1
|
Aslam S, Aljawdah HM, Murshed M, Serrano GE. Pharmacophore modelling based virtual screening and molecular dynamics identified the novel inhibitors and drug targets against Waddlia chondrophila. Sci Rep 2024; 14:13472. [PMID: 38866811 PMCID: PMC11169463 DOI: 10.1038/s41598-024-63555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Waddlia chondrophila is a possible cause of fetal death in humans. This Chlamydia-related bacterium is an emergent pathogen that causes human miscarriages and ruminant abortions, which results in financial losses. Despite the years of efforts, the underlying mechanism behind the pathogenesis of W. chondrophila is little known which hindered the development of novel treatment options. In the framework of current study, computational approaches were used to identify novel inhibitors (phytocompounds) and drug targets against W. chondrophila. At first, RNA polymerase sigma factor SigA and 3-deoxy-D-manno-octulosonic acid transferase were identified through subtractive proteomics pipeline. Afterwards, extensive docking and simulation analyses were conducted to optimize potentially novel phytocompounds by assessing their binding affinity to target proteins. A 100ns molecular dynamics simulation well complimented the compound's binding affinity and indicated strong stability of predicted compounds at the docked site. The calculation of binding free energies with MMGBSA corroborated the significant binding affinity between phytocompounds and target protein binding sites. The proposed phytocompounds may be a viable treatment option for patients infected with W. chondrophila; however, further research is required to ensure their safety.
Collapse
Affiliation(s)
- Sidra Aslam
- Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mutee Murshed
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Chowdhury UF, Saba AA, Sufi AS, Khan AM, Sharmin I, Sultana A, Islam MO. Subtractive proteomics approach to Unravel the druggable proteins of the emerging pathogen Waddlia chondrophila and drug repositioning on its MurB protein. Heliyon 2021; 7:e07320. [PMID: 34195427 PMCID: PMC8239728 DOI: 10.1016/j.heliyon.2021.e07320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
Abstract
Waddlia chondrophila is an emerging pathogen that has been implicated in numerous unpropitious pregnancy events in humans and ruminants. Taking into account its association with abortigenic events, possible modes of transmission, and future risk, immediate clinical measures are required to prevent widespread damage caused by this organism and hence this study. Here, a subtractive proteomics approach was employed to identify druggable proteins of W. chondrophila. Considering the essential genes, antibiotic resistance proteins, and virulence factors, 676 unique important proteins were initially identified for this bacterium. Afterward, NCBI BLASTp performed against human proteome identified 223 proteins that were further pushed into KEGG Automatic Annotation Server (KAAS) for automatic annotation. Using the information from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database 14 Waddlia specific metabolic pathways were identified with respect to humans. Analyzing the data from KAAS and KEGG databases, forty-eight metabolic pathway-dependent, and seventy metabolic pathway independent proteins were identified. Standalone BLAST search against DrugBank FDA approved drug targets revealed eight proteins that are finally considered druggable proteins. Prediction of three-dimensional structures was done for the eight proteins through homology modeling and the Ramachandran plot model showed six models as a valid prediction. Finally, virtual screening against MurB protein was performed using FDA approved drugs to employ the drug repositioning strategy. Three drugs showed promising docking results that can be used for therapeutic purposes against W. chondrophila following the clinical validation of the study.
Collapse
Affiliation(s)
| | - Abdullah Al Saba
- Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Abu Sufian Sufi
- Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Akib Mahmud Khan
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ishrat Sharmin
- Sarkari Karmachari Hospital, Fulbaria, Dhaka, Bangladesh
| | - Aziza Sultana
- Sarkari Karmachari Hospital, Fulbaria, Dhaka, Bangladesh
| | - Md Ohedul Islam
- Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| |
Collapse
|
4
|
Colpaert M, Kadouche D, Ducatez M, Pillonel T, Kebbi-Beghdadi C, Cenci U, Huang B, Chabi M, Maes E, Coddeville B, Couderc L, Touzet H, Bray F, Tirtiaux C, Ball S, Greub G, Colleoni C. Conservation of the glycogen metabolism pathway underlines a pivotal function of storage polysaccharides in Chlamydiae. Commun Biol 2021; 4:296. [PMID: 33674787 PMCID: PMC7935935 DOI: 10.1038/s42003-021-01794-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
The order Chlamydiales includes obligate intracellular pathogens capable of infecting mammals, fishes and amoeba. Unlike other intracellular bacteria for which intracellular adaptation led to the loss of glycogen metabolism pathway, all chlamydial families maintained the nucleotide-sugar dependent glycogen metabolism pathway i.e. the GlgC-pathway with the notable exception of both Criblamydiaceae and Waddliaceae families. Through detailed genome analysis and biochemical investigations, we have shown that genome rearrangement events have resulted in a defective GlgC-pathway and more importantly we have evidenced a distinct trehalose-dependent GlgE-pathway in both Criblamydiaceae and Waddliaceae families. Altogether, this study strongly indicates that the glycogen metabolism is retained in all Chlamydiales without exception, highlighting the pivotal function of storage polysaccharides, which has been underestimated to date. We propose that glycogen degradation is a mandatory process for fueling essential metabolic pathways that ensure the survival and virulence of extracellular forms i.e. elementary bodies of Chlamydiales.
Collapse
Affiliation(s)
- Matthieu Colpaert
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Derifa Kadouche
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Mathieu Ducatez
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Ugo Cenci
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Binquan Huang
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/School of Agriculture, Yunnan University, Kunming, China
| | - Malika Chabi
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Emmanuel Maes
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France
| | - Bernadette Coddeville
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Loïc Couderc
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France
| | - Hélène Touzet
- University of Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Lille, France
| | - Fabrice Bray
- University of Lille, CNRS, USR 3290-MSAP-Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille, France
| | - Catherine Tirtiaux
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Steven Ball
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Christophe Colleoni
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| |
Collapse
|
5
|
Screening of Chlamydia trachomatis and Waddlia chondrophila Antibodies in Women with Tubal Factor Infertility. Microorganisms 2020; 8:microorganisms8060918. [PMID: 32560559 PMCID: PMC7355871 DOI: 10.3390/microorganisms8060918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022] Open
Abstract
Waddlia chondrophila is an emerging intracellular pathogen belonging to the order of Chlamydiales, and was previously associated with adverse pregnancy outcomes, as well as tubal factor infertility (TFI). In this study, we investigate the link between both W. chondrophila and Chlamydia trachomatis IgG seropositivity and TFI. Antibodies against both bacteria were measured in 890 serum samples of women visiting a fertility clinic. After a hysterosalpingography and/or laparoscopy, they were classified as either TFI-negative (TFI−) or TFI-positive (TFI+). The total seroprevalence was 13.4% for C. trachomatis and 38.8% for W. chondrophila. C. trachomatis antibodies were present significantly more often in the TFI+ group than in the TFI− group, while for W. chondrophila no difference could be observed. In conclusion, our study confirms the association between C. trachomatis seropositivity and TFI, but no association was found between W. chondrophila seropositivity and TFI. The high percentage of W. chondrophila seropositivity in all women attending a fertility clinic does, however, demonstrate the need for further research on this Chlamydia-like bacterium and its possible role in infertility.
Collapse
|
6
|
Zhang X, Yan S, Chen J, Tyagi R, Li J. Physical, chemical, and biological impact (hazard) of hospital wastewater on environment: presence of pharmaceuticals, pathogens, and antibiotic-resistance genes. CURRENT DEVELOPMENTS IN BIOTECHNOLOGY AND BIOENGINEERING 2020. [PMCID: PMC7252251 DOI: 10.1016/b978-0-12-819722-6.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hospital wastewater contains various pharmaceuticals and pathogens. Improper management of the wastewater has caused the leakage of these harmful materials to the environment. The presence of pathogens, pharmaceuticals, and their derivatives such as antibiotic resistance genes as the most typical one in the environment leads to physical, chemical, and biological harmful impact. This chapter has reviewed the pharmaceuticals and pathogens in the hospital; discussed the development of antibiotic resistance genes; and revealed the possible impact of these harmful materials in microorganisms, organism, and human being. In addition, the measures that can be taken to prevent the transportation of pharmaceuticals and pathogens into environment have been stated in this chapter.
Collapse
|
7
|
Abstract
The expanding field of bacterial genomics has revolutionized our understanding of microbial diversity, biology and phylogeny. For most species, DNA extracted from culture material is used as the template for genome sequencing; however, the majority of microbes are actually uncultivable, and others, such as obligate intracellular bacteria, require laborious tissue culture to yield sufficient genomic material for sequencing. Chlamydiae are one such group of obligate intracellular microbes whose characterization has been hampered by this requirement. To circumvent these challenges, researchers have developed culture-independent sample preparation methods that can be applied to the sample directly or to genomic material extracted from the sample. These methods, which encompass both targeted [immunomagnetic separation-multiple displacement amplification (IMS-MDA) and sequence capture] and non-targeted approaches (host methylated DNA depletion-microbial DNA enrichment and cell-sorting-MDA), have been applied to a range of clinical and environmental samples to generate whole genomes of novel chlamydial species and strains. This review aims to provide an overview of the application, advantages and limitations of these targeted and non-targeted approaches in the chlamydial context. The methods discussed also have broad application to other obligate intracellular bacteria or clinical and environmental samples.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Danielle Madden
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
8
|
Vidal S, Kegler K, Greub G, Aeby S, Borel N, Dagleish MP, Posthaus H, Perreten V, Rodriguez-Campos S. Neglected zoonotic agents in cattle abortion: tackling the difficult to grow bacteria. BMC Vet Res 2017; 13:373. [PMID: 29197401 PMCID: PMC5712085 DOI: 10.1186/s12917-017-1294-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Coxiella burnetii, Chlamydia abortus and Leptospira spp. are difficult to grow bacteria that play a role in bovine abortion, but their diagnosis is hampered by their obligate intracellular lifestyle (C. burnetii, C. abortus) or their lability (Leptospira spp.). Their importance is based on the contagious spread in food-producing animals, but also as zoonotic agents. In Switzerland, first-line routine bacteriological diagnostics in cattle abortions is regulated by national law and includes only basic screening by staining for C. burnetii due to the high costs associated with extended spectrum analysis. The aim of this study was to assess the true occurrence of these zoonotic pathogens in 249 cases of bovine abortion in Switzerland by serology (ELISA for anti-C. burnetii and C. abortus antibodies and microscopic agglutination test for anti-Leptospira spp. antibodies), molecular methods (real-time PCR and sequencing of PCR products of Chlamydiales-positive cases), Stamp's modification of the Ziehl-Neelsen (mod-ZN) stain and, upon availability of material, by histology and immunohistochemistry (IHC). RESULTS After seroanalysis the prevalence was 15.9% for C. burnetii, 38.5% for C. abortus and 21.4% for Leptospira spp. By real-time PCR 12.1% and 16.9% of the cases were positive for C. burnetii and Chlamydiales, respectively, but only 2.4% were positive for C. burnetii or Chlamydiales by mod-ZN stain. Sequencing of PCR products of Chlamydiales-positive cases revealed C. abortus in 10% of cases and the presence of a mix of Chlamydiales-related bacteria in 5.2% of cases. Pathogenic Leptospira spp. were detected in 5.6% of cases. Inflammatory lesions were present histologically in all available samples which were real-time PCR-positive for Chlamydiales and Leptospira spp. One of 12 real-time PCR-positive cases for C. burnetii was devoid of histological lesions. None of the pathogens could be detected by IHC. CONCLUSION Molecular detection by real-time PCR complemented by histopathological analysis is recommended to improve definitive diagnosis of bovine abortion cases and determine a more accurate prevalence of these zoonotic pathogens.
Collapse
Affiliation(s)
- Sara Vidal
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3001 Bern, Switzerland
| | - Kristel Kegler
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, CH-3012 Bern, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Bugnon 48, CH-1011 Lausanne, Switzerland
| | - Sebastien Aeby
- Institute of Microbiology, University Hospital Center and University of Lausanne, Bugnon 48, CH-1011 Lausanne, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, CH – 8057 Zurich, Switzerland
| | - Mark P. Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland EH26 0PZ UK
| | - Horst Posthaus
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, CH-3012 Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, CH-3012 Bern, Switzerland
| | - Sabrina Rodriguez-Campos
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, CH-3012 Bern, Switzerland
| |
Collapse
|
9
|
Greub G, Bleeker-Rovers CP, Carlyon J, Fournier PE, Ojcius D, Puolakkainen M. Intracellular bacterial pathogens: a reemerging field of research rich with breakthroughs and opportunities. Microbes Infect 2015; 17:721-2. [PMID: 26482501 DOI: 10.1016/j.micinf.2015.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland.
| | | | - Jason Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, United States
| | | | - David Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, USA
| | - Mirja Puolakkainen
- Department of Virology and Immunology, Helsinki University Central Hospital Helsinki, Finland
| |
Collapse
|