1
|
Almeida BR, Barros BCSC, Barros DTL, Orikaza CM, Suzuki E. Paracoccidioides brasiliensis Induces α3 Integrin Lysosomal Degradation in Lung Epithelial Cells. J Fungi (Basel) 2023; 9:912. [PMID: 37755020 PMCID: PMC10532483 DOI: 10.3390/jof9090912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Studies on the pathogen-host interaction are crucial for the understanding of the mechanisms involved in the establishment, maintenance, and spread of infection. In recent years, our research group has observed that the P. brasiliensis species interact with integrin family receptors and increase the expression of α3 integrin in lung epithelial cells within 5 h of infection. Interestingly, α3 integrin levels were reduced by approximately 99% after 24 h of infection with P. brasiliensis compared to non-infected cells. In this work, we show that, during infection with this fungus, α3 integrin is increased in the late endosomes of A549 lung epithelial cells. We also observed that the inhibitor of the lysosomal activity bafilomycin A1 was able to inhibit the decrease in α3 integrin levels. In addition, the silencing of the charged multivesicular body protein 3 (CHMP3) inhibited the reduction in α3 integrin levels induced by P. brasiliensis in A549 cells. Thus, together, these results indicate that this fungus induces the degradation of α3 integrin in A549 lung epithelial cells by hijacking the host cell endolysosomal pathway.
Collapse
Affiliation(s)
| | | | | | | | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.)
| |
Collapse
|
2
|
Barros BCSC, Almeida BR, Barros DTL, Toledo MS, Suzuki E. Respiratory Epithelial Cells: More Than Just a Physical Barrier to Fungal Infections. J Fungi (Basel) 2022; 8:jof8060548. [PMID: 35736031 PMCID: PMC9225092 DOI: 10.3390/jof8060548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
The respiratory epithelium is highly complex, and its composition varies along the conducting airways and alveoli. In addition to their primary function in maintaining the respiratory barrier and lung homeostasis for gas exchange, epithelial cells interact with inhaled pathogens, which can manipulate cell signaling pathways, promoting adhesion to these cells or hosting tissue invasion. Moreover, pathogens (or their products) can induce the secretion of chemokines and cytokines by epithelial cells, and in this way, these host cells communicate with the immune system, modulating host defenses and inflammatory outcomes. This review will focus on the response of respiratory epithelial cells to two human fungal pathogens that cause systemic mycoses: Aspergillus and Paracoccidioides. Some of the host epithelial cell receptors and signaling pathways, in addition to fungal adhesins or other molecules that are responsible for fungal adhesion, invasion, or induction of cytokine secretion will be addressed in this review.
Collapse
Affiliation(s)
- Bianca C. S. C. Barros
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Bruna R. Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Debora T. L. Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Marcos S. Toledo
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Leal Prado, São Paulo 04023-062, SP, Brazil;
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
- Correspondence:
| |
Collapse
|
3
|
Alcantara C, Almeida BR, Barros BCSC, Orikaza CM, Toledo MS, Suzuki E. Histoplasma capsulatum chemotypes I and II induce IL-8 secretion in lung epithelial cells in distinct manners. Med Mycol 2021; 58:1169-1177. [PMID: 32119085 DOI: 10.1093/mmy/myaa006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
The cell wall is one of the most important structures of pathogenic fungi, enabling initial interaction with the host and consequent modulation of immunological responses. Over the years, some researchers have shown that cell wall components of Histoplasma capsulatum vary among fungal isolates, and one of the major differences is the presence or absence of α-(1,3)-glucan, classifying wild-type fungi as chemotypes II or I, respectively. The present work shows that an isolate of H. capsulatum chemotype I induced lower levels of interleukin (IL)-8 secretion by the lung epithelial cell line A549, when compared to chemotype II yeasts. Thus, we expected that the absence of α-glucan in spontaneous variant yeasts, which were isolated from chemotype II cultures, would modify IL-8 secretion by A549 cells, but surprisingly, these fungi promoted similar levels of IL-8 secretion as their wild-type counterpart. Furthermore, when using a specific inhibitor for Syk activation, we observed that this inhibitor reduced IL-8 levels in A549 cell cultures infected with wild type chemotype I fungi. This inhibitor failed to reduce this cytokine levels in A549 cell cultures infected with chemotype II and their spontaneous variant yeasts, which also do not present α-glucan on their surface. The importance of SFKs and PKC δ in this event was also analyzed. Our results show that different isolates of H. capsulatum modulate distinct cell signaling pathways to promote cytokine secretion in host epithelial cells, emphasizing the existence of various mechanisms for Histoplasma pathogenicity.
Collapse
Affiliation(s)
- Cristiane Alcantara
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo - SP, Brazil
| | - Bruna Rocha Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo - SP, Brazil
| | - Bianca Carla Silva Campitelli Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo - SP, Brazil
| | - Cristina Mary Orikaza
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo - SP, Brazil
| | - Marcos Sergio Toledo
- Department of Biochemistry, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo - SP, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo - SP, Brazil
| |
Collapse
|
4
|
de Barros BCSC, Almeida BR, Suzuki E. Paracoccidioides brasiliensis downmodulates α3 integrin levels in human lung epithelial cells in a TLR2-dependent manner. Sci Rep 2020; 10:19483. [PMID: 33173103 PMCID: PMC7655819 DOI: 10.1038/s41598-020-76557-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America and may be caused by the species Paracoccidioides brasiliensis. In the lungs, this fungus interacts with epithelial cells, activating host cell signalling pathways, resulting in the production of inflammatory mediators. This event may be initiated through the activation of Pattern-Recognition Receptors such as Toll-like Receptors (TLRs). By interacting with cell wall components, TLR2 is frequently related to fungal infections. In this work, we show that, after 24 h post-infection with P. brasiliensis, A549 lung epithelial cells presented higher TLR2 levels, which is important for IL-8 secretion. Besides, integrins may also participate in pathogen recognition by host cells. We verified that P. brasiliensis increased α3 integrin levels in A549 cells after 5 h of infection and promoted interaction between this receptor and TLR2. However, after 24 h, surprisingly, we verified a decrease of α3 integrin levels, which was dependent on direct contact between fungi and epithelial cells. Likewise, we observed that TLR2 is important to downmodulate α3 integrin levels after 24 h of infection. Thus, P. brasiliensis can modulate the host inflammatory response by exploiting host cell receptors and cell signalling pathways.
Collapse
Affiliation(s)
| | - Bruna Rocha Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, 04023-062, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, 04023-062, Brazil.
| |
Collapse
|
5
|
Singulani JDL, Silva JDFD, Gullo FP, Costa MC, Fusco-Almeida AM, Enguita FJ, Mendes-Giannini MJS. Fungal-host interactions: insights into microRNA in response to Paracoccidioides species. Mem Inst Oswaldo Cruz 2020; 115:e200238. [PMID: 32756740 PMCID: PMC7398106 DOI: 10.1590/0074-02760200238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Paracoccidioides spp. causes paracoccidioidomycosis (PCM), an important and frequent systemic mycosis that occurs in Latin America. The infectious process begins with contact between the fungus and lung cells, and the molecular pattern of this interaction is currently poorly understood. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the gene expression in many biological processes, including in the infections. OBJECTIVE This study aimed to analyse the expression of miRNAs in lung cells as response to infection by Paracoccidioides spp. METHODS A quantitative real-time polymerase chain reaction (RT-qPCR) based screening was employed to verify differentially expressed miRNAs in human lung cells infected with three different species; Paracoccidioides lutzii, Paracoccidioides americana, and Paracoccidioides brasiliensis. Furthermore, the in silico predictions of target genes and pathways for miRNAs were obtained. FINDINGS The results showed that miRNAs identified in the lung cells were different according to the species studied. However, based on the predicted targets, the potential signaling pathways regulated by miRNAs are common and related to adhesion, actin cytoskeleton rearrangement, apoptosis, and immune response mediated by T cells and TGF-β. MAIN CONCLUSIONS In summary, this study showed the miRNAs pattern of epithelial cells in response to infection by Paracoccidioides species and the potential role of these molecules in the regulation of key pathogenesis mechanisms of PCM.
Collapse
Affiliation(s)
| | | | | | - Marina Célia Costa
- Instituto de Medicina Molecular, Universidade de Lisboa, Faculdade de Medicina, Lisboa, Portugal
| | | | - Francisco Javier Enguita
- Instituto de Medicina Molecular, Universidade de Lisboa, Faculdade de Medicina, Lisboa, Portugal
| | | |
Collapse
|
6
|
Negi S, Jain S, Raj A. Combined ANN/EVOP Factorial Design Approach for Media Screening for Cost-effective Production of Alkaline Proteases from Rhizopus oryzae (SN5)/NCIM-1447 under SSF. AMB Express 2020; 10:60. [PMID: 32221743 PMCID: PMC7101461 DOI: 10.1186/s13568-020-00996-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/18/2020] [Indexed: 01/13/2023] Open
Abstract
In order to achieve high yield of fungal protease in a very cost effective way and to meet its increased market demand, current study deals with the screening of various agro-wastes as carbon source for the production of protease from Rhizopus oryzae (SN5)/NCIM-1447 under solid state fermentation. Substrates and culture parameters such as wheat bran, soybean meal, black-gram husk, rice husk, mixture of wheat bran, soybean meal, nitrogen sources, pH, temperature and incubation time were first optimized with one factor at time strategy and then EVOP factorial and yield of alkaline protease was achieved 412.8 U/gds at 28 °C and pH = 6 after 72 h of fermentation taking wheat bran and soybean as a substrate in 4:1 ratio. Further artificial neural networks (ANN), was trained with data of EVOP and yield of protease was enhanced up to 422.6 U/gds with wheat bran: soyabean in ratio of 70:30, pH 6.2 at 30 °C. The evolved process and Rhizopus oryzae (SN5)/NCIM-1447 strain would be promising for protease production at industrial scale at low cost.
Collapse
|
7
|
Almeida BR, Barros BCSC, Araújo ACL, Alcantara C, Suzuki E. Paracoccidioides species present distinct fungal adherence to epithelial lung cells and promote different IL-8 secretion levels. Med Microbiol Immunol 2019; 209:59-67. [PMID: 31673845 DOI: 10.1007/s00430-019-00639-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
Fungi that belong to the genus Paracoccidioides are the etiologic agents of paracoccidioidomycosis, a human systemic mycosis, which occurs in Latin America. Epithelial cell is one of the first cells that interact with these fungi and responds by secreting inflammatory mediators such as cytokines. In the present study, we demonstrate that yeasts of different isolates of Paracoccidioides brasiliensis (Pb18 and Pb03) and Paracoccidioides lutzii (Pb01) distinctly promoted interleukin (IL)-8 secretion by the lung epithelial cell line A549. Depending on the isolate, this cytokine release may rely on the epithelial cell interaction with fungal secreted components or direct contact with the pathogen. In addition, adhesion of yeasts to the pulmonary epithelial cells was also different among Paracoccidioides isolates, and the highest percentage of A549 cells with adhered fungi was observed with P. lutzii. All Paracoccidioides isolates induced an expression increase of α3 and α5 integrins in A549 cells and, using small interfering RNA, we observed that the integrin silencing promoted a reduction of P. lutzii adhesion, which suggests the involvement of integrins in this event. Together, these results indicate that host epithelial cell response may depend on the isolate of Paracoccidioides.
Collapse
Affiliation(s)
- Bruna Rocha Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil
| | - Bianca Carla Silva Campitelli Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil
| | - Ana Clara Liguori Araújo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil
| | - Cristiane Alcantara
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
8
|
Mendes RP, Cavalcante RDS, Marques SA, Marques MEA, Venturini J, Sylvestre TF, Paniago AMM, Pereira AC, da Silva JDF, Fabro AT, Bosco SDMG, Bagagli E, Hahn RC, Levorato AD. Paracoccidioidomycosis: Current Perspectives from Brazil. Open Microbiol J 2017; 11:224-282. [PMID: 29204222 PMCID: PMC5695158 DOI: 10.2174/1874285801711010224] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND This review article summarizes and updates the knowledge on paracoccidioidomycosis. P lutzii and the cryptic species of P. brasiliensis and their geographical distribution in Latin America, explaining the difficulties observed in the serological diagnosis. OBJECTIVES Emphasis has been placed on some genetic factors as predisposing condition for paracoccidioidomycosis. Veterinary aspects were focused, showing the wide distribution of infection among animals. The cell-mediated immunity was better characterized, incorporating the recent findings. METHODS Serological methods for diagnosis were also compared for their parameters of accuracy, including the analysis of relapse. RESULTS Clinical forms have been better classified in order to include the pictures less frequently observesiod. CONCLUSION Itraconazole and the trimethoprim-sulfamethoxazole combination was compared regarding efficacy, effectiveness and safety, demonstrating that azole should be the first choice in the treatment of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Rinaldo Poncio Mendes
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Ricardo de Souza Cavalcante
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Sílvio Alencar Marques
- Department of Dermatology, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | | | - James Venturini
- Laboratory of Experimental Immunology, Department of Biological Science, Faculty of Science, São Paulo State University – UNESP, São Paulo, Brazil
| | - Tatiane Fernanda Sylvestre
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Anamaria Mello Miranda Paniago
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina – Federal University of Mato Grosso do Sul – UFMS, Brazil
| | | | - Julhiany de Fátima da Silva
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Alexandre Todorovic Fabro
- Unit of Experimental Research, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Sandra de Moraes Gimenes Bosco
- Department of Microbiology and Immunology – Instituto de Biociências de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Eduardo Bagagli
- Department of Microbiology and Immunology – Instituto de Biociências de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Rosane Christine Hahn
- Laboratory of Investigation and Mycology, Federal University of Mato Grosso, Faculty of Medicine Cuiabá, Mato Grosso, Brazil
| | - Adriele Dandara Levorato
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| |
Collapse
|
9
|
Vo TS, Ngo DH, Bach LG, Ngo DN, Kim SK. The free radical scavenging and anti-inflammatory activities of gallate-chitooligosaccharides in human lung epithelial A549 cells. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Paracoccidioides brasiliensis induces cytokine secretion in epithelial cells in a protease-activated receptor-dependent (PAR) manner. Med Microbiol Immunol 2016; 206:149-156. [DOI: 10.1007/s00430-016-0490-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
11
|
Sardi JDCO, Pitangui NDS, Voltan AR, Braz JD, Machado MP, Fusco Almeida AM, Mendes Giannini MJS. In vitro Paracoccidioides brasiliensis biofilm and gene expression of adhesins and hydrolytic enzymes. Virulence 2016; 6:642-51. [PMID: 26055497 DOI: 10.1080/21505594.2015.1031437] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Paracoccidioides species are dimorphic fungi that initially infect the lungs but can also spread throughout the body. The spreading infection is most likely due to the formation of a biofilm that makes it difficult for the host to eliminate the infection. Biofilm formation is crucial for the development of infections and confines the pathogen to an extracellular matrix. Its presence is associated with antimicrobial resistance and avoidance of host defenses. This current study provides the first description of biofilm formation by Paracoccidioides brasiliensis (Pb18) and an analysis of gene expression, using real-time PCR, associated with 3 adhesins and 2 hydrolytic enzymes that could be associated with the virulence profile. Biofilm formation was analyzed using fluorescence microscopy, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Metabolic activity was determined using the XTT reduction assay. P. brasiliensis was able to form mature biofilm in 144 h with a thickness of 100 μm. The presence of a biofilm was found to be associated with an increase in the expression of adhesins and enzymes. GP43, enolase, GAPDH and aspartyl proteinase genes were over-expressed, whereas phospholipase was down-regulated in biofilm. The characterization of biofilm formed by P. brasiliensis may contribute to a better understanding of the pathogenesis of paracoccidioidomycosis as well as the search for new therapeutic alternatives; while improving the effectiveness of treatment.
Collapse
Affiliation(s)
- Janaina de Cássia Orlandi Sardi
- Departamento de Anáalises Clínicas; Laboratório de Micologia Clínica; Faculdade de Ciências Farmacêuticas; UNESP - Univ. Estadual Paulista; Araraquara, Brasil
| | - Nayla de Souza Pitangui
- Departamento de Anáalises Clínicas; Laboratório de Micologia Clínica; Faculdade de Ciências Farmacêuticas; UNESP - Univ. Estadual Paulista; Araraquara, Brasil
| | - Aline Raquel Voltan
- Departamento de Anáalises Clínicas; Laboratório de Micologia Clínica; Faculdade de Ciências Farmacêuticas; UNESP - Univ. Estadual Paulista; Araraquara, Brasil
| | - Jaqueline Derissi Braz
- Departamento de Anáalises Clínicas; Laboratório de Micologia Clínica; Faculdade de Ciências Farmacêuticas; UNESP - Univ. Estadual Paulista; Araraquara, Brasil
| | | | - Ana Marisa Fusco Almeida
- Departamento de Anáalises Clínicas; Laboratório de Micologia Clínica; Faculdade de Ciências Farmacêuticas; UNESP - Univ. Estadual Paulista; Araraquara, Brasil
| | - Maria Jose Soares Mendes Giannini
- Departamento de Anáalises Clínicas; Laboratório de Micologia Clínica; Faculdade de Ciências Farmacêuticas; UNESP - Univ. Estadual Paulista; Araraquara, Brasil
| |
Collapse
|
12
|
Maza PK, Suzuki E. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment. Front Microbiol 2016; 7:580. [PMID: 27148251 PMCID: PMC4840283 DOI: 10.3389/fmicb.2016.00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/08/2016] [Indexed: 01/30/2023] Open
Abstract
Histoplasma capsulatum var. capsulatum is a dimorphic fungus that causes histoplasmosis, a human systemic mycosis with worldwide distribution. In the present work, we demonstrate that H. capsulatum yeasts are able to induce cytokine secretion by the human lung epithelial cell line A549 in integrin- and Src-family kinase (SFK)-dependent manners. This conclusion is supported by small interfering RNA (siRNA) directed to α3 and α5 integrins, and PP2, an inhibitor of SFK activation. siRNA and PP2 reduced IL-6 and IL-8 secretion in H. capsulatum-infected A549 cell cultures. In addition, α3 and α5 integrins from A549 cells were capable of associating with H. capsulatum yeasts, and this fungus promotes recruitment of these integrins and SFKs to A549 cell membrane rafts. Corroborating this finding, membrane raft disruption with the cholesterol-chelator methyl-β-cyclodextrin reduced the levels of integrins and SFKs in these cell membrane domains. Finally, pretreatment of A549 cells with the cholesterol-binding compound, and also a membrane raft disruptor, filipin, significantly reduced IL-6 and IL-8 levels in A549-H.capsulatum cultures. Taken together, these results indicate that H. capsulatum yeasts induce secretion of IL-6 and IL-8 in human lung epithelial cells by interacting with α3 and α5 integrins, recruiting these integrins to membrane rafts, and promoting SFK activation.
Collapse
Affiliation(s)
- Paloma K Maza
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
13
|
Shi R, Wang Q, Ouyang Y, Wang Q, Xiong X. Picfeltarraenin IA inhibits lipopolysaccharide-induced inflammatory cytokine production by the nuclear factor-κB pathway in human pulmonary epithelial A549 cells. Oncol Lett 2015; 11:1195-1200. [PMID: 26893718 DOI: 10.3892/ol.2015.4037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 11/06/2015] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate the effect of picfeltarraenin IA (IA) on respiratory inflammation by analyzing its effect on interleukin (IL)-8 and prostaglandin E2 (PGE2) production. The expression of cyclooxygenase 2 (COX2) in human pulmonary adenocarcinoma epithelial A549 cells in culture was also examined. Human pulmonary epithelial A549 cells and the human monocytic leukemia THP-1 cell line were used in the current study. Cell viability was measured using a methylthiazol tetrazolium assay. The production of IL-8 and PGE2 was investigated using an enzyme-linked immunosorbent assay. The expression of COX2 and nuclear factor-κB (NF-κB)-p65 was examined using western blot analysis. Treatment with lipopolysaccharide (LPS; 10 µg/ml) resulted in the increased production of IL-8 and PGE2, and the increased expression of COX2 in the A549 cells. Furthermore, IA (0.1-10 µmol/l) significantly inhibited PGE2 production and COX2 expression in cells with LPS-induced IL-8, in a concentration-dependent manner. The results suggested that IA downregulates LPS-induced COX2 expression, and inhibits IL-8 and PGE2 production in pulmonary epithelial cells. Additionally, IA was observed to suppress the expression of COX2 in THP-1 cells, and also to regulate the expression of COX2 via the NF-κB pathway in the A549 cells, but not in the THP-1 cells. These results indicate that IA regulates LPS-induced cytokine release in A549 cells via the NF-κB pathway.
Collapse
Affiliation(s)
- Rong Shi
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qing Wang
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yang Ouyang
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qian Wang
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xudong Xiong
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
14
|
Barros BCSC, Maza PK, Alcantara C, Suzuki E. Paracoccidioides brasiliensis induces recruitment of α3 and α5 integrins into epithelial cell membrane rafts, leading to cytokine secretion. Microbes Infect 2015; 18:68-77. [PMID: 26369712 DOI: 10.1016/j.micinf.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022]
Abstract
Paracoccidioides brasiliensis is one of the etiological agents of paracoccidioidomycosis, a human systemic mycosis, highly prevalent in Latin America. In the present work, we demonstrate that P. brasiliensis yeasts promote IL-6 and IL-8 secretion by the human lung epithelial cell line A549 in an integrin-dependent manner. In fact, small interfering RNA directed to α3 and α5 integrins decreased IL-6 and IL-8 levels in P. brasiliensis-infected A549 cell cultures. This fungus also led to an increase in the expression of α3 and α5 integrins in this epithelial cell line. In addition, P. brasiliensis yeasts promoted α3 and α5 integrins clustering into A549 cell membrane rafts. Furthermore, epithelial cell membrane raft disruption with nystatin decreased IL-6 and IL-8 levels in P. brasiliensis-A549 cell cultures. Therefore, by increasing host α3 and α5 integrins levels and clustering these receptors into membrane rafts, P. brasiliensis yeasts may modulate host inflammation.
Collapse
Affiliation(s)
- Bianca C S C Barros
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6(o) andar, São Paulo, SP, 04023-062, Brazil
| | - Paloma K Maza
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6(o) andar, São Paulo, SP, 04023-062, Brazil
| | - Cristiane Alcantara
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6(o) andar, São Paulo, SP, 04023-062, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6(o) andar, São Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
15
|
Alcantara C, Maza PK, Barros BCSC, Suzuki E. Role of protein kinase C in cytokine secretion by lung epithelial cells during infection with Paracoccidioides brasiliensis. Pathog Dis 2015; 73:ftv045. [PMID: 26152710 DOI: 10.1093/femspd/ftv045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the role of protein kinases C (PKCs) in interleukin (IL)-6 and IL-8 secretion by human lung epithelial A549 cells during infection with the fungal pathogen Paracoccidioides brasiliensis. Rottlerin and the broad spectrum PKC inhibitor Go 6983 reduced cytokine levels in A549 cell-P. brasiliensis cultures. Next, by western blot, we verified that infection with this fungus led to phosphorylation of PKC δ (Thr(505)). By using a peptide inhibitor for PKC δ or PKC δ short interfering RNA technique, IL-6 and IL-8 levels in A549-P. brasiliensis cultures were also reduced. Together, these results indicate that P. brasiliensis promotes IL-6 and IL-8 secretion by A549 cells in a PKC δ-dependent manner.
Collapse
Affiliation(s)
- Cristiane Alcantara
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6° andar, São Paulo, SP 04023-062, Brazil
| | - Paloma Korehisa Maza
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6° andar, São Paulo, SP 04023-062, Brazil
| | - Bianca Carla Silva Campitelli Barros
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6° andar, São Paulo, SP 04023-062, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6° andar, São Paulo, SP 04023-062, Brazil
| |
Collapse
|
16
|
Romo-Lozano Y, Hernández-Hernández F, Salinas E. Sporothrix schenckii yeasts induce ERK pathway activation and secretion of IL-6 and TNF-α in rat mast cells, but no degranulation. Med Mycol 2014; 52:862-8. [DOI: 10.1093/mmy/myu055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
17
|
Xia P, Wang W, Bai Y. Claudin-7 suppresses the cytotoxicity of TRAIL-expressing mesenchymal stem cells in H460 human non-small cell lung cancer cells. Apoptosis 2014; 19:491-505. [PMID: 24242915 DOI: 10.1007/s10495-013-0938-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evidence suggests that the cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer therapeutics. Studies have also shown that claudin-7 (CLDN7) expression is variably dysregulated in various malignant neoplasms, with a role in lung cancer that has not been definitively decided. This work investigated the differential sensitivity of CLDN7-overexpressing human NSCLC H460 cells to TRAIL in vitro and in mouse xenografts, and explored the molecular mechanisms responsible for these effects. NCI-H460 cells were transfected or not with green fluorescent protein-tagged CLDN7. Each group was then exposed to mesenchymal stem cells (MSCs) or red fluorescent protein-tagged MSCs transduced with lentivirus expressing membrane-bound TRAIL. The effects and related mechanisms of these treatments were evaluated in vitro, and in vivo in murine xenografts. Our results indicate that TRAIL induced apoptosis in H460 cells in vitro, and in established xenograft tumors TRAIL was associated with a decrease in tumor size, tumor weight, and circulating tumor cells. CLDN7 was found to inhibit the MEK/ERK signaling pathway, leading to inhibition of death receptor 5 (TNFRSF10B). The cytotoxicity of TRAIL was confirmed in H460 cells and in vivo, and CLDN7 suppressed the cytotoxicity of TRAIL in H460 cells. Our results indicate that TRAIL may be a useful therapy to enhance apoptosis in CLDN7-negative lung cancer cells.
Collapse
Affiliation(s)
- Pu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, People's Republic of China,
| | | | | |
Collapse
|
18
|
Szabo EK, Maccallum DM. A novel renal epithelial cell in vitro assay to assess Candida albicans virulence. Virulence 2013; 5:286-96. [PMID: 24225657 DOI: 10.4161/viru.27046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, can cause severe systemic infections in susceptible patient groups. Systemic candidiasis is mainly studied in the mouse intravenous challenge model, where progressive infection correlates with increased early renal chemokine levels. To develop a new in vitro assay to assess C. albicans virulence, which reflects the events occurring in the murine infection model, renal M-1 cortical collecting duct epithelial cells were evaluated as the early producers of cytokines in response to C. albicans. We show that renal epithelial cells respond only to live C. albicans cells capable of forming hyphae, producing chemokines KC and MIP-2, with levels correlating with epithelial cell damage. By assaying epithelial cell responses to strains of known virulence in the murine intravenous challenge model we demonstrate that renal epithelial cells can discriminate between virulent and attenuated strains. This simple, novel assay is a useful initial screen for altered virulence of C. albicans mutants or clinical isolates in vitro and provides an alternative to the mouse systemic infection model.
Collapse
Affiliation(s)
- Edina K Szabo
- Aberdeen Fungal Group; University of Aberdeen; School of Medical Sciences; Institute of Medical Sciences; Foresterhill, Aberdeen UK
| | - Donna M Maccallum
- Aberdeen Fungal Group; University of Aberdeen; School of Medical Sciences; Institute of Medical Sciences; Foresterhill, Aberdeen UK
| |
Collapse
|
19
|
Longo LVG, Nakayasu ES, Matsuo AL, Peres da Silva R, Sobreira TJP, Vallejo MC, Ganiko L, Almeida IC, Puccia R. Identification of human plasma proteins associated with the cell wall of the pathogenic fungus Paracoccidioides brasiliensis. FEMS Microbiol Lett 2013; 341:87-95. [PMID: 23398536 DOI: 10.1111/1574-6968.12097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/25/2013] [Indexed: 01/16/2023] Open
Abstract
Paracoccidioides brasiliensis and Paracoccidioides lutzii are thermodimorphic species that cause paracoccidioidomycosis. The cell wall is the outermost fungal organelle to form an interface with the host. A number of host effector compounds, including immunologically active molecules, circulate in the plasma. In the present work, we extracted cell-wall-associated proteins from the yeast pathogenic phase of P. brasiliensis, isolate Pb3, grown in the presence of human plasma and analyzed bound plasma proteins by liquid chromatography-tandem mass spectrometry. Transport, complement activation/regulation, and coagulation pathway were the most abundant functional groups identified. Proteins related to iron/copper acquisition, immunoglobulins, and protease inhibitors were also detected. Several human plasma proteins described here have not been previously reported as interacting with fungal components, specifically, clusterin, hemopexin, transthyretin, ceruloplasmin, alpha-1-antitrypsin, apolipoprotein A-I, and apolipoprotein B-100. Additionally, we observed increased phagocytosis by J774.16 macrophages of Pb3 grown in plasma, suggesting that plasma proteins interacting with P. brasiliensis cell wall might be interfering in the fungal relationship with the host.
Collapse
Affiliation(s)
- Larissa V G Longo
- Escola Paulista de Medicina, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Remuzgo-Martínez S, Pilares-Ortega L, Álvarez-Rodríguez L, Aranzamendi-Zaldunbide M, Padilla D, Icardo JM, Ramos-Vivas J. Induction of proinflammatory cytokines in human lung epithelial cells during Rhodococcus equi infection. J Med Microbiol 2013; 62:1144-1152. [PMID: 23699060 DOI: 10.1099/jmm.0.056234-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhodococcus equi is an opportunistic human pathogen associated with immunosuppressed people. While the interaction of R. equi with macrophages has been comprehensively studied, little is known about its interactions with non-phagocytic cells. Here, we characterized the entry process of this bacterium into human lung epithelial cells. The invasion is inhibited by nocodazole and wortmannin, suggesting that the phosphatidylinositol 3-kinase pathway and microtubule cytoskeleton are important for invasion. Pre-incubation of R. equi with a rabbit anti-R. equi polyclonal antiserum resulted in a dramatic reduction in invasion. Also, the invasion process as studied by immunofluorescence and scanning electron microscopy indicates that R. equi make initial contact with the microvilli of the A549 cells, and at the structural level, the entry process was observed to occur via a zipper-like mechanism. Infected lung epithelial cells upregulate the expression of cytokines IL-8 and IL-6 upon infection. The production of these pro-inflammatory cytokines was significantly enhanced in culture supernatants from cells infected with non-mucoid plasmid-less strains when compared with cells infected with mucoid strains. These results demonstrate that human airway epithelial cells produce pro-inflammatory mediators against R. equi isolates.
Collapse
Affiliation(s)
- Sara Remuzgo-Martínez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IFIMAV, Santander, Cantabria, Spain
| | - Lilian Pilares-Ortega
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Cantabria, Spain.,Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IFIMAV, Santander, Cantabria, Spain
| | - Lorena Álvarez-Rodríguez
- Servicio de Inmunología, Hospital Universitario Marqués de Valdecilla-IFIMAV, Santander, Cantabria, Spain
| | | | - Daniel Padilla
- Instituto Universitario de Sanidad Animal, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
| | - Jose Manuel Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Jose Ramos-Vivas
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IFIMAV, Santander, Cantabria, Spain
| |
Collapse
|