributes to the persistence of infections through altered immune responses. Studies examining skin O2 changes at the site of a lesion are limited. The prevailing methods require the use of electrochemical O2 sensors or radiolabeled electrodes that utilize O2 and may interfere with the precision at low O2 levels. In this issue, Mahnke et al. (2014) demonstrate, using a novel fluorescence-based imaging technology, that low oxygen tension (pO2) impairs NO-mediated anti-leishmanial immunity, leading to increased parasite burden. Replenishing tissue oxygen profoundly enhanced NO-mediated leishmanial killing, underscoring the need to accurately assess oxygenation in infected tissues as a novel strategy to challenge intracellular infection. The technology presented here may have clinical-translational potential in noninvasively assessing disease burden and response to treatment.
Collapse
|
17
|
Mahnke A, Meier RJ, Schatz V, Hofmann J, Castiglione K, Schleicher U, Wolfbeis OS, Bogdan C, Jantsch J. Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages. J Invest Dermatol 2014; 134:2339-2346. [DOI: 10.1038/jid.2014.121] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/03/2014] [Accepted: 02/15/2014] [Indexed: 12/22/2022]
|
18
|
Leonard CA, Borel N. Chronic Chlamydial Diseases: From Atherosclerosis to Urogenital Infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2014. [DOI: 10.1007/s40588-014-0005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Käding N, Szaszák M, Rupp J. Imaging of Chlamydia and host cell metabolism. Future Microbiol 2014; 9:509-21. [DOI: 10.2217/fmb.14.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
ABSTRACT: Chlamydial infections cause a wide range of acute and chronic diseases. Chlamydia trachomatis is the most common sexually transmitted bacterium while Chlamydia pneumoniae causes infections of the upper and lower respiratory tract. Chlamydia are obligate, intracellular bacteria with a biphasic developmental cycle that involves unique metabolic changes. Aside from entering an actively replicating state, Chlamydia may also implement persistent infections depending on different microenvironmental factors. In addition, changes in local oxygen availability and the composition of surrounding host microbiota are suggested to affect chlamydial growth and metabolism. Both bacteria and host cells endure characteristic metabolic changes during infection. Technical developments in recent years enable us to separately characterize chlamydial and host cell metabolism in living cells. This article focuses on novel approaches to analyze chlamydial metabolism such as NAD(P)H fluorescence lifetime imaging by two-photon microscopy. In addition, we provide an overview regarding promising future possibilities to further elucidate host–pathogen metabolic interactions.
Collapse
Affiliation(s)
- Nadja Käding
- Institute of Medical Microbiology & Hygiene, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Márta Szaszák
- Institute of Medical Microbiology & Hygiene, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jan Rupp
- Institute of Medical Microbiology & Hygiene, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Medical Clinic III/University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
20
|
Omsland A, Sixt BS, Horn M, Hackstadt T. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol Rev 2014; 38:779-801. [PMID: 24484402 DOI: 10.1111/1574-6976.12059] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 01/07/2023] Open
Abstract
Chlamydiae are a group of obligate intracellular bacteria comprising important human and animal pathogens as well as symbionts of ubiquitous protists. They are characterized by a developmental cycle including two main morphologically and physiologically distinct stages, the replicating reticulate body and the infectious nondividing elementary body. In this review, we reconstruct the history of studies that have led to our current perception of chlamydial physiology, focusing on their energy and central carbon metabolism. We then compare the metabolic capabilities of pathogenic and environmental chlamydiae highlighting interspecies variability among the metabolically more flexible environmental strains. We discuss recent findings suggesting that chlamydiae may not live as energy parasites throughout the developmental cycle and that elementary bodies are not metabolically inert but exhibit metabolic activity under appropriate axenic conditions. The observed host-free metabolic activity of elementary bodies may reflect adequate recapitulation of the intracellular environment, but there is evidence that this activity is biologically relevant and required for extracellular survival and maintenance of infectivity. The recent discoveries call for a reconsideration of chlamydial metabolism and future in-depth analyses to better understand how species- and stage-specific differences in chlamydial physiology may affect virulence, tissue tropism, and host adaptation.
Collapse
Affiliation(s)
- Anders Omsland
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, NIAID, NIH, Hamilton, MT, USA
| | | | | | | |
Collapse
|
21
|
Magnetto C, Prato M, Khadjavi A, Giribaldi G, Fenoglio I, Jose J, Gulino GR, Cavallo F, Quaglino E, Benintende E, Varetto G, Troia A, Cavalli R, Guiot C. Ultrasound-activated decafluoropentane-cored and chitosan-shelled nanodroplets for oxygen delivery to hypoxic cutaneous tissues. RSC Adv 2014. [DOI: 10.1039/c4ra03524k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultrasound-activated decafluoropentane/chitosan nanodroplets effectively release oxygen to the skin.
Collapse
Affiliation(s)
- Chiara Magnetto
- Istituto Nazionale di Ricerca Metrologica (INRIM)
- Torino, Italy
| | - Mauro Prato
- Dipartimento di Neuroscienze
- Università di Torino
- 10125 Torino, Italy
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche
- Università di Torino
| | - Amina Khadjavi
- Dipartimento di Neuroscienze
- Università di Torino
- 10125 Torino, Italy
| | | | - Ivana Fenoglio
- Dipartimento di Chimica e Centro Interdipartimentale NIS
- Università di Torino
- Torino, Italy
| | - Jithin Jose
- FujiFilm VisualSonics
- Amsterdam, The Netherlands
| | | | - Federica Cavallo
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute
- Molecular Biotechnology Center
- Università di Torino
- Torino, Italy
| | - Elena Quaglino
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute
- Molecular Biotechnology Center
- Università di Torino
- Torino, Italy
| | - Emilio Benintende
- Dipartimento di Scienze Chirurgiche
- Università di Torino
- Torino, Italy
| | | | - Adriano Troia
- Istituto Nazionale di Ricerca Metrologica (INRIM)
- Torino, Italy
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco
- Università di Torino
- Torino, Italy
| | - Caterina Guiot
- Dipartimento di Neuroscienze
- Università di Torino
- 10125 Torino, Italy
| |
Collapse
|
22
|
Mallo N, Lamas J, Leiro JM. Evidence of an alternative oxidase pathway for mitochondrial respiration in the scuticociliate Philasterides dicentrarchi. Protist 2013; 164:824-36. [PMID: 24211656 DOI: 10.1016/j.protis.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/25/2013] [Accepted: 09/28/2013] [Indexed: 11/17/2022]
Abstract
The presence of an alternative oxidase (AOX) in the mitochondria of the scuticociliate P. dicentrarchi was investigated. The mitochondrial oxygen consumption was measured in the presence of KCN, an inhibitor of cytochrome pathway (CP) respiration and salicylhydroxamic acid (SHAM), a specific inhibitor of alternative pathway (AP) respiration. AOX expression was monitored by western blotting with an AOX polyclonal antibody. The results showed that P. dicentrarchi possesses a branched mitochondrial electron transport chain with both cyanide-sensitive and -insensitive oxygen consumption. Mitochondrial respiration was partially inhibited by cyanide and completely inhibited by the combination of cyanide and SHAM, which is direct evidence for the existence of an AP in this ciliate. SHAM significantly inhibited in vitro growth of trophozoites both under normoxic and hypoxic conditions. AOX is a 42kD monomeric protein inducible by hypoxic conditions in experimental infections and by CP inhibitors such as cyanide and antimycin A, or by AP inhibitors such as SHAM. CP respiration was greatly stimulated during the exponential growth phase, while AP respiration increased during the stationary phase, in which AOX expression is induced. As the host does not possess AOX, and because during infection P. dicentrarchi respires via AP, it may be possible to develop inhibitors targeting the AP as a novel anti-scuticociliate therapy.
Collapse
Affiliation(s)
- Natalia Mallo
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, c/ Constantino Candeira s/n, 15782, Universidad de Santiago de Compostela; Santiago de Compostela (La Coruña, Spain)
| | - Jesús Lamas
- Departamento de Biología Celular y Ecología; Universidad de Santiago de Compostela; Santiago de Compostela, (La Coruña, Spain)
| | - José Manuel Leiro
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, c/ Constantino Candeira s/n, 15782, Universidad de Santiago de Compostela; Santiago de Compostela (La Coruña, Spain).
| |
Collapse
|
23
|
The unexpected discovery of a novel low-oxygen-activated locus for the anoxic persistence of Burkholderia cenocepacia. ISME JOURNAL 2013; 7:1568-81. [PMID: 23486248 PMCID: PMC3721108 DOI: 10.1038/ismej.2013.36] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022]
Abstract
Burkholderia cenocepacia is a Gram-negative aerobic bacterium that belongs to a group of opportunistic pathogens displaying diverse environmental and pathogenic lifestyles. B. cenocepacia is known for its ability to cause lung infections in people with cystic fibrosis and it possesses a large 8 Mb multireplicon genome encoding a wide array of pathogenicity and fitness genes. Transcriptomic profiling across nine growth conditions was performed to identify the global gene expression changes made when B. cenocepacia changes niches from an environmental lifestyle to infection. In comparison to exponential growth, the results demonstrated that B. cenocepacia changes expression of over one-quarter of its genome during conditions of growth arrest, stationary phase and surprisingly, under reduced oxygen concentrations (6% instead of 20.9% normal atmospheric conditions). Multiple virulence factors are upregulated during these growth arrest conditions. A unique discovery from the comparative expression analysis was the identification of a distinct, co-regulated 50-gene cluster that was significantly upregulated during growth under low oxygen conditions. This gene cluster was designated the low-oxygen-activated (lxa) locus and encodes six universal stress proteins and proteins predicted to be involved in metabolism, transport, electron transfer and regulation. Deletion of the lxa locus resulted in B. cenocepacia mutants with aerobic growth deficiencies in minimal medium and compromised viability after prolonged incubation in the absence of oxygen. In summary, transcriptomic profiling of B. cenocepacia revealed an unexpected ability of aerobic Burkholderia to persist in the absence of oxygen and identified the novel lxa locus as key determinant of this important ecophysiological trait.
Collapse
|
24
|
Nobre LS, Saraiva LM. Effect of combined oxidative and nitrosative stresses on Staphylococcus aureus transcriptome. Appl Microbiol Biotechnol 2013; 97:2563-73. [PMID: 23389340 DOI: 10.1007/s00253-013-4730-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is a pathogen responsible for severe community- and nosocomially acquired infections. To fight pathogen intrusion, the innate immune system uses a plethora of weapons, with the generation of oxidative and nitrosative stresses among the most efficient. In this work, the S. aureus genome-wide transcriptional responses to oxidative stress generated by hydrogen peroxide, to nitrosative stress imposed by S-nitrosoglutathione (GSNO), and to the combination of the two were investigated using microarray analysis. The results showed that these stresses have a significant impact on the transcriptome of S. aureus. Hydrogen peroxide modified mainly the mRNA abundance of genes involved in oxidative detoxification and DNA metabolism, which together represent 14 % of the total number of upregulated genes. GSNO caused significant alteration of the expression of gene products with regulatory function. However, the simultaneous addition of GSNO and hydrogen peroxide was found to cause the more significant transcriptomic alteration, affecting ∼10 % of the total transcriptome. In particular, exposure of S. aureus to GSNO plus hydrogen peroxide modified the transcription of genes associated with cell envelope and iron metabolism, including induction of ftnA and dps genes that encode iron-storage and oxidative-protecting proteins. Further studies revealed that when exposed to combined GSNO-hydrogen peroxide stresses, S. aureus has decreased viability, which is enhanced in the presence of iron, and low siderophore activity. Altogether, this study revealed, for the first time, how the combined oxidative and nitrosative stresses inflicted during phagocytosis interfere at the transcriptional level with the S. aureus cellular metabolism.
Collapse
Affiliation(s)
- Lígia S Nobre
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | | |
Collapse
|
25
|
Hall JW, Ji Y. Sensing and Adapting to Anaerobic Conditions by Staphylococcus aureus. ADVANCES IN APPLIED MICROBIOLOGY 2013; 84:1-25. [PMID: 23763757 DOI: 10.1016/b978-0-12-407673-0.00001-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A highly adaptive commensal organism, Staphylococcus aureus, possesses an array of genes that allow the bacterium to survive and grow in a wide variety of niches. Several of these niches are known to be or become anaerobic during the course of an infection; additionally, biofilms that develop, commonly on implanted medical devices, become anaerobic. The metabolic capability of S. aureus provides the organism with the essential nutrients needed to continue to grow, divide, and thwart the host immune system in the presence or absence of oxygen. In order to utilize the ATP-producing pathways and maintain cellular health S. aureus has evolved a series of regulatory systems that regulate these ATP-producing pathways. In this review, we discuss the protein signaling systems that sense, indirectly and directly, anaerobic conditions, their sensory mechanisms and signals, and outline the genes that are altered due to the absence of oxygen and the subsequent response by the bacterial cell. The switch from aerobic to anaerobic growth in S. aureus is complex and highly regulated, with some metabolic pathways regulated by multiple regulatory systems to ensure maximal utilization of each pathway and substrate.
Collapse
Affiliation(s)
- Jeffrey W Hall
- Department of Veterinary and Biomedical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, Minneapolis, Minnesota, USA
| | | |
Collapse
|