1
|
Zhang Z, Cao M, Shang Z, Xu J, Chen X, Zhu Z, Wang W, Wei X, Zhou X, Bai Y, Zhang J. Research Progress on the Antibacterial Activity of Natural Flavonoids. Antibiotics (Basel) 2025; 14:334. [PMID: 40298463 PMCID: PMC12023951 DOI: 10.3390/antibiotics14040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
The use of antibiotics has greatly improved the treatment of bacterial infections; however, its abuse and misuse has led to a rapid rise in multidrug-resistant (MDR) bacteria. Therefore, the search for new antimicrobial strategies has become critical. Natural flavonoids, a class of widely existing phytochemicals, have gained significant research interest for their diverse biological activities and antibacterial effects on various drug-resistant bacteria. This review summarizes the latest research progress on flavonoids, with a particular focus on several flavonoids exhibiting certain antibacterial activity, and explores their antibacterial mechanisms, including disruption of cell membranes and cell walls, inhibition of proteins and nucleic acids, interference with signal transduction, suppression of efflux pump activity, and inhibition of biofilm formation and virulence factor production. Additionally, we have reviewed the synergistic combinations of flavonoids with antibiotics, such as the combination of quercetin with colistin or EGCG with tetracycline, which significantly enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Zhijin Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Mingze Cao
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
| | - Zixuan Shang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jing Xu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xu Chen
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhen Zhu
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xiaojuan Wei
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xuzheng Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| |
Collapse
|
2
|
Wang J, Zhang L, Fu L, Pang Z. Kaempferol Mitigates Pseudomonas aeruginosa-Induced Acute Lung Inflammation Through Suppressing GSK3β/JNK/c-Jun Signaling Pathway and NF-κB Activation. Pharmaceuticals (Basel) 2025; 18:322. [PMID: 40143103 PMCID: PMC11944347 DOI: 10.3390/ph18030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Pseudomonas aeruginosa, one of the common bacterial pathogens causing nosocomial pneumonia, is characterized as highly pathogenic and multidrug-resistant. Kaempferol (KP), a natural flavonoid, has been shown to exhibit effectiveness in treating infection-induced lung injury. Methods: We applied network pharmacology to explore the underlying mechanisms of KP in treating P. aeruginosa pneumonia and further validated them through a mouse model of acute bacterial lung infection and an in vitro macrophage infection model. Results: The in vivo studies demonstrated that treatment with KP suppressed the production of proinflammatory cytokines, including TNF, IL-1β, IL-6, and MIP-2, and attenuated the neutrophil infiltration and lesions in lungs, leading to an increased survival rate of mice. Further studies revealed that KP treatment enhanced the phosphorylation of GSK3β at Ser9 and diminished the phosphorylation of JNK, c-Jun, and NF-κB p65 in lungs in comparison to the mice without drug treatment. Consistently, the in vitro studies showed that pretreatment with KP reduced the activation of GSK3β, JNK, c-Jun, and NF-κB p65 and decreased the levels of the proinflammatory cytokines in macrophages during P. aeruginosa infection. Conclusions: KP reduced the production of proinflammatory cytokines by inhibiting GSK3β/JNK/c-Jun signaling pathways and NF-κB activation, which effectively mitigated the P. aeruginosa-induced acute lung inflammation and injury, and elevated the survival rates of mice.
Collapse
Affiliation(s)
- Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Linlin Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Lu Fu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| |
Collapse
|
3
|
Ciriminna R, Petri GL, Angellotti G, Luque R, Fabiano Tixier AS, Meneguzzo F, Pagliaro M. Citrus Flavonoids as Antimicrobials. Chem Biodivers 2025:e202403210. [PMID: 39898883 DOI: 10.1002/cbdv.202403210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/04/2025]
Abstract
Citrus flavonoids are highly bioactive compounds exerting numerous health benefits including anticancer, antioxidant, antimicrobial, anti-inflammatory, mitoprotective, and neuroprotective activity. Research on their broad-scope bioactivity experienced a renaissance in the early 2000s, and further accelerated after COVID-19, including research on their antimicrobial properties. Summarizing selected research achievements on the antimicrobial activity of the main Citrus flavonoids, this study aims to provide a unified picture on the antimicrobial properties of these valued compounds that will hopefully assist in the development of flavonoid-based antimicrobials, including antibacterial treatments suitable for clinical use minimizing antimicrobial resistance.
Collapse
Affiliation(s)
- Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Palermo, Italy
| | - Giovanna Li Petri
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Palermo, Italy
| | | | - Rafael Luque
- Universidad Espíritu Santo (UEES), Samborondón, Ecuador
| | | | | | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Palermo, Italy
| |
Collapse
|
4
|
Han D, Han Z, Liu L, Xin S, Yu Z. Improved Kaempferol Solubility via Heptakis-O-(2-hydroxypropyl)-β-cyclodextrin Complexation: A Combined Spectroscopic and Theoretical Study. Int J Mol Sci 2024; 25:12492. [PMID: 39684208 DOI: 10.3390/ijms252312492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Four cyclodextrins (CDs) including heptakis-O-(2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), heptakis-O-(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), β-cyclodextrin (β-CD), and γ-cyclodextrin (γ-CD) were evaluated for their ability to enhance the aqueous solubility of kaempferol (Kae). Phase solubility studies indicated that these four CDs can form 1:1 type complexes with Kae and that HP-β-CD demonstrated the most significant solubilizing effect on Kae. Among the CDs tested, HP-β-CD demonstrated the most significant solubilizing effect on Kae. With an HP-β-CD concentration of 5.00 × 10-3 mol·L-1, the concentration of Kae reached 4.56 × 10-5 mol·L-1, which is 12.7 times greater than its solubility in water. Characterization of the HP-β-CD/Kae complex was performed using empirical methods. Molecular docking indicated that the A and C rings of Kae fit into the hydrophobic cavity of HP-β-CD, while the B ring remained at the rim. Six hydrogen bonds were found between HP-β-CD and the -OH groups of Kae. The negative complexation energy (ΔE) suggests the complex formation was exergonic. A 30-ns molecular dynamics simulation revealed no significant structural changes, with average root-mean-square deviation RMSD values of 2.230 Å for HP-β-CD and 0.786 Å for Kae, indicating high stability of the complex.
Collapse
Affiliation(s)
- Dongxu Han
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhongbao Han
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Liyan Liu
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Shigang Xin
- Experimental Teaching Center, Shenyang Normal University, Shenyang 110034, China
| | - Zhan Yu
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
5
|
Osman ME, Abo-Elnasr AA, Mohamed ET. Therapeutic potential activity of quercetin complexes against Streptococcus pneumoniae. Sci Rep 2024; 14:12876. [PMID: 38834612 DOI: 10.1038/s41598-024-62782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
This study investigates quercetin complexes as potential synergistic agents against the important respiratory pathogen Streptococcus pneumoniae. Six quercetin complexes (QCX1-6) were synthesized by reacting quercetin with various metal salts and boronic acids and characterized using FTIR spectroscopy. Their antibacterial activity alone and in synergism with antibiotics was evaluated against S. pneumoniae ATCC 49619 using disc diffusion screening, broth microdilution MIC determination, and checkerboard assays. Complexes QCX-3 and QCX-4 demonstrated synergy when combined with levofloxacin via fractional inhibitory concentration indices ≤ 0.5 as confirmed by time-kill kinetics. Molecular docking elucidated interactions of these combinations with virulence enzymes sortase A and sialidase. A biofilm inhibition assay found the synergistic combinations more potently reduced biofilm formation versus monotherapy. Additionally, gene-gene interaction networks, biological activity predictions and in-silico toxicity profiling provided insights into potential mechanisms of action and safety.
Collapse
Affiliation(s)
- Mohamed E Osman
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Amany A Abo-Elnasr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Eslam T Mohamed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt.
| |
Collapse
|
6
|
Jha NK, Gopu V, Sivasankar C, Singh SR, Devi PB, Murali A, Shetty PH. In vitro and in silico assessment of anti-biofilm and anti-quorum sensing properties of 2,4-Di-tert butylphenol against Acinetobacter baumannii. J Med Microbiol 2024; 73. [PMID: 38506718 DOI: 10.1099/jmm.0.001813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Introduction. Acinetobacter baumannii is a nosocomial pathogen with a high potential to cause food-borne infections. It is designated as a critical pathogen by the World Health Organization due to its multi-drug resistance and mortalities reported. Biofilm governs major virulence factors, which promotes drug resistance in A. baumannii. Thus, a compound with minimum selection pressure on the pathogen can be helpful to breach biofilm-related virulence.Hypothesis/Gap Statement. To identify anti-biofilm and anti-virulent metabolites from extracts of wild Mangifera indica (mango) brine pickle bacteria that diminishes pathogenesis and resistance of A. baumannii.Aim. This study reports anti-biofilm and anti-quorum sensing (QS) efficacy of secondary metabolites from bacterial isolates of fermented food origin.Method. Cell-free supernatants (CFS) of 13 bacterial isolates from fermented mango brine pickles were screened for their efficiency in inhibiting biofilm formation and GC-MS was used to identify its metabolites. Anti-biofilm metabolite was tested on early and mature biofilms, pellicle formation, extra polymeric substances (EPS), cellular adherence, motility and resistance of A. baumannii. Gene expression and in silico studies were also carried out to validate the compounds efficacy.Results. CFS of TMP6b identified as Bacillus vallismortis, inhibited biofilm production (83.02 %). Of these, major compound was identified as 2,4-Di-tert-butyl phenol (2,4-DBP). At sub-lethal concentrations, 2,4-DBP disrupted both early and mature biofilm formation. Treatment with 2,4-DBP destructed in situ biofilm formed on glass and plastic. In addition, key virulence traits like pellicle (77.5 %), surfactant (95.3 %), EPS production (3-fold) and cell adherence (65.55 %) reduced significantly. A. baumannii cells treated with 2,4-DBP showed enhanced sensitivity towards antibiotics, oxide radicals and blood cells. Expression of biofilm-concomitant virulence genes like csuA/B, pgaC, pgaA, bap, bfmR, katE and ompA along with QS genes abaI, abaR significantly decreased. The in silico studies further validated the higher binding affinity of 2,4-DBP to the AbaR protein than the cognate ligand molecule.Conclusion. To our knowledge, this is the first report to demonstrate 2,4- DBP has anti-pathogenic potential alone and with antibiotics by in vitro, and in silico studies against A. baumannii. It also indicates its potential use in therapeutics and bio-preservatives.
Collapse
Affiliation(s)
- Nisha Kumari Jha
- Department of Food Science and Technology, Pondicherry University, Pondicherry-605014, India
| | - Venkadesaperumal Gopu
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chandran Sivasankar
- Department of Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan-54596, Republic of Korea
| | - Satya Ranjan Singh
- Department of Bioinformatics, Pondicherry University, Pondicherry-605014, India
| | - Palanisamy Bruntha Devi
- Department of Food Science and Technology, Pondicherry University, Pondicherry-605014, India
| | - Ayaluru Murali
- Department of Bioinformatics, Pondicherry University, Pondicherry-605014, India
| | | |
Collapse
|
7
|
Lu L, Wang J, Wang C, Zhu J, Wang H, Liao L, Zhao Y, Wang X, Yang C, He Z, Li M. Plant-derived virulence arresting drugs as novel antimicrobial agents: Discovery, perspective, and challenges in clinical use. Phytother Res 2024; 38:727-754. [PMID: 38014754 DOI: 10.1002/ptr.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Antimicrobial resistance (AMR) emerges as a severe crisis to public health and requires global action. The occurrence of bacterial pathogens with multi-drug resistance appeals to exploring alternative therapeutic strategies. Antivirulence treatment has been a positive substitute in seeking to circumvent AMR, which aims to target virulence factors directly to combat bacterial infections. Accumulated evidence suggests that plant-derived natural products, which have been utilized to treat infectious diseases for centuries, can be abundant sources for screening potential virulence-arresting drugs (VADs) to develop advanced therapeutics for infectious diseases. This review sums up some virulence factors and their actions in various species of bacteria, as well as recent advances pertaining to plant-derived natural products as VAD candidates. Furthermore, we also discuss natural VAD-related clinical trials and patents, the perspective of VAD-based advanced therapeutics for infectious diseases and critical challenges hampering clinical use of VADs, and genomics-guided identification for VAD therapeutic. These newly discovered natural VADs will be encouraging and optimistic candidates that may sustainably combat AMR.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Chongrui Wang
- Faculty of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Hongping Wang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, Sichuan, P.R. China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, P.R. China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Zhengyou He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Lim S, Lee D, Jeong S, Park JW, Im J, Choi B, Gwak D, Yun CH, Seo HS, Han SH. Serotype-Dependent Inhibition of Streptococcus pneumoniae Growth by Short-Chain Fatty Acids. J Microbiol Biotechnol 2024; 34:47-55. [PMID: 38044707 PMCID: PMC10840490 DOI: 10.4014/jmb.2309.09003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Streptococcus pneumoniae (pneumococcus) is an opportunistic pathogen that can cause severe infectious diseases such as pneumonia, meningitis, and otitis media. Despite the availability of antibiotics and pneumococcal vaccines against some invasive serotypes, pneumococcal infection remains a tremendous clinical challenge due to the increasing frequency of infection by antimicrobial resistant, nonencapsulated, and/or non-vaccine serotype strains. Short-chain fatty acids (SCFAs), which are produced at various mucosal sites in the body, have potent antimicrobial activity, including inhibition of pathogen growth and/or bacterial biofilm formation. In this study, we investigated the antimicrobial activity of SCFAs (acetate, propionate, and butyrate) against various serotypes pneumococci. Propionate generally inhibited the growth of S. pneumoniae serotypes included in the pneumococcal conjugate vaccine (PCV) 13, except for serotypes 3 and 7F, though butyrate and acetate showed no or low inhibition, depending on the serotypes. Of note, butyrate showed strong inhibition against serotype 3, the most prevalent invasive strain since the introduction of the PCV. No SCFAs showed inhibitory effects against serotype 7F. Remarkably, the nonencapsulated pneumococcal strain had more sensitivity to SCFAs than encapsulated parental strains. Taken together, these results suggest that propionate showing the most potent inhibition of pneumococcal growth may be used as an alternative treatment for pneumococcal infection, and that butyrate could be used against serotype 3, which is becoming a serious threat.
Collapse
Affiliation(s)
- Suwon Lim
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungho Jeong
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Woo Park
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jintaek Im
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Bokeum Choi
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghyun Gwak
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Zahari NIN, Engku Abd Rahman ENS, Irekeola AA, Ahmed N, Rabaan AA, Alotaibi J, Alqahtani SA, Halawi MY, Alamri IA, Almogbel MS, Alfaraj AH, Ibrahim FA, Almaghaslah M, Alissa M, Yean CY. A Review of the Resistance Mechanisms for β-Lactams, Macrolides and Fluoroquinolones among Streptococcus pneumoniae. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1927. [PMID: 38003976 PMCID: PMC10672801 DOI: 10.3390/medicina59111927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a bacterial species often associated with the occurrence of community-acquired pneumonia (CAP). CAP refers to a specific kind of pneumonia that occurs in individuals who acquire the infection outside of a healthcare setting. It represents the leading cause of both death and morbidity on a global scale. Moreover, the declaration of S. pneumoniae as one of the 12 leading pathogens was made by the World Health Organization (WHO) in 2017. Antibiotics like β-lactams, macrolides, and fluoroquinolones are the primary classes of antimicrobial medicines used for the treatment of S. pneumoniae infections. Nevertheless, the efficacy of these antibiotics is diminishing as a result of the establishment of resistance in S. pneumoniae against these antimicrobial agents. In 2019, the WHO declared that antibiotic resistance was among the top 10 hazards to worldwide health. It is believed that penicillin-binding protein genetic alteration causes β-lactam antibiotic resistance. Ribosomal target site alterations and active efflux pumps cause macrolide resistance. Numerous factors, including the accumulation of mutations, enhanced efflux mechanisms, and plasmid gene acquisition, cause fluoroquinolone resistance. Furthermore, despite the advancements in pneumococcal vaccinations and artificial intelligence (AI), it is not feasible for individuals to rely on them indefinitely. The ongoing development of AI for combating antimicrobial resistance necessitates more research and development efforts. A few strategies can be performed to curb this resistance issue, including providing educational initiatives and guidelines, conducting surveillance, and establishing new antibiotics targeting another part of the bacteria. Hence, understanding the resistance mechanism of S. pneumoniae may aid researchers in developing a more efficacious antibiotic in future endeavors.
Collapse
Affiliation(s)
- Nurul Izzaty Najwa Zahari
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
| | - Engku Nur Syafirah Engku Abd Rahman
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Nigeria
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Jawaher Alotaibi
- Infectious Diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | | | - Mohammed Y. Halawi
- Cytogenetics Department, Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Ibrahim Ateeq Alamri
- Blood Bank Department, Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Mohammed S. Almogbel
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 4030, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Fatimah Al Ibrahim
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Manar Almaghaslah
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| |
Collapse
|
10
|
Yan P, Liu J, Huang Y, Li Y, Yu J, Xia J, Liu M, Bai R, Wang N, Guo L, Liu G, Yang X, Zeng J, He B. Lotus leaf extract can attenuate salpingitis in laying hens by inhibiting apoptosis. Poult Sci 2023; 102:102865. [PMID: 37499615 PMCID: PMC10413199 DOI: 10.1016/j.psj.2023.102865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to determine whether the lotus leaf extract (LLE) had the effect of treating salpingitis in laying hens. First, the salpingitis model was established by the method of bacterial infection. Differential genes between salpingitis and healthy laying hens were identified by transcriptome sequencing, and GO and KEGG enrichment analyses were performed. Groups of treatment of antibiotics and LLE were established to verify the feasibility of the lotus leaf extract in treating salpingitis. Furthermore, the active component and pharmacological effects of LLE were identified using the UPLC-Q-TOF-MS and network pharmacology technique. At last, the mechanism of LLE treating salpingitis was further evaluated by DF-1 cells infected with bacteria. The results showed that LLE significantly reduced the levels of TLR4 and IFN-γ (P < 0.05), accelerated the levels of IgA and IgG (P < 0.05), regulated the levels of SOD and MDA (P < 0.05) in laying hens with salpingitis. A total of 1,874 differential genes were obtained according to the transcriptome sequencing. It was revealed a significant role in cell cycle and apoptosis by enrichment analysis. In addition, among the 28 components identified by UPLC-Q-TOF-MS, 20 components acted on 58 genes, including CDK1, BIRC5, and CA2 for treating salpingitis. After bacterial infection, cells were damaged and unable to complete the normal progression of the cell cycle, leading to cell cycle arrest and further apoptosis formation. However, with the intervention of LLE, bacterial infection was resisted. The cells proliferation was extensively restored, and the expression of NO was increased. The addition of LLE significantly decreased cell apoptosis. The G1 phase increased, the S phase and the G2 phase decreased in the model group; after the intervention of LLE, the G1 phase gradually returned to the average level, and G2 and S phases increased. The mRNA expression levels of BIRC5, CDK1, and CA2 were consistent with the predicted results in network pharmacology. At the same time, the mRNA expression levels of Caspase-3 and Caspase-7 were reduced after added with LLE. The mRNA expression levels of TNF-α, TRADD, FADD, Caspase-8, Caspase-10, and Caspase-9 (P < 0.05), which would inhibit death receptor activation and decrease the apoptotic cascade, were upregulated after bacterial infection. However, the results in LLE groups were downregulated (P < 0.05). Meanwhile, the mRNA expression levels of BCL-2 in LLE groups were increased significantly compared with it in model group (P < 0.05). Notably, LLE administration inhibited apoptosis and regulated the cell cycle distribution in the salpingitis induced by bacterial infection. These results indicated that the LLE attenuated bacterial-induced salpingitis by modulating apoptosis and immune function in laying hens.
Collapse
Affiliation(s)
- Pupu Yan
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jiali Liu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Yongxi Huang
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Yana Li
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jie Yu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jinjin Xia
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Man Liu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Ruonan Bai
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Ning Wang
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Liwei Guo
- School of Animal Science, Yangtze University, Jingzhou 434020, China.
| | - Guoping Liu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Xiaolin Yang
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Bin He
- Animal and Veterinary Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
11
|
Gu K, Ding L, Wang Z, Sun Y, Sun X, Yang W, Sun H, Tian Y, Wang Z, Sun L. Wogonin attenuates the pathogenicity of Streptococcus pneumoniae by double-target inhibition of Pneumolysin and Sortase A. J Cell Mol Med 2023; 27:563-575. [PMID: 36747468 PMCID: PMC9930429 DOI: 10.1111/jcmm.17684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a major causative agent of respiratory disease in patients and can cause respiratory distress and other symptoms in severe cases. Pneumolysin (PLY) is a pore-forming toxin that induces host tissue injury and inflammatory responses. Sortase A (SrtA), a catalytic enzyme that anchors surface-associated virulence factors, is critical for S. pneumoniae virulence. Here, we found that the active ingredient of the Chinese herb Scutellaria baicalensis, wogonin, simultaneously inhibited the haemolytic activity of PLY and SrtA activity. Consequently, wogonin decreased PLY-mediated cell damage and reduced SrtA-mediated biofilm formation by S. pneumoniae. Furthermore, our data indicated that wogonin did not affect PLY expression but directly altered its oligomerization, leading to reduced activity. Furthermore, the analysis of a mouse pneumonia model further revealed that wogonin reduced mortality in mice infected with S. pneumoniae laboratory strain D39 and S. pneumoniae clinical isolate E1, reduced the number of colony-forming units in infected mice and decreased the W/D ratio and levels of the inflammatory factors TNF-α, IL-6 and IL-1β in the lungs of infected mice. Thus, wogonin reduces S. pneumoniae pathogenicity by inhibiting the dual targets PLY and SrtA, providing a treatment option for S. pneumoniae infection.
Collapse
Affiliation(s)
- Kuan Gu
- Changchun University of Chinese MedicineChangchunChina
| | - Lizhong Ding
- Affiliated Hospital to Changchun University of Chinese MedicineJilinChina
| | | | - Yingying Sun
- Affiliated Hospital to Changchun University of Chinese MedicineJilinChina
| | - Xiaozhou Sun
- Changchun University of Chinese MedicineChangchunChina
| | - Wenbo Yang
- Changchun University of Chinese MedicineChangchunChina
| | - Haihang Sun
- Changchun University of Chinese MedicineChangchunChina
| | - Ye Tian
- Changchun University of Chinese MedicineChangchunChina
| | - Zeyu Wang
- Changchun University of Chinese MedicineChangchunChina
| | - Liping Sun
- Changchun University of Chinese MedicineChangchunChina,Affiliated Hospital to Changchun University of Chinese MedicineJilinChina
| |
Collapse
|