1
|
Liu M, Wang R, Xie Z. T cell-mediated immunity during Epstein-Barr virus infections in children. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105443. [PMID: 37201619 DOI: 10.1016/j.meegid.2023.105443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Epstein-Barr virus (EBV) infection is extremely common worldwide, with approximately 90% of adults testing positive for EBV antibodies. Human are susceptible to EBV infection, and primary EBV infection typically occurs early in life. EBV infection can cause infectious mononucleosis (IM) as well as some severe non-neoplastic diseases, such as chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), which can have a heavy disease burden. After primary EBV infection, individuals develop robust EBV-specific T cell immune responses, with EBV-specific CD8+ and part of CD4+ T cells functioning as cytotoxic T cells, defending against virus. Different proteins expressed during EBV's lytic replication and latent proliferation can cause varying degrees of cellular immune responses. Strong T cell immunity plays a key role in controlling infection by decreasing viral load and eliminating infected cells. However, the virus persists as latent infection in EBV healthy carriers even with robust T cell immune response. When reactivated, it undergoes lytic replication and then transmits virions to a new host. Currently, the relationship between the pathogenesis of lymphoproliferative diseases and the adaptive immune system is still not fully clarified and needs to be explored in the future. Investigating the T cell immune responses evoked by EBV and utilizing this knowledge to design promising prophylactic vaccines are urgent issues for future research due to the importance of T cell immunity.
Collapse
Affiliation(s)
- Mengjia Liu
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
2
|
Ma H, Zhang L, Wei A, Yang J, Wang D, Zhang Q, Zhao Y, Chen S, Lian H, Zhang L, Zhou C, Qin M, Li Z, Wang T, Zhang R. Outcome of L-DEP regimen for treatment of pediatric chronic active Epstein-Barr virus infection. Orphanet J Rare Dis 2021; 16:269. [PMID: 34112210 PMCID: PMC8194054 DOI: 10.1186/s13023-021-01909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose We intended to investigate the clinical features of paediatric patients with chronic active Epstein–Barr virus infection (CAEBV) and to examine the effectiveness of the L-DEP regimen before haematopoietic stem cell transplantation (HSCT). Methods A retrospective analysis was performed on 35 patients with CAEBV at Beijing Children’s Hospital from January 2016 to January 2020. The efficacy and adverse events of the L-DEP regimen were evaluated. Results The median age of the 35 patients was 7.0 years old (range 2.5–17.5 years). Twenty-eight patients achieved a clinical response (80.0%, 22 in clinical CR, 6 in clinical PR) after L-DEP. In terms of virological response, 7 patients (20%) were assessed as having virological CR, and 23 patients (65.7%) had virological PR. Finally, 29 patients underwent allo-HSCT. The median survival time was 18 months (2–50 months). The 3-year overall survival rates in patients treated with chemotherapy only (n = 6) and chemotherapy followed by HSCT (n = 25) were 33.3% and 75.4%, respectively. After L-DEP 1st treatment and L-DEP 2nd treatment, the EBV-DNA loads in blood and plasma were significantly reduced compared with those before chemotherapy (median: 4.29 × 105 copies/ml vs. 1.84 × 106 copies/ml, Mann–Whitney U: P = 0.0004; 5.00 × 102 copies/ml vs. 3.17 × 103 copies/ml, Mann–Whitney U; P = 0.003; 2.27 × 105 copies/ml vs. 1.84 × 106 copies/ml, P = 0.0001; 5.00 × 102 copies/ml vs. 3.17 × 103 copies/ml, P = 0.003). Compared with the liver and spleen size before chemotherapy, the size of the liver and spleen shrank significantly after L-DEP 2nd (median 3.8 cm vs. 1.9 cm, P = 0.003; 3.8 cm vs. 0 cm, P < 0.008). In addition, after L-DEP treatment, there was no difference in the clinical or virological response rate regardless of HLH status (clinical response: 77.3% vs. 84.6%, P = 0.689; virological response: 90.9% vs. 76.9%, P = 0.337). Conclusion The L-DEP regimen is an effective therapy in CAEBV for bridging to allo-HSCT.
Collapse
Affiliation(s)
- Honghao Ma
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Liping Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Ang Wei
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jun Yang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dong Wang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qing Zhang
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yunze Zhao
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Sitong Chen
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hongyun Lian
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Li Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chunju Zhou
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Maoquan Qin
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhigang Li
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Tianyou Wang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Rui Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
3
|
Avelumab for the treatment of relapsed or refractory extranodal NK/T-cell lymphoma: an open-label phase 2 study. Blood 2021; 136:2754-2763. [PMID: 32766875 DOI: 10.1182/blood.2020007247] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
This study aimed to assess the efficacy and safety of treatment with avelumab, an anti-programmed death ligand 1 (PD-L1) antibody, in patients with relapsed or refractory extranodal natural killer/T-cell lymphoma (ENKTL). In this phase 2 trial, 21 patients with relapsed or refractory ENKTL were treated with 10 mg/kg of avelumab on days 1 and 15 of a 28-day cycle. The primary end point was the complete response (CR) rate based on the best response. Targeted sequencing and immunohistochemistry were performed using pretreatment tumor tissue, and blood samples were drawn before and after treatment for measurement of cytokines and soluble programmed cell death protein 1 (PD1), PD-L1, and PD-L2. The CR rate was 24% (5 of 21), and the overall response rate was 38% (8 of 21). Although nonresponders showed early progression, 5 responders currently continue to receive treatment and have maintained their response. Most treatment-related adverse events were grade 1 or 2; no grade 4 adverse events were observed. Treatment responses did not correlate with mutation profiles, tumor mutation burden, serum levels of cytokines, or soluble PD1/PD-L1 and PD-L2. However, the response to avelumab was significantly associated with the expression of PD-L1 by tumor tissue (P = .001). Therefore, all patients achieving CR showed high PD-L1 expression, and their tumor subtyping based on PD-L1 expression correlated with treatment response. In summary, avelumab showed single-agent activity in a subset of patients with relapsed or refractory ENKTL. The assessment of PD-L1 expression on tumor cells might be helpful for identifying responders to avelumab. This trial was registered at www.clinicaltrials.gov as #NCT03439501.
Collapse
|
4
|
Epstein-Barr virus-associated T- and NK-cell lymphoproliferative diseases: an update and diagnostic approach. Pathology 2019; 52:111-127. [PMID: 31767131 DOI: 10.1016/j.pathol.2019.09.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/21/2022]
Abstract
Epstein-Barr virus (EBV)-positive T-cell and natural killer (NK)-cell lymphoproliferative diseases (EBV-TNKLPD) are a group of uncommon disorders characterised by EBV infection of T- and NK-cells. As a group, EBV-TNKLPD are more commonly encountered in Asians and Native Americans from Central and South America compared to Western populations. They encompass a spectrum of entities that range from non-neoplastic lesions such as EBV-associated haemophagocytic lymphohistiocytosis (EBV-HLH) to more chronic conditions with variable outcomes such as chronic active EBV infections (CAEBV) of T- and NK-cell type (cutaneous and systemic forms) and malignant diseases such as systemic EBV-positive T-cell lymphoma of childhood, aggressive NK-cell leukaemia, extranodal NK/T-cell lymphoma, nasal-type, and primary EBV-positive nodal T/NK-cell lymphoma. Due to their rarity, broad clinicopathological spectrum and significant morphological and immunophenotypic overlap, the diagnosis and precise classification of EBV-TNKLPD often pose a challenge to clinicians and pathologists. Correct classification of this group of rare diseases relies heavily on the age of onset, disease presentation, duration of symptoms and cell of origin (T- vs NK-cell lineage). In this review, we provide an update on the clinicopathological and molecular features of the various EBV-TNKLPD entities occurring in non-immunocompromised patients and present a practical algorithmic approach for the general pathologist who is confronted with these disorders in routine clinical practice.
Collapse
|
5
|
de Mel S, Hue SSS, Jeyasekharan AD, Chng WJ, Ng SB. Molecular pathogenic pathways in extranodal NK/T cell lymphoma. J Hematol Oncol 2019; 12:33. [PMID: 30935402 PMCID: PMC6444858 DOI: 10.1186/s13045-019-0716-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Extranodal NK/T cell lymphoma, nasal type (ENKTL) is an aggressive malignancy with a dismal prognosis. Although L-asparaginase-based chemotherapy has resulted in improved response rates, relapse occurs in up to 50% of patients with disseminated disease. There is hence an urgent need for effective targeted therapy, especially for patients with relapsed or refractory disease. Novel insights gleaned from high-throughput molecular and genomic profiling studies in recent years have contributed significantly to the understanding of the molecular biology of ENKTL, which exemplifies many of the hallmarks of cancer. Deregulated pro-proliferative signaling pathways, such as the Janus-associated kinase/signal transducer and activator of transcription (JAK/STAT), platelet-derived growth factor (PDGF), Aurora kinase, MYC, and NF-κB, have been identified as potential therapeutic targets. The discovery of the non-canonical function of EZH2 as a pro-proliferative transcriptional co-activator has shed further light on the pathogenesis of ENKTL. Loss of key tumor suppressor genes located on chromosome 6q21 also plays an important role. The best-studied examples include PR domain zinc finger protein 1(PRDM1), protein tyrosine phosphatase kappa (PTPRK), and FOXO3. Promoter hypermethylation has been shown to result in the downregulation of other tumor suppressor genes in ENKTL, which may be potentially targeted through hypomethylating agents. Deregulation of apoptosis through p53 mutations and upregulation of the anti-apoptotic protein, survivin, may provide a further growth advantage to this tumor. A deranged DNA damage response as a result of the aberration of ataxia telangiectasia-related (ATR) kinases can lead to significant genomic instability and may contribute to chemoresistance of ENKTL. Recently, immune evasion has emerged as a critical pathway for survival in ENKTL and may be a consequence of HLA dysregulation or STAT3-driven upregulation of programmed cell death ligand 1 (PD-L1). Immunotherapy via inhibition of programmed cell death 1 (PD-1)/PD-L1 checkpoint signaling holds great promise as a novel therapeutic option. In this review, we present an overview of the key molecular and pathogenic pathways in ENKTL, organized using the framework of the "hallmarks of cancer" as described by Hanahan and Weinberg, with a focus on those with the greatest translational potential.
Collapse
Affiliation(s)
- Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, National University Health System, Singapore, Singapore.,Agency for Science Technology and Research Singapore, Institute of Molecular and Cellular Biology, Singapore, Singapore
| | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Siok-Bian Ng
- Department of Pathology, National University Health System, Singapore, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.
| |
Collapse
|
6
|
Makino K, Takeichi O, Imai K, Inoue H, Hatori K, Himi K, Saito I, Ochiai K, Ogiso B. Porphyromonas endodontalis reactivates latent Epstein-Barr virus. Int Endod J 2018; 51:1410-1419. [PMID: 29858508 DOI: 10.1111/iej.12959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/30/2018] [Indexed: 12/13/2022]
Abstract
AIM To determine whether Porphyromonas endodontalis can reactivate latent Epstein-Barr virus (EBV). METHODOLOGY The concentrations of short-chain fatty acids (SCFAs) in P. endodontalis culture supernatants were determined using high-performance liquid chromatography. A promoter region of BamHI fragment Z leftward open reading frame 1 (BZLF-1), which is a transcription factor that controls the EBV lytic cycle, was cloned into luciferase expression vectors. Then, the luciferase assay was performed using P. endodontalis culture supernatants. Histone acetylation using Daudi cells treated with P. endodontalis culture supernatants was examined using Western blotting. BZLF-1 mRNA and BamHI fragment Z EB replication activator (ZEBRA) protein were also detected quantitatively using real-time polymerase chain reaction (PCR) and Western blotting. Surgically removed periapical granulomas were examined to detect P. endodontalis, EBV DNA, and BZLF-1 mRNA expression using quantitative real-time PCR. Statistical analysis using Steel tests was performed. RESULTS The concentrations of n-butyric acid in P. endodontalis culture supernatants were significantly higher than those of other SCFAs (P = 0.0173). Using B-95-8-221 Luc cells treated with P. endodontalis culture supernatants, the luciferase assay demonstrated that P. endodontalis induced BZLF-1 expression. Hyperacetylation of histones was also observed with the culture supernatants. BZLF-1 mRNA and ZEBRA protein were expressed by Daudi cells in a dose-dependent manner after the treatment with P. endodontalis culture supernatants. P. endodontalis and BZLF-1 in periapical granulomas were also detected. The expression levels of BZLF-1 mRNA were similar to the numbers of P. endodontalis cells in each specimen. CONCLUSIONS n-butyric acid produced by P. endodontalis reactivated latent EBV.
Collapse
Affiliation(s)
- K Makino
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - O Takeichi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| | - K Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| | - H Inoue
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan
| | - K Hatori
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| | - K Himi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - I Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Kanagawa, Japan
| | - K Ochiai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| | - B Ogiso
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
7
|
de Mel S, Tan JZC, Jeyasekharan AD, Chng WJ, Ng SB. Transcriptomic Abnormalities in Epstein Barr Virus Associated T/NK Lymphoproliferative Disorders. Front Pediatr 2018; 6:405. [PMID: 30705877 PMCID: PMC6344448 DOI: 10.3389/fped.2018.00405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
Epstein Barr virus positive T/NK lymphoproliferative disorders (EBV-TNKLPD) comprise a spectrum of neoplasms ranging from cutaneous lymphoid proliferations to aggressive lymphomas. The spectrum includes extranodal NK/T-cell lymphoma (ENKTL), aggressive NK-cell leukemia, and a group of EBV-TNKLPDs affecting children which are poorly characterized in terms of their molecular biology. Gene and miRNA expression profiling has elucidated RNA abnormalities which impact on disease biology, classification, and treatment of EBV-TNKLPD. Pathways promoting proliferation, such as Janus associated kinase/ Signal Transducer and Activator of Transcription (JAK/STAT) and nuclear factor kB, are upregulated in ENKTL while upregulation of survivin and deregulation of p53 inhibit apoptosis in both ENKTL and chronic active EBV infection (CAEBV). Importantly, immune evasion via the programmed cell death-1 and its ligand, PD-1/PD-L1 checkpoint pathway, has been demonstrated to play an important role in ENKTL. Other pathogenic mechanisms involve EBV genes, microRNA deregulation, and a variety of other oncogenic signaling pathways. The identification of EBV-positive Peripheral T-cell lymphoma not otherwise specified (PTCL-NOS) as a tumor with a distinct molecular signature and clinical characteristics highlights the important contribution of the knowledge derived from gene and miRNA expression profiling in disease classification. Novel therapeutic targets identified through the study of RNA abnormalities provide hope for patients with EBV-TNKLPD, which often has a poor prognosis. Immune checkpoint inhibition and JAK inhibition in particular have shown promise and are being evaluated in clinical trials. In this review, we provide an overview of the key transcriptomic aberrancies in EBV-TNKLPD and discuss their translational potential.
Collapse
Affiliation(s)
- Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
| | | | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pathology, National University Health System, Singapore, Singapore
| |
Collapse
|
8
|
Washio K, Oka T, Abdalkader L, Muraoka M, Shimada A, Oda M, Sato H, Takata K, Kagami Y, Shimizu N, Kato S, Kimura H, Nishizaki K, Yoshino T, Tsukahara H. Gene expression analysis of hypersensitivity to mosquito bite, chronic active EBV infection and NK/T-lymphoma/leukemia. Leuk Lymphoma 2017; 58:2683-2694. [PMID: 28367723 DOI: 10.1080/10428194.2017.1304762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The human herpes virus, Epstein-Barr virus (EBV), is a known oncogenic virus and plays important roles in life-threatening T/NK-cell lymphoproliferative disorders (T/NK-cell LPD) such as hypersensitivity to mosquito bite (HMB), chronic active EBV infection (CAEBV), and NK/T-cell lymphoma/leukemia. During the clinical courses of HMB and CAEBV, patients frequently develop malignant lymphomas and the diseases passively progress sequentially. In the present study, gene expression of CD16(-)CD56(+)-, EBV(+) HMB, CAEBV, NK-lymphoma, and NK-leukemia cell lines, which were established from patients, was analyzed using oligonucleotide microarrays and compared to that of CD56brightCD16dim/- NK cells from healthy donors. Principal components analysis showed that CAEBV and NK-lymphoma cells were relatively closely located, indicating that they had similar expression profiles. Unsupervised hierarchal clustering analyses of microarray data and gene ontology analysis revealed specific gene clusters and identified several candidate genes responsible for disease that can be used to discriminate each category of NK-LPD and NK-cell lymphoma/leukemia.
Collapse
Affiliation(s)
- Kana Washio
- a Department of Pediatrics , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan.,b Department of Pathology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Takashi Oka
- b Department of Pathology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Lamia Abdalkader
- b Department of Pathology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan.,c Department of Pathology, Faculty of Medicine , Mansoura University , Egypt
| | - Michiko Muraoka
- a Department of Pediatrics , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Akira Shimada
- a Department of Pediatrics , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Megumi Oda
- a Department of Pediatrics , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hiaki Sato
- b Department of Pathology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Katsuyoshi Takata
- b Department of Pathology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yoshitoyo Kagami
- d Division of Molecular Medicine , Aichi Cancer Center Research Institute , Nagoya , Japan
| | - Norio Shimizu
- e Department of Virology, Division of Virology & Immunology , Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan
| | - Seiichi Kato
- f Department of Pathology and Laboratory Medicine , Nagoya University Hospital , Nagoya , Japan
| | - Hiroshi Kimura
- g Department of Virology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Kazunori Nishizaki
- h Department of Otorhinolaryngology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Tadashi Yoshino
- b Department of Pathology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hirokazu Tsukahara
- a Department of Pediatrics , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| |
Collapse
|