1
|
Metta E, Mohamed H, Kusena P, Nyamhanga T, Bahuguna S, Kakoko D, Siril N, Araya A, Mwiru A, Magesa S, Makene L, Rwechungura A, Kirakoya FB, Kazaura M, Frumence G. Community perspectives of Ebola Viral Disease in high-risk transmission border regions of Tanzania: a qualitative inquiry. BMC Public Health 2024; 24:2766. [PMID: 39390413 PMCID: PMC11465839 DOI: 10.1186/s12889-024-20305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Tanzania faces ever-rising concerns due to the recurrence of the Ebola Virus Disease (EVD) in neighbouring Democratic Republic of Congo (DRC) and Uganda. This necessitates a better understanding of the community perspectives in high-risk regions for effective risk communication and preparedness. METHODS This rapid ethnographic assessment study used explorative qualitative methods to collect data. People from diverse backgrounds participated in 59 in-depth interviews, 57 Key Informant interviews, and 35 focus group discussions. Data was analysed using a thematic analysis approach. FINDING The study revealed existence of awareness of EVD and its symptoms, with radio and television being the main sources of information. However, there were varied perceptions of EVD's cause and transmission, some attributed it to bats, monkeys, and wild animal meat, while others associated it with high fever, a dirty environment, changing dietary patterns, and the COVID-19 virus. Physical contact with an infected person's body fluids and eating meat from infected animals were perceived as EVD transmission routes. Women, school children, boda-boda (motorcycle) riders, and fishermen were considered the most susceptible to EVD infections due to their daily activities. Preventive measures included avoiding physical contact, touching fluids, and refraining from eating wild animal meat. Prompt reporting of suspected cases to health facilities was deemed crucial for earlier outbreak identification and containment. CONCLUSION The high-risk regions of Tanzania had a high level of awareness and perceived susceptibility to EVD, coupled with varying degrees of misperception about the etiology and its transmission. To improve community perspectives and preparedness in the case of an outbreak, there is a need for ongoing risk communication and participation in EVD prevention and responses.
Collapse
Affiliation(s)
- Emmy Metta
- Department of Behavioral Science, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P. O. Box 65015, Dar es Salaam, Tanzania.
| | - Hussein Mohamed
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P. O. Box 65015, Dar es Salaam, Tanzania
| | - Priscilla Kusena
- UNICEF Tanzania, Dar Es Salaam Plot 133 Karume Road, Oyster Bay, P.O. Box 4076, Dar es Salaam, Tanzania
| | - Tumaini Nyamhanga
- Depatment of Development Studies, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P. O. Box 65015, Dar es Salaam, Tanzania
| | - Shalini Bahuguna
- UNICEF Tanzania, Dar Es Salaam Plot 133 Karume Road, Oyster Bay, P.O. Box 4076, Dar es Salaam, Tanzania
| | - Deodatus Kakoko
- Department of Behavioral Science, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P. O. Box 65015, Dar es Salaam, Tanzania
| | - Nathanael Siril
- Depatment of Development Studies, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P. O. Box 65015, Dar es Salaam, Tanzania
| | - Awet Araya
- UNICEF Tanzania, Dar Es Salaam Plot 133 Karume Road, Oyster Bay, P.O. Box 4076, Dar es Salaam, Tanzania
| | - Alice Mwiru
- UNICEF Tanzania, Dar Es Salaam Plot 133 Karume Road, Oyster Bay, P.O. Box 4076, Dar es Salaam, Tanzania
| | - Stanley Magesa
- UNICEF Tanzania, Dar Es Salaam Plot 133 Karume Road, Oyster Bay, P.O. Box 4076, Dar es Salaam, Tanzania
| | - Lulu Makene
- UNICEF Tanzania, Dar Es Salaam Plot 133 Karume Road, Oyster Bay, P.O. Box 4076, Dar es Salaam, Tanzania
| | - Allan Rwechungura
- UNICEF Tanzania, Dar Es Salaam Plot 133 Karume Road, Oyster Bay, P.O. Box 4076, Dar es Salaam, Tanzania
| | - Fatimata B Kirakoya
- UNICEF Tanzania, Dar Es Salaam Plot 133 Karume Road, Oyster Bay, P.O. Box 4076, Dar es Salaam, Tanzania
| | - Method Kazaura
- Department of Epidemiology and Biostatistics, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O. Box 65015, Dar es Salaam, Tanzania
| | - Gasto Frumence
- Depatment of Development Studies, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P. O. Box 65015, Dar es Salaam, Tanzania
| |
Collapse
|
2
|
Gonzalez Dias Carvalho PC, Dominguez Crespo Hirata T, Mano Alves LY, Moscardini IF, do Nascimento APB, Costa-Martins AG, Sorgi S, Harandi AM, Ferreira DM, Vianello E, Haks MC, Ottenhoff THM, Santoro F, Martinez-Murillo P, Huttner A, Siegrist CA, Medaglini D, Nakaya HI. Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts. Front Immunol 2023; 14:1259197. [PMID: 38022684 PMCID: PMC10663260 DOI: 10.3389/fimmu.2023.1259197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and increase our understanding of the molecular factors associated with such adverse events. Methods In this study, we developed a machine learning approach to integrate prevaccination gene expression data with adverse events that occurred within 14 days post-vaccination. Results and Discussion We analyzed the expression of 144 genes across 343 blood samples collected from participants of 4 phase I clinical trial cohorts: Switzerland, USA, Gabon, and Kenya. Our machine learning approach revealed 22 key genes associated with adverse events such as local reactions, fatigue, headache, myalgia, fever, chills, arthralgia, nausea, and arthritis, providing insights into potential biological mechanisms linked to vaccine reactogenicity.
Collapse
Affiliation(s)
| | - Thiago Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro Yukio Mano Alves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - André G. Costa-Martins
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Artificial Intelligence and Analytics Department, Institute for Technological Research, São Paulo, Brazil
| | - Sara Sorgi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Daniela M. Ferreira
- Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Eleonora Vianello
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Angela Huttner
- Centre for Vaccinology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Infectious Diseases Service, Geneva University Hospitals, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Centre for Vaccinology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Donata Medaglini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Helder I. Nakaya
- Scientific Platform Pasteur-University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
3
|
Phoobane P, Masinde M, Mabhaudhi T. Predicting Infectious Diseases: A Bibliometric Review on Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031893. [PMID: 35162917 PMCID: PMC8835071 DOI: 10.3390/ijerph19031893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/18/2022]
Abstract
Africa has a long history of novel and re-emerging infectious disease outbreaks. This reality has attracted the attention of researchers interested in the general research theme of predicting infectious diseases. However, a knowledge mapping analysis of literature to reveal the research trends, gaps, and hotspots in predicting Africa’s infectious diseases using bibliometric tools has not been conducted. A bibliometric analysis of 247 published papers on predicting infectious diseases in Africa, published in the Web of Science core collection databases, is presented in this study. The results indicate that the severe outbreaks of infectious diseases in Africa have increased scientific publications during the past decade. The results also reveal that African researchers are highly underrepresented in these publications and that the United States of America (USA) is the most productive and collaborative country. The relevant hotspots in this research field include malaria, models, classification, associations, COVID-19, and cost-effectiveness. Furthermore, weather-based prediction using meteorological factors is an emerging theme, and very few studies have used the fourth industrial revolution (4IR) technologies. Therefore, there is a need to explore 4IR predicting tools such as machine learning and consider integrated approaches that are pivotal to developing robust prediction systems for infectious diseases, especially in Africa. This review paper provides a useful resource for researchers, practitioners, and research funding agencies interested in the research theme—the prediction of infectious diseases in Africa—by capturing the current research hotspots and trends.
Collapse
Affiliation(s)
- Paulina Phoobane
- Department of Information Technology, Central University of Technology, Free State, Private Bag X200539, Bloemfontein 9300, South Africa; (M.M.); (T.M.)
- Correspondence:
| | - Muthoni Masinde
- Department of Information Technology, Central University of Technology, Free State, Private Bag X200539, Bloemfontein 9300, South Africa; (M.M.); (T.M.)
| | - Tafadzwanashe Mabhaudhi
- Department of Information Technology, Central University of Technology, Free State, Private Bag X200539, Bloemfontein 9300, South Africa; (M.M.); (T.M.)
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3201, South Africa
- International Water Management Institute (IWMI-GH), West Africa Office, PMB CT 112 Cantonments, Accra GA015, Ghana
| |
Collapse
|
4
|
Computational Study on Potential Novel Anti-Ebola Virus Protein VP35 Natural Compounds. Biomedicines 2021; 9:biomedicines9121796. [PMID: 34944612 PMCID: PMC8698941 DOI: 10.3390/biomedicines9121796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Ebola virus (EBOV) is one of the most lethal pathogens that can infect humans. The Ebola viral protein VP35 (EBOV VP35) inhibits host IFN-α/β production by interfering with host immune responses to viral invasion and is thus considered as a plausible drug target. The aim of this study was to identify potential novel lead compounds against EBOV VP35 using computational techniques in drug discovery. The 3D structure of the EBOV VP35 with PDB ID: 3FKE was used for molecular docking studies. An integrated library of 7675 African natural product was pre-filtered using ADMET risk, with a threshold of 7 and, as a result, 1470 ligands were obtained for the downstream molecular docking using AutoDock Vina, after an energy minimization of the protein via GROMACS. Five known inhibitors, namely, amodiaquine, chloroquine, gossypetin, taxifolin and EGCG were used as standard control compounds for this study. The area under the curve (AUC) value, evaluating the docking protocol obtained from the receiver operating characteristic (ROC) curve, generated was 0.72, which was considered to be acceptable. The four identified potential lead compounds of NANPDB4048, NANPDB2412, ZINC000095486250 and NANPDB2476 had binding affinities of −8.2, −8.2, −8.1 and −8.0 kcal/mol, respectively, and were predicted to possess desirable antiviral activity including the inhibition of RNA synthesis and membrane permeability, with the probable activity (Pa) being greater than the probable inactivity (Pi) values. The predicted anti-EBOV inhibition efficiency values (IC50), found using a random forest classifier, ranged from 3.35 to 11.99 μM, while the Ki values ranged from 0.97 to 1.37 μM. The compounds NANPDB4048 and NANPDB2412 had the lowest binding energy of −8.2 kcal/mol, implying a higher binding affinity to EBOV VP35 which was greater than those of the known inhibitors. The compounds were predicted to possess a low toxicity risk and to possess reasonably good pharmacological profiles. Molecular dynamics (MD) simulations of the protein–ligand complexes, lasting 50 ns, and molecular mechanisms Poisson-Boltzmann surface area (MM-PBSA) calculations corroborated the binding affinities of the identified compounds and identified novel critical interacting residues. The antiviral potential of the molecules could be confirmed experimentally, while the scaffolds could be optimized for the design of future novel anti-EBOV chemotherapeutics.
Collapse
|
5
|
Cross-Neutralisation of Novel Bombali Virus by Ebola Virus Antibodies and Convalescent Plasma Using an Optimised Pseudotype-Based Neutralisation Assay. Trop Med Infect Dis 2021; 6:tropicalmed6030155. [PMID: 34449756 PMCID: PMC8412100 DOI: 10.3390/tropicalmed6030155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
Ebolaviruses continue to pose a significant outbreak threat, and while Ebola virus (EBOV)-specific vaccines and antivirals have been licensed, efforts to develop candidates offering broad species cross-protection are continuing. The use of pseudotyped virus in place of live virus is recognised as an alternative, safer, high-throughput platform to evaluate anti-ebolavirus antibodies towards their development, yet it requires optimisation. Here, we have shown that the target cell line impacts neutralisation assay results and cannot be selected purely based on permissiveness. In expanding the platform to incorporate each of the ebolavirus species envelope glycoprotein, allowing a comprehensive assessment of cross-neutralisation, we found that the recently discovered Bombali virus has a point mutation in the receptor-binding domain which prevents entry into a hamster cell line and, importantly, shows that this virus can be cross-neutralised by EBOV antibodies and convalescent plasma.
Collapse
|
6
|
Cadavid Restrepo A, Furuya-Kanamori L, Mayfield H, Nilles E, Lau CL. Implications of a travel connectivity-based approach for infectious disease transmission risks in Oceania. BMJ Open 2021; 11:e046206. [PMID: 34385235 PMCID: PMC8361703 DOI: 10.1136/bmjopen-2020-046206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The increase in international travel brought about by globalisation has enabled the rapid spread of emerging pathogens with epidemic and pandemic potential. While travel connectivity-based assessments may help understand patterns of travel network-mediated epidemics, such approaches are rarely carried out in sufficient detail for Oceania where air travel is the dominant method of transportation between countries. DESIGN Travel data from the Australian Bureau of Statistics, Stats NZ and the United Nations World Tourism Organization websites were used to calculate travel volumes in 2018 within Oceania and between Oceania and the rest of the world. The Infectious Disease Vulnerability Index (IDVI) was incorporated into the analysis as an indicator of each country's capacity to contain an outbreak. Travel networks were developed to assess the spread of infectious diseases (1) into and from Oceania, (2) within Oceania and (3) between each of the Pacific Island Countries and Territories (PICTs) and their most connected countries. RESULTS Oceania was highly connected to countries in Asia, Europe and North America. Australia, New Zealand and several PICTs were highly connected to the USA and the UK (least vulnerable countries for outbreaks based on the IDVI), and to China (intermediate low vulnerable country). High variability was also observed between the PICTs in the geographical distribution of their international connections. The PICTs with the highest number of international connections were Fiji, French Polynesia, Guam and Papua New Guinea. CONCLUSION Travel connectivity assessments may help to accurately stratify the risk of infectious disease importation and outbreaks in countries depending on disease transmission in other parts of the world. This information is essential to track future requirements for scaling up and targeting outbreak surveillance and control strategies in Oceania.
Collapse
Affiliation(s)
- Angela Cadavid Restrepo
- School of Public Health, The University of Queensland, Faculty of Medicine, Brisbane, Queensland, Australia
- Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Luis Furuya-Kanamori
- Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australian Capital Territory, Australia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Helen Mayfield
- School of Public Health, The University of Queensland, Faculty of Medicine, Brisbane, Queensland, Australia
- Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Eric Nilles
- Harvard Medical Shool, Harvard University, Cambridge, Massachusetts, USA
- Harvard Humanitarian Initiative, Harvard University, Cambridge, Massachusetts, USA
| | - Colleen L Lau
- School of Public Health, The University of Queensland, Faculty of Medicine, Brisbane, Queensland, Australia
- Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
7
|
Sharma AR, Lee YH, Nath S, Lee SS. Recent developments and strategies of Ebola virus vaccines. Curr Opin Pharmacol 2021; 60:46-53. [PMID: 34329960 DOI: 10.1016/j.coph.2021.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
The Filovirus family member, Ebola virus (EBOV), is a highly infectious pathogen responsible for viral hemorrhagic fever. EBOV has a fatality rate in the range 50%-90% in primates. The lethal viral hemorrhagic attack in 2014 by EBOV has forced the human race to look for rapid countermeasures. Fortunately, owing to continuous efforts and several vaccine platforms, few potential vaccine candidates are emerging, such as replicative and non-replicative vectored vaccines, polyepitopic or monovalent vaccines, and DNA vaccines. This article reviewed various kinds of EBOV vaccines in different clinical trial phases and their approval status. Updated knowledge of vaccine development progress might stimulate the researchers to look for more potent and effective vaccine candidates against EBOV.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea.
| | - Yeon-Hee Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Sudarshini Nath
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea.
| |
Collapse
|
8
|
Shankar U, Jain N, Mishra SK, Sk MF, Kar P, Kumar A. Mining of Ebola virus genome for the construction of multi-epitope vaccine to combat its infection. J Biomol Struct Dyn 2021; 40:4815-4831. [PMID: 33463407 DOI: 10.1080/07391102.2021.1874529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ebola virus is the primary causative agent of viral hemorrhagic fever that is an epidemic disease and responsible for the massive premature deaths in humans. Despite knowing the molecular mechanism of its pathogenesis, to date, no commercial or FDA approved multiepitope vaccine is available against Ebola infection. The current study focuses on designing a multi-epitope subunit vaccine for Ebola using a novel immunoinformatic approach. The best predicted antigenic epitopes of Cytotoxic-T cell (CTL), Helper-T cells (HTL), and B-cell epitopes (BCL) joined by various linkers were selected for the multi-epitope vaccine designing. For the enhanced immune response, two adjuvants were also added to the construct. Further analysis showed the vaccine to be immunogenic and non-allergenic, forming a stable and energetically favorable structure. The stability of the unbound vaccine construct and vaccine/TLR4 was elucidated via atomistic molecular dynamics simulations. The binding free energy analysis (ΔGBind = -194.2 ± 0.5 kcal/mol) via the molecular mechanics Poisson-Boltzmann docking scheme revealed a strong association and thus can initiate the maximal immune response. Next, for the optimal expression of the vaccine construct, its gene construct was cloned in the pET28a + vector system. In summary, the Ebola viral proteome was screened to identify the most potential HTLs, CTLs, and BCL epitopes. Along with various linkers and adjuvants, a multi-epitope vaccine is constructed that showed a high binding affinity with the immune receptor, TLR4. Thus, the current study provides a highly immunogenic multi-epitope subunit vaccine construct that may induce humoral and cellular immune responses against the Ebola infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
9
|
Kangbai JB, Heumann C, Hoelscher M, Sahr F, Froeschl G. Severity score for predicting in-facility Ebola treatment outcome. Ann Epidemiol 2020; 49:68-74. [PMID: 32763341 DOI: 10.1016/j.annepidem.2020.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Sierra Leone recorded the highest incidence rate for the 2013-2016 West African Ebola outbreak. In this investigation, we used the medical records of Ebola patients with different sociodemographic and clinical features to determine the factors that are associated with Ebola treatment outcome during the 2013-2016 West African Ebola outbreak in Sierra Leone and constructed a predictive in-facility mortality score. METHODS We used the anonymized medical records of 1077 laboratory-confirmed pediatric and adult patients with EVD who received treatment at the 34 Military Hospital and the Police Training School Ebola Treatment Centers in Sierra Leone between the period of June 2014 and April 2015. We later determined the in-facility case fatality rates for Ebola, the odds of dying during Ebola treatment, and later constructed a predictive in-facility mortality score for these patients based on their clinical and sociodemographic characteristics. RESULTS We constructed a model that partitioned the study population into three mortality risk groups of equal patient numbers, based on risk scoring: low (score ≤ -5), medium (score -4 to 1), and high-risk group (score ≥ 2). The CFR of patients with EVD belonging to the low- (≤-5), medium (-4 to 1), and high- (≥2) risk groups were 0.56%, 9.75%, and 67.41%, respectively. CONCLUSIONS We succeeded in designing an in-facility mortality risk score that reflects EVD clinical severity and can assist in the clinical prioritization of patients with EVD.
Collapse
Affiliation(s)
- Jia Bainga Kangbai
- Center for International Health, University of Munich (LMU), Munich, Germany; Department of Environmental Health Sciences, Njala University, Bo, Sierra Leone.
| | - Christian Heumann
- Department of Statistics, University of Munich (LMU), Munich, Germany
| | - Michael Hoelscher
- Center for International Health, University of Munich (LMU), Munich, Germany; Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Foday Sahr
- Department of Microbiology, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone; The 34 Military Hospital, Wilberforce, Sierra Leone
| | - Guenter Froeschl
- Center for International Health, University of Munich (LMU), Munich, Germany; Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Sandrock C, Aziz SR. Travel/Tropical Medicine and Pandemic Considerations for the Global Surgeon. Oral Maxillofac Surg Clin North Am 2020; 32:407-425. [PMID: 32473858 PMCID: PMC7205681 DOI: 10.1016/j.coms.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
International travel goes hand in hand with medical delivery to underserved communities. The global health care worker can be exposed to a wide range of infectious diseases during their global experiences. A pretravel risk assessment visit and all appropriate vaccinations and education must be performed. Universal practices of water safety, food safety, and insect avoidance will prevent most travel-related infections and complications. Region-specific vaccinations will further reduce illness risk. An understanding of common travel-related illness signs and symptoms is helpful. Emerging pathogens that can cause a pandemic should be understood to avoid health care worker infection and spread.
Collapse
Affiliation(s)
- Christian Sandrock
- UC Davis School of Medicine, 4150 V street, Suite 3400, Sacramento, CA 95817, USA.
| | - Shahid R Aziz
- Rutgers School of Dental Medicine, 110 Bergen Street, Room B854, Newark, NJ 07103, USA
| |
Collapse
|
11
|
Hasan S, Ahmad SA, Masood R, Saeed S. Ebola virus: A global public health menace: A narrative review. J Family Med Prim Care 2019; 8:2189-2201. [PMID: 31463229 PMCID: PMC6691429 DOI: 10.4103/jfmpc.jfmpc_297_19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 11/10/2022] Open
Abstract
Ebola virus disease (EVD), a fatal viral hemorrhagic illness, is due to infection with the Ebola virus of the Filoviridae family. The disease has evolved as a global public health menace due to a large immigrant population. Initially, the patients present with nonspecific influenza-like symptoms and eventually terminate into shock and multiorgan failure. There exists no specific treatment protocol for EVD and only supportive and symptomatic therapy is the line of treatment. This review article provides a detailed overview of the Ebola virus; it's clinical and oral manifestations, diagnostic aids, differential diagnosis, preventive aspects, and management protocol.
Collapse
Affiliation(s)
- Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Syed Ansar Ahmad
- Department of Oral Surgery, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Rahnuma Masood
- Department of Conservative Dentistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Shazina Saeed
- Department of Amity Institute of Public Health, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Weber DJ, Sickbert-Bennett EE, Kanamori H, Rutala WA. New and emerging infectious diseases (Ebola, Middle Eastern respiratory syndrome coronavirus, carbapenem-resistant Enterobacteriaceae, Candida auris): Focus on environmental survival and germicide susceptibility. Am J Infect Control 2019; 47S:A29-A38. [PMID: 31146847 PMCID: PMC7132701 DOI: 10.1016/j.ajic.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
The Emerging Role of Blockchain Technology Applications in Routine Disease Surveillance Systems to Strengthen Global Health Security. BIG DATA AND COGNITIVE COMPUTING 2019. [DOI: 10.3390/bdcc3020025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Blockchain technology has an enormous scope to revamp the healthcare system in many ways as it improves the quality of healthcare by data sharing among all the participants, selective privacy and ensuring data safety. This paper explores the basics of blockchain, its applications, quality of experience and advantages in disease surveillance over the other widely used real-time and machine learning techniques. The other real-time surveillance systems lack scalability, security, interoperability, thus making blockchain as a choice for surveillance. Blockchain offers the capability of enhancing global health security and also can ensure the anonymity of patient data thereby aiding in healthcare research. The recent epidemics of re-emerging infections such as Ebola and Zika have raised many concerns regarding health security which resulted in strengthening the surveillance systems. We also discuss how blockchains can help in identifying the threats early and reporting them to health authorities for taking early preventive measures. Since the Global Health Security Agenda addresses global public health threats (both infectious and NCDs); strengthen the workforce and the systems; detect and respond rapidly and effectively to the disease threats; and elevate global health security as a priority. The blockchain has enormous potential to disrupt many current practices in traditional disease surveillance and health care research.
Collapse
|
14
|
Houghton F. Geography, global pandemics & air travel: Faster, fuller, further & more frequent. J Infect Public Health 2019; 12:448-449. [PMID: 30878442 PMCID: PMC7129534 DOI: 10.1016/j.jiph.2019.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 11/30/2022] Open
Affiliation(s)
- Frank Houghton
- HEALR Research Group, Limerick Institute of Technology, Limerick, Ireland.
| |
Collapse
|
15
|
Yuan S, Chan JFW, Ye ZW, Wen L, Tsang TGW, Cao J, Huang J, Chan CCY, Chik KKH, Choi GKY, Cai JP, Yin F, Chu H, Liang M, Jin DY, Yuen KY. Screening of an FDA-Approved Drug Library with a Two-Tier System Identifies an Entry Inhibitor of Severe Fever with Thrombocytopenia Syndrome Virus. Viruses 2019; 11:v11040385. [PMID: 31027241 PMCID: PMC6520937 DOI: 10.3390/v11040385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus that causes severe disease in humans with case-fatality rates of up to 30%. There are currently very limited treatment options for SFTSV infection. We conducted a drug repurposing program by establishing a two-tier test system to rapidly screen a Food and Drug Administration- (FDA)-approved drug library for drug compounds with anti-SFTSV activity in vitro. We identified five drug compounds that inhibited SFTSV replication at low micromolar concentrations, including hexachlorophene, triclosan, regorafenib, eltrombopag, and broxyquinoline. Among them, hexachlorophene was the most potent with an IC50 of 1.3 ± 0.3 µM and a selectivity index of 18.7. Mechanistic studies suggested that hexachlorophene was a virus entry inhibitor, which impaired SFTSV entry into host cells by interfering with cell membrane fusion. Molecular docking analysis predicted that the binding of hexachlorophene with the hydrophobic pocket between domain I and domain III of the SFTSV Gc glycoprotein was highly stable. The novel antiviral activity and mechanism of hexachlorophene in this study would facilitate the use of hexachlorophene as a lead compound to develop more entry inhibitors with higher anti-SFTSV potency and lower toxicity.
Collapse
Affiliation(s)
- Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571101, China, and The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Zi-Wei Ye
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Lei Wen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Terance Gi-Wai Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jianli Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jingjing Huang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Chris Chun-Yiu Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kenn Ka-Heng Chik
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Garnet Kwan-Yue Choi
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571101, China, and The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Pathogen Biology, Hainan Medical University, Haikou 571101, China.
- Key Laboratory of Translational Tropical Medicine, Hainan Medical University, Haikou 571101, China.
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Mifang Liang
- Key Laboratory for Medical Virology and National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing 102206, China.
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571101, China, and The University of Hong Kong, Pokfulam, Hong Kong, China.
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
16
|
Carvalho E, Castro P, León E, Del Río A, Crespo F, Trigo L, Fernández S, Trilla A, Varela P, Nicolás JM. Multi-professional simulation and risk perception of health care workers caring for Ebola-infected patients. Nurs Crit Care 2018; 24:256-262. [PMID: 30460729 DOI: 10.1111/nicc.12396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/23/2018] [Accepted: 09/30/2018] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Treatment of infections that require high-level isolation can cause anxiety and fear among health care workers. Adequate and complete multi-professional simulation-based training could reduce those feelings and improve patient care. OBJECTIVE The purpose of this study was to assess the impact of multi-professional simulation-based training on the risk perception and preparedness of health care workers (registered nurses, doctors and ancillary staff) who care for patients assessed to be at risk or confirmed to have Ebola, level 3-4 biohazard. METHODS A prospective before-after study was designed. Health care workers who participated in a multi-professional simulation training course to improve the care of patients potentially infected with Level 3 and 4 biohazards were evaluated about their risk perception. The training was based on clinical scenarios. The evaluation was conducted using questionnaire based on Likert scale. After the training, a satisfaction survey about the most important aspects of the course was also conducted. RESULTS Fifty-eight health care workers participated in the training course, 22 of whom were registered nurses. Participants presented positive changes after the training, increasing their sense of security, predisposition and confidence (p < 0.000001 for all). CONCLUSION Multi-professional simulation-based training significantly improves the perception of safety and preparedness of health care workers regarding the care of patients potentially infected with Ebola virus and other Level 3-4 biohazards. RELEVANCE TO CLINICAL PRACTICE The implementation of educational training strategies - such as simulations - is beneficial in improving the capacity of response and coping, as well as in reducing feelings of fear and insecurity.
Collapse
Affiliation(s)
- Eva Carvalho
- Clinical Simulation Laboratory, School of Medicine, University of Barcelona, Barcelona, Spain.,CAPES Foundation Ministry of Education of Brazil, Brasília, Brazil
| | - Pedro Castro
- Medical Intensive Care Unit, Hospital Clinic of Barcelona, Spain.,IDIBAPS, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Esther León
- Clinical Simulation Laboratory, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ana Del Río
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Félix Crespo
- Medical Intensive Care Unit, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Laura Trigo
- Medical Intensive Care Unit, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Sara Fernández
- Medical Intensive Care Unit, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Antoni Trilla
- IDIBAPS, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Department of Preventive Medicine and Epidemiology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Pilar Varela
- Department of Human Resources, Hospital Clinic of Barcelona, Barcelona, Spain.,Department of Occupational Hazard Prevention, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Jose Maria Nicolás
- IDIBAPS, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Medical Intensive Care Unit, Hospital Clinic of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
The celecoxib derivative kinase inhibitor AR-12 (OSU-03012) inhibits Zika virus via down-regulation of the PI3K/Akt pathway and protects Zika virus-infected A129 mice: A host-targeting treatment strategy. Antiviral Res 2018; 160:38-47. [PMID: 30326204 PMCID: PMC7113887 DOI: 10.1016/j.antiviral.2018.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/22/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022]
Abstract
Zika virus (ZIKV) is a human-pathogenic flavivirus that has recently emerged as a global public health threat. ZIKV infection may be associated with congenital malformations in infected fetuses and severe neurological and systemic complications in infected adults. There are currently limited treatment options for ZIKV infection. AR-12 (OSU-03012) is a celecoxib derivative cellular kinase inhibitor that has broad-spectrum antiviral activities. In this study, we investigated the antiviral activity and mechanism of AR-12 against ZIKV. We evaluated the in vitro anti-ZIKV activity of AR-12, using cell protection and virus yield reduction assays, in multiple clinically relevant cell lines, and the in vivo treatment effects of AR-12 in a lethal mouse model using type I interferon receptor-deficient A129 mice. AR-12 inhibited ZIKV strains belonging to both the African and Asian/American lineages in Huh-7 and/or neuronal cells. AR12's IC50 against ZIKV was consistently <2 μM in these cells. ZIKV-infected A129 mice treated with intraperitoneally or orally administered AR-12 had significantly higher survival rate (50.0%–83.3% vs 0%, P < 0.05), less body weight loss, and lower blood and tissue ZIKV RNA loads than untreated control A129 mice. These anti-ZIKV effects were likely the results of down-regulation of the PI3K/Akt pathway by AR-12. Clinical trials using the clinically available and broad-spectrum AR-12 as an empirical treatment should be considered especially for patients residing in or returning from areas endemic of ZIKV and other arboviral infections who present with an acute undifferentiated febrile illness. AR-12 (OSU-03012) inhibited the replication of Zika virus strains belonging to both the Asian/American and African lineages. AR-12 inhibited Zika virus replication in multiple cell types in vitro. AR-12 treatment improved clinical and virological outcome of Zika virus-infected type I interferon receptor-deficient mice. AR-12 inhibited Zika virus replication via down-regulation of protein kinase B (Akt).
Collapse
|
18
|
Kim YH, Lee J, Kim YE, Chong CK, Pinchemel Y, Reisdörfer F, Coelho JB, Dias RF, Bae PK, Gusmão ZPM, Ahn HJ, Nam HW. Development of a Rapid Diagnostic Test Kit to Detect IgG/IgM Antibody against Zika Virus Using Monoclonal Antibodies to the Envelope and Non-structural Protein 1 of the Virus. THE KOREAN JOURNAL OF PARASITOLOGY 2018. [PMID: 29529852 PMCID: PMC5858665 DOI: 10.3347/kjp.2018.56.1.61] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We developed a Rapid Diagnostic Test (RDT) kit for detecting IgG/IgM antibodies against Zika virus (ZIKV) using monoclonal antibodies to the envelope (E) and non-structural protein 1 (NS1) of ZIKV. These proteins were produced using baculovirus expression vector with Sf9 cells. Monoclonal antibodies J2G7 to NS1 and J5E1 to E protein were selected and conjugated with colloidal gold to produce the Zika IgG/IgM RDT kit (Zika RDT). Comparisons with ELISA, plaque reduction neutralization test (PRNT), and PCR were done to investigate the analytical sensitivity of Zika RDT, which resulted in 100% identical results. Sensitivity and specificity of Zika RDT in a field test was determined using positive and negative samples from Brazil and Korea. The diagnostic accuracy of Zika RDT was fairly high; sensitivity and specificity for IgG was 99.0 and 99.3%, respectively, while for IgM it was 96.7 and 98.7%, respectively. Cross reaction with dengue virus was evaluated using anti-Dengue Mixed Titer Performance Panel (PVD201), in which the Zika RDT showed cross-reactions with DENV in 16.7% and 5.6% in IgG and IgM, respectively. Cross reactions were not observed with West Nile, yellow fever, and hepatitis C virus infected sera. Zika RDT kit is very simple to use, rapid to assay, and very sensitive, and highly specific. Therefore, it would serve as a choice of method for point-of-care diagnosis and large scale surveys of ZIKV infection under clinical or field conditions worldwide in endemic areas.
Collapse
Affiliation(s)
- Yeong Hoon Kim
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | | | | | | | | | | | | | - Pan Kee Bae
- BioNano Health Guard Research Center, Daejeon 34141, Korea
| | | | - Hye-Jin Ahn
- Department of Parasitology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Ho-Woo Nam
- Department of Parasitology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
19
|
Basha IHK, Ho ETW, Yousuff CM, Hamid NHB. Towards Multiplex Molecular Diagnosis-A Review of Microfluidic Genomics Technologies. MICROMACHINES 2017; 8:E266. [PMID: 30400456 PMCID: PMC6190060 DOI: 10.3390/mi8090266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/30/2017] [Accepted: 07/16/2017] [Indexed: 12/21/2022]
Abstract
Highly sensitive and specific pathogen diagnosis is essential for correct and timely treatment of infectious diseases, especially virulent strains, in people. Point-of-care pathogen diagnosis can be a tremendous help in managing disease outbreaks as well as in routine healthcare settings. Infectious pathogens can be identified with high specificity using molecular methods. A plethora of microfluidic innovations in recent years have now made it increasingly feasible to develop portable, robust, accurate, and sensitive genomic diagnostic devices for deployment at the point of care. However, improving processing time, multiplexed detection, sensitivity and limit of detection, specificity, and ease of deployment in resource-limited settings are ongoing challenges. This review outlines recent techniques in microfluidic genomic diagnosis and devices with a focus on integrating them into a lab on a chip that will lead towards the development of multiplexed point-of-care devices of high sensitivity and specificity.
Collapse
Affiliation(s)
- Ismail Hussain Kamal Basha
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Eric Tatt Wei Ho
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Caffiyar Mohamed Yousuff
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Nor Hisham Bin Hamid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| |
Collapse
|
20
|
Abstract
Under a traditional paradigm, only those with the expected background knowledge consume academic literature. The lay press, as well as government and non-government agencies, play a complementary role of extracting findings of high interest or importance and translating them for general viewing. The need for accurate reporting and public advising is paramount when attempting to tackle epidemic outbreaks through behavior change. Yet, public trust in media outlets is at a historic low. The Crisis and Emergency Risk Communication (CERC) model for media reporting on public health emergencies was established in 2005 and has subsequently been used to analyze media reporting on outbreaks of influenza and measles as well as smoking habits and medication compliance. However, no media analysis had yet been performed on the 2013–2016 Ebola Virus Disease (EVD) outbreak. This study compared the EVD information relayed by lay press sources with general review articles in the academic literature through a mixed-methods analysis. These findings suggest that comprehensive review articles could not serve as a source to clarify and contextualize the uncertainties around the EVD outbreak, perhaps due to adherence to technical accuracy at the expense of clarity within the context of outbreak conditions. This finding does not imply inferiority of the academic literature, nor does it draw direct causation between confusion in review articles and public misunderstanding. Given the erosion of the barriers siloing academia, combined with the demands of today’s fast-paced media environment, contemporary researchers should realize that no study is outside the public forum and to therefore consider shifting the paradigm to take personal responsibility in the process of accurately translating their scientific words into public policy actions to best serve as a source of clarity.
Collapse
|
21
|
Chan JFW, Yip CCY, Tee KM, Zhu Z, Tsang JOL, Chik KKH, Tsang TGW, Chan CCS, Poon VKM, Sridhar S, Yin F, Hung IFN, Chau SKY, Zhang AJ, Chan KH, Yuen KY. Improved detection of Zika virus RNA in human and animal specimens by a novel, highly sensitive and specific real-time RT-PCR assay targeting the 5'-untranslated region of Zika virus. Trop Med Int Health 2017; 22:594-603. [PMID: 28214373 DOI: 10.1111/tmi.12857] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE AND METHOD We developed and evaluated five novel real-time RT-PCR assays targeting conserved regions in the 5'-untranslated region (5'-UTR), envelope (E'), non-structural protein 2A (NS2A), NS5 and 3'-UTR of the ZIKV genome. RESULTS The ZIKV-5'-UTR assay exhibited the lowest in vitro limit of detection (5-10 RNA copies/reaction and 3.0 × 10-1 plaque-forming units/ml). Compared to the modified version of a widely adopted RT-PCR assay targeting the ZIKV-E gene, the ZIKV-5'-UTR assay showed better sensitivity in human clinical specimens, and representative mouse specimens, including many organs which are known to be involved in human ZIKV infection but difficult to obtain in clinical settings. The ZIKV-5'-UTR assay detected ZIKV RNA in 84/84 (100.0%) ZIKV-E'-positive and an additional 30/296 (10.1%, P < 0.01) ZIKV-E'-negative mouse specimens. The higher sensitivity of the ZIKV-5'-UTR assay was most significant in kidney and testis/epididymis specimens (P < 0.01). No in vitro or in vivo cross-reactivity was found between the ZIKV-5'-UTR assay and dengue virus, yellow fever virus, Japanese encephalitis virus, West Nile virus, hepatitis C virus and Chikungunya virus. CONCLUSIONS The highly sensitive and specific ZIKV-5'-UTR assay may help to improve the laboratory diagnosis of ZIKV infection.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kah-Meng Tee
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Zheng Zhu
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | | | - Kenn Ka-Heng Chik
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | | | | | | | - Siddharth Sridhar
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Feifei Yin
- Key Laboratory of Tropical Diseases and Translational Medicine, Hainan Medical University, Haikou, China
| | - Ivan Fan-Ngai Hung
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sandy Ka-Yee Chau
- Department of Pathology, United Christian Hospital, Hong Kong, China
| | - Anna Jinxia Zhang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Hung Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Chan JFW, Sridhar S, Yip CCY, Lau SKP, Woo PCY. The role of laboratory diagnostics in emerging viral infections: the example of the Middle East respiratory syndrome epidemic. J Microbiol 2017; 55:172-182. [PMID: 28243939 PMCID: PMC7090747 DOI: 10.1007/s12275-017-7026-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
Rapidly emerging infectious disease outbreaks place a great strain on laboratories to develop and implement sensitive and specific diagnostic tests for patient management and infection control in a timely manner. Furthermore, laboratories also play a role in real-time zoonotic, environmental, and epidemiological investigations to identify the ultimate source of the epidemic, facilitating measures to eventually control the outbreak. Each assay modality has unique pros and cons; therefore, incorporation of a battery of tests using traditional culture-based, molecular and serological diagnostics into diagnostic algorithms is often required. As such, laboratories face challenges in assay development, test evaluation, and subsequent quality assurance. In this review, we describe the different testing modalities available for the ongoing Middle East respiratory syndrome (MERS) epidemic including cell culture, nucleic acid amplification, antigen detection, and antibody detection assays. Applications of such tests in both acute clinical and epidemiological investigation settings are highlighted. Using the MERS epidemic as an example, we illustrate the various challenges faced by laboratories in test development and implementation in the setting of a rapidly emerging infectious disease. Future directions in the diagnosis of MERS and other emerging infectious disease investigations are also highlighted.
Collapse
Affiliation(s)
- Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
| | - Siddharth Sridhar
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
| | - Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
| | - Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China.
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China.
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China.
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China.
| |
Collapse
|
23
|
Hartley MA, Young A, Tran AM, Okoni-Williams HH, Suma M, Mancuso B, Al-Dikhari A, Faouzi M. Predicting Ebola Severity: A Clinical Prioritization Score for Ebola Virus Disease. PLoS Negl Trop Dis 2017; 11:e0005265. [PMID: 28151955 PMCID: PMC5289426 DOI: 10.1371/journal.pntd.0005265] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 12/15/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite the notoriety of Ebola virus disease (EVD) as one of the world's most deadly infections, EVD has a wide range of outcomes, where asymptomatic infection may be almost as common as fatality. With increasingly sensitive EVD diagnosis, there is a need for more accurate prognostic tools that objectively stratify clinical severity to better allocate limited resources and identify those most in need of intensive treatment. METHODS/PRINCIPAL FINDINGS This retrospective cohort study analyses the clinical characteristics of 158 EVD(+) patients at the GOAL-Mathaska Ebola Treatment Centre, Sierra Leone. The prognostic potential of each characteristic was assessed and incorporated into a statistically weighted disease score. The mortality rate among EVD(+) patients was 60.8% and highest in those aged <5 or >25 years (p<0.05). Death was significantly associated with malaria co-infection (OR = 2.5, p = 0.01). However, this observation was abrogated after adjustment to Ebola viral load (p = 0.1), potentially indicating a pathologic synergy between the infections. Similarly, referral-time interacted with viral load, and adjustment revealed referral-time as a significant determinant of mortality, thus quantifying the benefits of early reporting as a 12% mortality risk reduction per day (p = 0.012). Disorientation was the strongest unadjusted predictor of death (OR = 13.1, p = 0.014) followed by hiccups, diarrhoea, conjunctivitis, dyspnoea and myalgia. Including these characteristics in multivariate prognostic scores, we obtained a 91% and 97% ability to discriminate death at or after triage respectively (area under ROC curve). CONCLUSIONS/SIGNIFICANCE This study proposes highly predictive and easy-to-use prognostic tools, which stratify the risk of EVD mortality at or after EVD triage.
Collapse
Affiliation(s)
- Mary-Anne Hartley
- GOAL Global, Dublin, Ireland
- University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | | | | | | | | | | | | | - Mohamed Faouzi
- Institute of Social and Preventive Medicine, Lausanne, Switzerland
| |
Collapse
|
24
|
Welfare W, Wright E. Planning for the unexpected: Ebola virus, Zika virus, what's next? Br J Hosp Med (Lond) 2016; 77:704-707. [DOI: 10.12968/hmed.2016.77.12.704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- William Welfare
- Consultant, Health Protection Team, Public Health England North West, Manchester, and Honorary Senior Clinical Lecturer, University of Manchester, Manchester
| | - Edward Wright
- Senior Lecturer, Viral Pseudotype Unit, Faculty of Science and Technology, University of Westminster, London W1W 6UW
| |
Collapse
|
25
|
Ning YJ, Deng F, Hu Z, Wang H. The roles of ebolavirus glycoproteins in viral pathogenesis. Virol Sin 2016; 32:3-15. [PMID: 27853993 PMCID: PMC6791933 DOI: 10.1007/s12250-016-3850-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022] Open
Abstract
Ebolaviruses are highly dangerous pathogens exhibiting extreme virulence in humans and nonhuman primates. The majority of ebolavirus species, most notably Zaire ebolavirus, can cause Ebola virus disease (EVD), formerly known as Ebola hemorrhagic fever, in humans. EVD is associated with case-fatality rates as high as 90%, and there is currently no specific treatment or licensed vaccine available against EVD. Understanding the molecular biology and pathogenesis of ebolaviruses is important for the development of antiviral therapeutics. Ebolavirus encodes several forms of glycoproteins (GPs), which have some interesting characteristics, including the transcriptional editing coding strategy and extensive O-glycosylation modification, clustered in the mucin-like domain of GP1, full-length GP (GP1,2), and shed GP. In addition to the canonical role of the spike protein, GP1,2, in viral entry, ebolavirus GPs appear to have multiple additional functions, likely contributing to the complex pathogenesis of the virus. Here, we review the roles of ebolavirus GPs in viral pathogenesis.
Collapse
Affiliation(s)
- Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
26
|
Chan JFW, Choi GKY, Yip CCY, Cheng VCC, Yuen KY. Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. J Infect 2016; 72:507-24. [PMID: 26940504 PMCID: PMC7112603 DOI: 10.1016/j.jinf.2016.02.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 02/09/2023]
Abstract
Unlike its mosquito-borne relatives, such as dengue, West Nile, and Japanese encephalitis viruses, which can cause severe human diseases, Zika virus (ZIKV) has emerged from obscurity by its association with a suspected "congenital Zika syndrome", while causing asymptomatic or mild exanthematous febrile infections which are dengue- or rubella-like in infected individuals. Despite having been discovered in Uganda for almost 60 years, <20 human cases were reported before 2007. The massive epidemics in the Pacific islands associated with the ZIKV Asian lineage in 2007 and 2013 were followed by explosive outbreaks in Latin America in 2015. Although increased mosquito breeding associated with the El Niño effect superimposed on global warming is suspected, genetic changes in its RNA virus genome may have led to better adaptation to mosquitoes, other animal reservoirs, and human. We reviewed the epidemiology, clinical manifestation, virology, pathogenesis, laboratory diagnosis, management, and prevention of this emerging infection. Laboratory diagnosis can be confounded by cross-reactivity with other circulating flaviviruses. Besides mosquito bite and transplacental transmission, the risk of other potential routes of transmission by transfusion, transplantation, sexual activity, breastfeeding, respiratory droplet, and animal bite is discussed. Epidemic control requires adequate clearance of mosquito breeding grounds, personal protection against mosquito bite, and hopefully a safe and effective vaccine.
Collapse
Affiliation(s)
- Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Garnet K Y Choi
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent C C Cheng
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
27
|
Thorson A, Formenty P, Lofthouse C, Broutet N. Systematic review of the literature on viral persistence and sexual transmission from recovered Ebola survivors: evidence and recommendations. BMJ Open 2016; 6:e008859. [PMID: 26743699 PMCID: PMC4716240 DOI: 10.1136/bmjopen-2015-008859] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The main aim of this article is to present a comprehensive, systematic review on evidence of sexual transmission from Ebola survivors and persistence of Ebola virus in body fluids of relevance to sexual transmission, and additionally to review condom effectiveness against sexual transmission of Ebola. DESIGN We performed a systematic review of viral persistence in body fluids of relevance to sexual transmission of Ebola survivors and evidence of sexual transmission of Ebola, and carried out a targeted review of condom effectiveness. RESULTS We identified nine published original articles presenting results on persistence of Ebola virus in relevant body fluids, or reporting suspect sexual transmission from Ebola survivors. We also included unpublished reports from the current 2014/2015 Ebola epidemic in West Africa. We found no articles reporting on condom effectiveness, but have included a targeted review on general condom efficacy and effectiveness. CONCLUSIONS We conclude that the risk of sexual transmission from people who have recovered from Ebola cannot be ruled out. We found the longest duration of persistent Ebola RNA in a relevant body fluid from a survivor, to be reported from a man in Sierra Leone who had reverse transcriptase PCR (RT-PCR) positive semen 284 days after symptom onset. In line with current WHO recommendations. We recommend that men are offered the possibility to test their semen regularly for presence of Ebola RNA from 3 months post-symptom onset. Safe sex practices including sexual abstinence, or else condom use, are recommended by WHO until semen has tested negative twice, or in absence of testing for at least 6 months post-symptom onset. Based on evidence reviewed, we conclude that male and female latex condoms offer some protection against EBOV compared to no condom use. Survivors should be offered access to care and prevention, in order to provide them with possibilities to mitigate any risks that may occur, and efforts should be linked to destigmatising activities.
Collapse
Affiliation(s)
- Anna Thorson
- World Health Organization (WHO), Geneva, Switzerland
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
28
|
Cotte J, Cordier PY, Bordes J, Janvier F, Esnault P, Kaiser E, Meaudre E. Fluid resuscitation in Ebola Virus Disease: A comparison of peripheral and central venous accesses. Anaesth Crit Care Pain Med 2015; 34:317-20. [PMID: 26541219 DOI: 10.1016/j.accpm.2015.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 04/30/2015] [Accepted: 06/09/2015] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Ebola Virus Disease (EVD) causes severe diarrhoea and vomiting, leading to dehydration and electrolyte abnormalities. Treatment remains supportive and often requires intravenous (IV) access. IV catheters are difficult to insert and maintain in this context. Our primary objective was to compare peripheral venous catheters (PVCs) and central venous catheters (CVCs) for volume resuscitation in patients with EVD. MATERIAL AND METHODS We performed a prospective observational study between January and March 2015 at the Conakry Healthcare Workers Ebola Treatment Unit (ETU). The primary judgement criterion was the ratio of the daily infused volume of fluids to the prescribed volume (DIV/PV). RESULTS Fourteen patients were admitted. Twenty-eight PVCs and 8 CVCs were inserted. CVCs had a longer survival time (96 ± 34 hours versus 33.5 ± 21 hours, P<0.001). The mean DIV/PV was higher for the CVCs (0.95±0.08 versus 0.7 ± 0.27, P<0.001), as well as the number of days with full administration of prescribed IV fluids (71.2% versus 34.1%, P=0.002). DISCUSSION Inserting CVCs is a safe and reliable way of obtaining IV access in ETUs, provided adequately trained personnel are available. CVCs optimize fluid infusion compared to PVCs. Further studies comparing fluid management strategies in EVD are necessary.
Collapse
Affiliation(s)
- Jean Cotte
- Anaesthesiology and Critical Care, Sainte-Anne Military Teaching Hospital, 83800 Toulon, France; Healthcare Workers Ebola Treatment Unit, Conakry, Guinea.
| | - Pierre-Yves Cordier
- Healthcare Workers Ebola Treatment Unit, Conakry, Guinea; Anaesthesiology and Critical Care, Laveran Military Teaching Hospital, 13013 Marseille, France.
| | - Julien Bordes
- Anaesthesiology and Critical Care, Sainte-Anne Military Teaching Hospital, 83800 Toulon, France; Healthcare Workers Ebola Treatment Unit, Conakry, Guinea.
| | - Frederic Janvier
- Healthcare Workers Ebola Treatment Unit, Conakry, Guinea; Laboratory, Sainte-Anne Military Teaching Hospital, 83800 Toulon, France.
| | - Pierre Esnault
- Anaesthesiology and Critical Care, Sainte-Anne Military Teaching Hospital, 83800 Toulon, France.
| | - Eric Kaiser
- Anaesthesiology and Critical Care, Sainte-Anne Military Teaching Hospital, 83800 Toulon, France.
| | - Eric Meaudre
- Anaesthesiology and Critical Care, Sainte-Anne Military Teaching Hospital, 83800 Toulon, France.
| |
Collapse
|
29
|
Williams CL. Leading the charge: Médecins Sans Frontières receives the 2015 Lasker~Bloomberg Public Service Award. J Clin Invest 2015; 125:3737-41. [PMID: 26345424 DOI: 10.1172/jci84349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Gimm G, Nichols LM. Ebola crisis of 2014: are current strategies enough to meet the long-run challenges ahead? Am J Public Health 2015; 105:e8-e10. [PMID: 25790395 DOI: 10.2105/ajph.2015.302576] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The outbreak of the Ebola virus disease (EVD) in 2014 mobilized international efforts to contain a global health crisis. The emergence of the deadly virus in the United States and Europe among health care workers intensified fears of a worldwide epidemic. Market incentives for pharmaceutical firms to allocate their research and development resources toward Ebola treatments were weak because the limited number of EVD cases were previously confined to rural areas of West Africa. We discuss 3 policy recommendations to address the long-term challenges of EVD in an interconnected world.
Collapse
Affiliation(s)
- Gilbert Gimm
- Gilbert Gimm is with the Department of Health Administration and Policy, George Mason University, Fairfax, VA. Len M. Nichols is with the Center for Health Policy Research and Ethics, George Mason University
| | | |
Collapse
|
31
|
Li H, Ying T, Yu F, Lu L, Jiang S. Development of therapeutics for treatment of Ebola virus infection. Microbes Infect 2014; 17:109-17. [PMID: 25498866 DOI: 10.1016/j.micinf.2014.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 11/27/2022]
Abstract
Ebola virus infection can cause Ebola virus disease (EVD). Patients usually show severe symptoms, and the fatality rate can reach up to 90%. No licensed medicine is available. In this review, development of therapeutics for treatment of Ebola virus infection and EVD will be discussed.
Collapse
Affiliation(s)
- Haoyang Li
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Tianlei Ying
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Fei Yu
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Lu Lu
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|