1
|
Konopka EN, Edgerton AO, Kutzler MA. Nucleic acid vaccines: innovations, efficacy, and applications in at-risk populations. Front Immunol 2025; 16:1584876. [PMID: 40438110 PMCID: PMC12116436 DOI: 10.3389/fimmu.2025.1584876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/09/2025] [Indexed: 06/01/2025] Open
Abstract
For more than two centuries, the field of vaccine development has progressed through the adaptation of novel platforms in parallel with technological developments. Building off the advantages and shortcomings of first and second-generation vaccine platforms, the advent of third-generation nucleic acid vaccines has enabled new approaches to tackle emerging infectious diseases, cancers, and pathogens where vaccines remain unavailable. Unlike traditional vaccine platforms, nucleic acid vaccines offer several new advantages, including their lower cost and rapid production, which was widely demonstrated during the COVID-19 pandemic. Beyond production, DNA and mRNA vaccines can elicit unique and targeted responses through specialized design and delivery approaches. Considering the growth of nucleic acid vaccine research over the past two decades, the evaluation of their efficacy in at-risk populations is paramount for refining and improving vaccine design. Importantly, the aging population represents a significant portion of individuals highly susceptible to infection and disease. This review seeks to outline the major impairments in vaccine-induced responses due to aging that may be targeted for improvement with design and delivery components encompassing mRNA and DNA vaccine formulations. Results of pre-clinical and clinical applications of these vaccines in aged animal models and humans will also be evaluated to outline current successes and limitations observed in these platforms.
Collapse
Affiliation(s)
- Emily N. Konopka
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, United States
- Drexel University College of Medicine, Department of Medicine, Division of Infectious Diseases and HIV Medicine, Philadelphia, PA, United States
| | - Arden O. Edgerton
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, United States
- Drexel University College of Medicine, Department of Medicine, Division of Infectious Diseases and HIV Medicine, Philadelphia, PA, United States
| | - Michele A. Kutzler
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, United States
- Drexel University College of Medicine, Department of Medicine, Division of Infectious Diseases and HIV Medicine, Philadelphia, PA, United States
| |
Collapse
|
2
|
Stepkowski S, Bekbolsynov D, Oenick J, Brar S, Mierzejewska B, Rees MA, Ekwenna O. The Major Role of T Regulatory Cells in the Efficiency of Vaccination in General and Immunocompromised Populations: A Review. Vaccines (Basel) 2024; 12:992. [PMID: 39340024 PMCID: PMC11436018 DOI: 10.3390/vaccines12090992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Since their conception with the smallpox vaccine, vaccines used worldwide have mitigated multiple pandemics, including the recent COVID-19 outbreak. Insightful studies have uncovered the complexities of different functional networks of CD4 T cells (T helper 1 (Th1); Th2, Th17) and CD8 T cells (T cytotoxic; Tc), as well as B cell (BIgM, BIgG, BIgA and BIgE) subsets, during the response to vaccination. Both T and B cell subsets form central, peripheral, and tissue-resident subsets during vaccination. It has also become apparent that each vaccination forms a network of T regulatory subsets, namely CD4+ CD25+ Foxp3+ T regulatory (Treg) cells and interleukin-10 (IL-10)-producing CD4+ Foxp3- T regulatory 1 (Tr1), as well as many others, which shape the quality/quantity of vaccine-specific IgM, IgG, and IgA antibody production. These components are especially critical for immunocompromised patients, such as older individuals and allograft recipients, as their vaccination may be ineffective or less effective. This review focuses on considering how the pre- and post-vaccination Treg/Tr1 levels influence the vaccination efficacy. Experimental and clinical work has revealed that Treg/Tr1 involvement evokes different immune mechanisms in diminishing vaccine-induced cellular/humoral responses. Alternative steps may be considered to improve the vaccination response, such as increasing the dose, changing the delivery route, and/or repeated booster doses of vaccines. Vaccination may be combined with anti-CD25 (IL-2Rα chain) or anti-programmed cell death protein 1 (PD-1) monoclonal antibodies (mAb) to decrease the Tregs and boost the T/B cell immune response. All of these data and strategies for immunizations are presented and discussed, aiming to improve the efficacy of vaccination in humans and especially in immunocompromised and older individuals, as well as organ transplant patients.
Collapse
Affiliation(s)
- Stanislaw Stepkowski
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (D.B.); (B.M.)
| | - Dulat Bekbolsynov
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (D.B.); (B.M.)
| | - Jared Oenick
- Neurological Surgery, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA;
| | - Surina Brar
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (D.B.); (B.M.)
| | - Beata Mierzejewska
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (D.B.); (B.M.)
| | - Michael A. Rees
- Department of Urology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (M.A.R.); (O.E.)
| | - Obi Ekwenna
- Department of Urology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (M.A.R.); (O.E.)
| |
Collapse
|
3
|
Thomas AL, Godarova A, Wayman JA, Miraldi ER, Hildeman DA, Chougnet CA. Accumulation of immune-suppressive CD4 + T cells in aging - tempering inflammaging at the expense of immunity. Semin Immunol 2023; 70:101836. [PMID: 37632992 PMCID: PMC10840872 DOI: 10.1016/j.smim.2023.101836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The 'immune risk profile' has been shown to predict mortality in the elderly, highlighting the need to better understand age-related immune dysfunction. While aging leads to many defects affecting all arms of the immune system, this review is focused on the accrual of immuno-suppressive CD4 + T cell populations, including FoxP3 + regulatory T cells, and subsets of IL-10-producing T follicular helper cells. New data suggest that such accumulations constitute feedback mechanisms to temper the ongoing progressive low-grade inflammation that develops with age, the so-called "inflammaging", and by doing so, how they have the potential to promote healthier aging. However, they also impair effector immune responses, notably to infections, or vaccines. These studies also reinforce the idea that the aged immune system should not be considered as a poorly functional version of the young one, but more as a dynamic system in which CD4 + T cells, and other immune/non-immune subsets, differentiate, interact with their milieu and function differently than in young hosts. A better understanding of these unique interactions is thus needed to improve effector immune responses in the elderly, while keeping inflammaging under control.
Collapse
Affiliation(s)
- Alyssa L Thomas
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alzbeta Godarova
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA
| | - Joseph A Wayman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA
| | - Emily R Miraldi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Wang S, Li J, Dai J, Zhang X, Tang W, Li J, Liu Y, Wu X, Fan X. Establishment and Validation of Models for the Risk of Multi-Drug Resistant Bacteria Infection and Prognosis in Elderly Patients with Pulmonary Infection: A Multicenter Retrospective Study. Infect Drug Resist 2023; 16:6549-6566. [PMID: 37817839 PMCID: PMC10561615 DOI: 10.2147/idr.s422564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Purpose The aim of this study was to establish risk prediction and prognosis models for multidrug-resistant bacterial infections (MDRB) in elderly patients with pulmonary infections in a multicenter setting. Patients and Methods This study is a retrospective cohort analysis in Anhui province of China. Data dimension reduction and feature selection were performed using the lasso regression model. Multifactorial regression analysis to identify risk factors associated with MDRB infection and prognosis. The relevant risks of each patient in the prognostic training cohort were scored based on prognostic independent risk factors. Subsequently, patients were classified into high-risk and low-risk groups, and survival differences were compared between them. Finally, models were established based on independent risk factors for infection, risk groups, and independent prognostic factors, and were presented on nomograms. The predictive accuracy of the model was assessed using corresponding external validation set data. Results The study cohort comprised 994 elderly patients with pulmonary infection. Multivariate analysis revealed that endotracheal intubation, previous antibiotic use beyond 2 weeks, and concurrent respiratory failure or cerebrovascular disease were independent risk factors associated with the incidence of MDRB infection. Cox regression analysis identified respiratory failure, malnutrition, an APACHE II score of at least 20, and higher blood creatinine levels as independent prognostic risk factors. The models were validated using an external validation dataset from multiple centers, which demonstrated good diagnostic ability and a good fit with a fair benefit. Conclusion In conclusion, our study provides an appropriate and generalisable assessment of risk factors affecting infection and prognosis in patients with MDRB, contributing to improved early identification of patients at higher risk of infection and death, and appropriately guiding clinical management.
Collapse
Affiliation(s)
- Shu Wang
- The Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
- Department of Geriatrics, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui Province, People’s Republic of China
| | - Jing Li
- Department of Geriatrics, Hefei Binhu Hospital, Hefei, Anhui Province, People’s Republic of China
- Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jinghong Dai
- Department of Geriatrics, Hefei Binhu Hospital, Hefei, Anhui Province, People’s Republic of China
| | - Xuemin Zhang
- The Department of Respiratory and Critical Care Medicine, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui Province, People’s Republic of China
| | - Wenjuan Tang
- The Department of Respiratory and Critical care medicine, Anqing Municipal Hospital, Anqing, Anhui Province, People’s Republic of China
| | - Jing Li
- Department of Geriatrics, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, Anhui Province, People’s Republic of China
| | - Yu Liu
- Department of Geriatrics, Hefei Binhu Hospital, Hefei, Anhui Province, People’s Republic of China
| | - Xufeng Wu
- Department of Intensive Care Unit, Hefei Binhu Hospital, Hefei, Anhui Province, People’s Republic of China
| | - Xiaoyun Fan
- The Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
- Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, 230022, People’s Republic of China
| |
Collapse
|
5
|
Pomatto MAC, Gai C, Negro F, Massari L, Deregibus MC, Grange C, De Rosa FG, Camussi G. Plant-Derived Extracellular Vesicles as a Delivery Platform for RNA-Based Vaccine: Feasibility Study of an Oral and Intranasal SARS-CoV-2 Vaccine. Pharmaceutics 2023; 15:pharmaceutics15030974. [PMID: 36986835 PMCID: PMC10058531 DOI: 10.3390/pharmaceutics15030974] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Plant-derived extracellular vesicles (EVs) may represent a platform for the delivery of RNA-based vaccines, exploiting their natural membrane envelope to protect and deliver nucleic acids. Here, EVs extracted from orange (Citrus sinensis) juice (oEVs) were investigated as carriers for oral and intranasal SARS-CoV-2 mRNA vaccine. oEVs were efficiently loaded with different mRNA molecules (coding N, subunit 1 and full S proteins) and the mRNA was protected from degrading stress (including RNase and simulated gastric fluid), delivered to target cells and translated into protein. APC cells stimulated with oEVs loaded with mRNAs induced T lymphocyte activation in vitro. The immunization of mice with oEVs loaded with S1 mRNA via different routes of administration including intramuscular, oral and intranasal stimulated a humoral immune response with production of specific IgM and IgG blocking antibodies and a T cell immune response, as suggested by IFN-γ production by spleen lymphocytes stimulated with S peptide. Oral and intranasal administration also triggered the production of specific IgA, the mucosal barrier in the adaptive immune response. In conclusion, plant-derived EVs represent a useful platform for mRNA-based vaccines administered not only parentally but also orally and intranasally.
Collapse
Affiliation(s)
- Margherita A. C. Pomatto
- EvoBiotech s.r.l., 10122 Turin, Italy
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Correspondence: (M.A.C.P.); (G.C.)
| | - Chiara Gai
- EvoBiotech s.r.l., 10122 Turin, Italy
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | | | | | - Maria Chiara Deregibus
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Cristina Grange
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Giovanni Camussi
- EvoBiotech s.r.l., 10122 Turin, Italy
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Correspondence: (M.A.C.P.); (G.C.)
| |
Collapse
|
6
|
Batista-Duharte A, Téllez-Martínez D, Portuondo DL, Carlos IZ. Selective depletion of regulatory T cells enhances the immunogenicity of a recombinant-based vaccine against Sporothrix spp. Front Cell Infect Microbiol 2023; 12:1084526. [PMID: 36846549 PMCID: PMC9951613 DOI: 10.3389/fcimb.2022.1084526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 02/12/2023] Open
Abstract
Introduction Regulatory T cells (Tregs) have been shown to limit the protective immune response against pathogenic species of the fungus Sporothrix spp, the causal agent of sporotrichosis. However, the specific function of Tregs during vaccination against these fungi is known. Methods We evaluated the effect of Tregs depletion on the immunogenicity of an experimental recombinant anti-Sporothrix vaccine, using the DEREG mice. In this model, only Foxp3(+) Tregs express eGFP and diphtheria toxin (DT) receptors, and transient Tregs depletion is achieved by DT administration. Results Tregs depletion enhanced the frequency of specific IFNγ+ T cells (Th1 lymphocytes) and cytokine production after either the first or second vaccine dose. However, depletion of Tregs during the second dose caused greater stimulation of specific Th1 lymphocytes than depletion during the first dose. Similarly, the highest production of IgG, IgG1, and IgG2a anti rSsEno antibody was detected after Tregs depletion during boost immunization compared to the other immunized groups. Importantly, vaccine immunogenicity improvement after Tregs depletion also had an impact on the more efficient reduction of fungal load in the skin and liver after the challenge with S. brasiliensis in an experimental infection model. Interestingly, the reduction in fungal load was greatest in the Tregs depleted group during boosting. Discussion Our results illustrate that Tregs restrict vaccine-induced immune response and their transient depletion could enhance anti-Sporothrix vaccine immunogenicity. Further studies are required to elucidate whether Tregs depletion may be a way to improve the efficacy of vaccination against Sporothrix spp.
Collapse
Affiliation(s)
| | | | | | - Iracilda Zeppone Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
7
|
Palatella M, Guillaume SM, Linterman MA, Huehn J. The dark side of Tregs during aging. Front Immunol 2022; 13:940705. [PMID: 36016952 PMCID: PMC9398463 DOI: 10.3389/fimmu.2022.940705] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
In the last century, we have seen a dramatic rise in the number of older persons globally, a trend known as the grey (or silver) tsunami. People live markedly longer than their predecessors worldwide, due to remarkable changes in their lifestyle and in progresses made by modern medicine. However, the older we become, the more susceptible we are to a series of age-related pathologies, including infections, cancers, autoimmune diseases, and multi-morbidities. Therefore, a key challenge for our modern societies is how to cope with this fragile portion of the population, so that everybody could have the opportunity to live a long and healthy life. From a holistic point of view, aging results from the progressive decline of various systems. Among them, the distinctive age-dependent changes in the immune system contribute to the enhanced frailty of the elderly. One of these affects a population of lymphocytes, known as regulatory T cells (Tregs), as accumulating evidence suggest that there is a significant increase in the frequency of these cells in secondary lymphoid organs (SLOs) of aged animals. Although there are still discrepancies in the literature about modifications to their functional properties during aging, mounting evidence suggests a detrimental role for Tregs in the elderly in the context of bacterial and viral infections by suppressing immune responses against non-self-antigens. Interestingly, Tregs seem to also contribute to the reduced effectiveness of immunizations against many pathogens by limiting the production of vaccine-induced protective antibodies. In this review, we will analyze the current state of understandings about the role of Tregs in acute and chronic infections as well as in vaccination response in both humans and mice. Lastly, we provide an overview of current strategies for Treg modulation with potential future applications to improve the effectiveness of vaccines in older individuals.
Collapse
Affiliation(s)
- Martina Palatella
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Terao T, Naduka T, Ikeda D, Fukumoto A, Kamura Y, Kuzume A, Tabata R, Tsushima T, Miura D, Narita K, Takeuchi M, Matsue K. Depletion of CD38-positive regulatory T cells by anti-CD38 monoclonal antibodies induces a durable response to SARS-CoV-2 vaccination in patients with plasma cell dyscrasia. Br J Haematol 2022; 197:417-421. [PMID: 35172374 PMCID: PMC9111412 DOI: 10.1111/bjh.18079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
This study reports the relationship between CD38+ regulatory T cells (Tregs) and messenger RNA coronavirus disease 2019 (mRNA-COVID-19) vaccination in 60 patients with plasma cell dyscrasia. Patients treated with anti-CD38 monoclonal antibodies (mAbs) had significantly lower CD38+ Tregs than those not treated (0.9 vs. 13.2/μl). Late-responders, whose antibody titres increased from weeks 4-12 after the second vaccination, had significantly lower CD38+ Treg counts than non-late-responders (2.5 vs. 10.3/μl). Antibody titres in patients with lower CD38+ Treg levels were maintained from weeks 4-12 but decreased in those with higher CD38+ Treg levels. Therefore, depletion of CD38+ Tregs by anti-CD38 mAbs may induce a durable response to mRNA-COVID-19 vaccination.
Collapse
Affiliation(s)
- Toshiki Terao
- Division of Haematology/Oncology, Department of Internal MedicineKameda Medical CenterKamogawaJapan
| | - Takashi Naduka
- Department of Clinical LaboratoryKameda Medical CenterKamogawaJapan
| | - Daisuke Ikeda
- Division of Haematology/Oncology, Department of Internal MedicineKameda Medical CenterKamogawaJapan
| | - Ami Fukumoto
- Division of Haematology/Oncology, Department of Internal MedicineKameda Medical CenterKamogawaJapan
| | - Yuya Kamura
- Division of Haematology/Oncology, Department of Internal MedicineKameda Medical CenterKamogawaJapan
| | - Ayumi Kuzume
- Division of Haematology/Oncology, Department of Internal MedicineKameda Medical CenterKamogawaJapan
| | - Rikako Tabata
- Division of Haematology/Oncology, Department of Internal MedicineKameda Medical CenterKamogawaJapan
| | - Takafumi Tsushima
- Division of Haematology/Oncology, Department of Internal MedicineKameda Medical CenterKamogawaJapan
| | - Daisuke Miura
- Division of Haematology/Oncology, Department of Internal MedicineKameda Medical CenterKamogawaJapan
| | - Kentaro Narita
- Division of Haematology/Oncology, Department of Internal MedicineKameda Medical CenterKamogawaJapan
| | - Masami Takeuchi
- Division of Haematology/Oncology, Department of Internal MedicineKameda Medical CenterKamogawaJapan
| | - Kosei Matsue
- Division of Haematology/Oncology, Department of Internal MedicineKameda Medical CenterKamogawaJapan
| |
Collapse
|
9
|
Regulatory T cells and vaccine effectiveness in older adults. Challenges and prospects. Int Immunopharmacol 2021; 96:107761. [PMID: 34162139 DOI: 10.1016/j.intimp.2021.107761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Since the discovery of lymphocytes with immunosuppressive activity, increasing interest has arisen in their possible influence on the immune response induced by vaccines. Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases, and limiting chronic inflammatory diseases. However, they also limit beneficial immune responses by suppressing anti-infectious and anti-tumor immunity. Mounting evidence suggests that Tregs are involved, at least in part, in the low effectiveness of immunization against various diseases where it has been difficult to obtain protective vaccines. Interestingly, increased activity of Tregs is associated with aging, suggesting a key role for these cells in the lower vaccine effectiveness observed in older people. In this review, we analyze the impact of Tregs on vaccination, with a focus on older adults. Finally, we address an overview of current strategies for Tregs modulation with potential application to improve the effectiveness of future vaccines targeting older populations.
Collapse
|
10
|
Thymic Aging May Be Associated with COVID-19 Pathophysiology in the Elderly. Cells 2021; 10:cells10030628. [PMID: 33808998 PMCID: PMC8001029 DOI: 10.3390/cells10030628] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the global pandemic of coronavirus disease 2019 (COVID-19) and particularly exhibits severe symptoms and mortality in elderly individuals. Mounting evidence shows that the characteristics of the age-related clinical severity of COVID-19 are attributed to insufficient antiviral immune function and excessive self-damaging immune reaction, involving T cell immunity and associated with pre-existing basal inflammation in the elderly. Age-related changes to T cell immunosenescence is characterized by not only restricted T cell receptor (TCR) repertoire diversity, accumulation of exhausted and/or senescent memory T cells, but also by increased self-reactive T cell- and innate immune cell-induced chronic inflammation, and accumulated and functionally enhanced polyclonal regulatory T (Treg) cells. Many of these changes can be traced back to age-related thymic involution/degeneration. How these changes contribute to differences in COVID-19 disease severity between young and aged patients is an urgent area of investigation. Therefore, we attempt to connect various clues in this field by reviewing and discussing recent research on the role of the thymus and T cells in COVID-19 immunity during aging (a synergistic effect of diminished responses to pathogens and enhanced responses to self) impacting age-related clinical severity of COVID-19. We also address potential combinational strategies to rejuvenate multiple aging-impacted immune system checkpoints by revival of aged thymic function, boosting peripheral T cell responses, and alleviating chronic, basal inflammation to improve the efficiency of anti-SARS-CoV-2 immunity and vaccination in the elderly.
Collapse
|
11
|
Rocamora-Reverte L, Melzer FL, Würzner R, Weinberger B. The Complex Role of Regulatory T Cells in Immunity and Aging. Front Immunol 2021; 11:616949. [PMID: 33584708 PMCID: PMC7873351 DOI: 10.3389/fimmu.2020.616949] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
The immune system is a tightly regulated network which allows the development of defense mechanisms against foreign antigens and tolerance toward self-antigens. Regulatory T cells (Treg) contribute to immune homeostasis by maintaining unresponsiveness to self-antigens and suppressing exaggerated immune responses. Dysregulation of any of these processes can lead to serious consequences. Classically, Treg cell functions have been described in CD4+ T cells, but other immune cells also harbour the capacity to modulate immune responses. Regulatory functions have been described for different CD8+ T cell subsets, as well as other T cells such as γδT cells or NKT cells. In this review we describe the diverse populations of Treg cells and their role in different scenarios. Special attention is paid to the aging process, which is characterized by an altered composition of immune cells. Treg cells can contribute to the development of various age-related diseases but they are poorly characterized in aged individuals. The huge diversity of cells that display immune modulatory functions and the lack of universal markers to identify Treg make the expanding field of Treg research complex and challenging. There are still many open questions that need to be answered to solve the enigma of regulatory T cells.
Collapse
Affiliation(s)
- Lourdes Rocamora-Reverte
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Franz Leonard Melzer
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University Innsbruck, Innsbruck, Austria
| | - Birgit Weinberger
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
CD4 +CD25 + Cells Are Essential for Maintaining Immune Tolerance in Chickens Inoculated with Bovine Serum Albumin at the Late Stage of Embryonic Development. Vet Sci 2020; 7:vetsci7040150. [PMID: 33022909 PMCID: PMC7712202 DOI: 10.3390/vetsci7040150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, the role of chicken CD4+CD25+ cells during induced immunotolerance was tested. Properties of chicken CD4+CD25+ cells sorted by flow cytometry were analyzed. Results showed that chicken CD4+CD25+ cells express IL-10, TGF-β highly and suppress proliferation of CD4+CD25− cells in vitro. To induce immunotolerance, embryos were inoculated with bovine serum albumin (BSA) via an intravascular route on embryo incubation day 20 (EID20), and after hatching chicks experienced BSA immunization four times at 7-day intervals. Serum anti-BSA antibodies and CD4+CD25+ cell ratio was analyzed. Results showed that humoral tolerance was obtained and the CD4+CD25+ cell percentage in peripheral blood lymphocytes increased along with this progress. Injection of anti-chicken CD25 antibody via an intravascular route on EID16 is applied to block CD4+CD25+ cells, and the CD4+CD25+ cell ratio decreased significantly up to 35 d post-hatch. Based on the above, injections of anti-chicken CD25 antibody on EID16 and BSA on EID20 were carried out sequentially, and tolerance level was contrasted to the BSA-injection group. Data revealed the anti-BSA antibodies increased significantly in the CD4+CD25+ cell-blocked groups indicating that immune tolerance level was weakened. In conclusion, chicken CD4+CD25+ cells are essential in maintaining induced immune tolerance.
Collapse
|
13
|
Cabrera G, Marcipar I. Vaccines and the regulatory arm of the immune system. An overview from the Trypanosoma cruzi infection model. Vaccine 2019; 37:3628-3637. [PMID: 31155420 DOI: 10.1016/j.vaccine.2019.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 04/13/2019] [Accepted: 05/03/2019] [Indexed: 01/06/2023]
Abstract
The knowledge that the immune system is composed of a regulatory/suppressor arm added a new point of view to better understand the nature of several pathologies including cancer, transplants, infections and autoimmune diseases. The striking discoveries concerning molecules and cells involved in this kind of regulation were followed by the elucidation of equally notable mechanisms used by several pathogens to manipulate the host immune system. Vaccines against pathogens are an invaluable tool developed to help the immune system cope with a potential infection or prevent disease pathology. Nowadays, there is accumulated evidence indicating that the powerful stimulation capacity of vaccines influences not only the effector arm of the immune system but also cells with regulatory/suppressor capacity, such as myeloid derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs). Trypanosoma cruzi (T. cruzi) is a protozoan parasite with a complex life cycle that has evolved several strategies to influence the regulatory immune response. Although diverse vaccine formulations have been able to stimulate the effector response, achieving non-sterilizing protection against T. cruzi, the influence of the vaccine candidates on the regulatory machinery has scarcely been assessed. This fact may not only reveal important information concerning how vaccines may influence cells with regulatory/suppressor capacity but also open the possibility to analyze whether vaccines are able to disrupt the mechanisms used by some pathogens to manipulate the host regulatory circuits. The aim of this review is to summarize and discuss available data related to the role of cellular components, like MDSCs and Foxp3+ Tregs, during T. cruzi infection, and the potential utility of those populations as additional targets for the rational design of vaccines.
Collapse
Affiliation(s)
- Gabriel Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Iván Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
14
|
Amatore D, Celestino I, Brundu S, Galluzzi L, Coluccio P, Checconi P, Magnani M, Palamara AT, Fraternale A, Nencioni L. Glutathione increase by the n-butanoyl glutathione derivative (GSH-C4) inhibits viral replication and induces a predominant Th1 immune profile in old mice infected with influenza virus. FASEB Bioadv 2019; 1:296-305. [PMID: 32123833 PMCID: PMC6996388 DOI: 10.1096/fba.2018-00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
During aging, glutathione (GSH) content declines and the immune system undergoes a deficiency in the induction of Th1 response. Reduced secretion of Th1 cytokines, which is associated with GSH depletion, could weaken the host defenses against viral infections. We first evaluated the concentration of GSH and cysteine in organs of old mice; then, the effect of the administration of the N-butanoyl GSH derivative (GSH-C4) on the response of aged mice infected with influenza A PR8/H1N1 virus was studied through the determination of GSH concentration in organs, lung viral titer, IgA and IgG1/IgG2a production, and Th1/Th2 cytokine profile. Old mice had lower GSH than young mice in organs. Also the gene expression of endoplasmic reticulum (ER) stress markers involved in GSH metabolism and folding of proteins, that is, Nrf2 and PDI, was reduced. Following infection, GSH content remained low and neither infection nor GSH-C4 treatment affected Nrf2 expression. In contrast, PDI expression was upregulated during infection and appeared counterbalanced by GSH-C4. Moreover, the treatment with GSH-C4 increased GSH content in organs, reduced viral replication and induced a predominant Th1 response. In conclusion, GSH-C4 treatment could be used in the elderly to contrast influenza virus infection by inducing immune response, in particular the Th1 profile.
Collapse
Affiliation(s)
- Donatella Amatore
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
| | - Ignacio Celestino
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
| | - Serena Brundu
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbino (PU)Italy
| | - Luca Galluzzi
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbino (PU)Italy
| | - Paolo Coluccio
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
| | - Paola Checconi
- Department of Human Sciences and Promotion of the Quality of LifeIRCCS San Raffaele Pisana, San Raffaele Roma Open UniversityRomeItaly
| | - Mauro Magnani
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbino (PU)Italy
| | - Anna Teresa Palamara
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
- Department of Human Sciences and Promotion of the Quality of LifeIRCCS San Raffaele Pisana, San Raffaele Roma Open UniversityRomeItaly
| | | | - Lucia Nencioni
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
| |
Collapse
|
15
|
Rogers MC, Williams JV. Quis Custodiet Ipsos Custodes? Regulation of Cell-Mediated Immune Responses Following Viral Lung Infections. Annu Rev Virol 2018; 5:363-383. [PMID: 30052492 DOI: 10.1146/annurev-virology-092917-043515] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral lung infections are leading causes of morbidity and mortality. Effective immune responses to these infections require precise immune regulation to preserve lung function after viral clearance. One component of airway pathophysiology and lung injury associated with acute respiratory virus infection is effector T cells, yet these are the primary cells required for viral clearance. Accordingly, multiple immune mechanisms exist to regulate effector T cells, limiting immunopathology while permitting clearance of infection. Much has been learned in recent years about regulation of T cell function during chronic infection and cancer, and it is now clear that many of these mechanisms also control inflammation in acute lung infection. In this review, we focus on regulatory T cells, inhibitory receptors, and other cells and molecules that regulate cell-mediated immunity in the context of acute respiratory virus infection.
Collapse
Affiliation(s)
- Meredith C Rogers
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA.,Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224, USA;
| |
Collapse
|
16
|
Combating flu in China. Microbes Infect 2017; 19:567-569. [PMID: 28993229 DOI: 10.1016/j.micinf.2017.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/28/2017] [Indexed: 11/24/2022]
Abstract
China is a major source of avian influenza viruses (AIVs) with bird-to-human transmissibility. Thus, understanding these viruses and treating infections at their source should decrease spread of AIVs to other countries in the world. This special issue focuses on the molecular epidemiology and pathogenesis of influenza viruses, and provides results on current efforts to develop vaccines against AIVs.
Collapse
|