1
|
Gomez-Gonzalez PJ, Gupta A, Drought LG, Patel A, Okombo J, van der Watt M, Walker-Gray R, Schindler KA, Burkhard AY, Yeo T, Narwal SK, Bloxham TS, Flueck C, Walker EM, Rey JA, Fairhurst KJ, Reader J, Park H, Pollard HG, Stewart LB, Brandner-Garrod L, Kristan M, Sterk GJ, van Nuland YM, Manko E, van Schalkwyk DA, Zheng Y, Leurs R, Dechering KJ, Aguiar ACC, Guido RVC, Pereira DB, Tumwebaze PK, Nosbya SL, Rosenthal PJ, Cooper RA, Palmer M, Parkinson T, Burrows JN, Uhlemann AC, Birkholtz LM, Small-Saunders JL, Duffy J, Fidock DA, Brown A, Gardner M, Baker DA. Inhibitors of malaria parasite cyclic nucleotide phosphodiesterases block asexual blood-stage development and mosquito transmission. SCIENCE ADVANCES 2024; 10:eadq1383. [PMID: 39642214 PMCID: PMC11623267 DOI: 10.1126/sciadv.adq1383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024]
Abstract
Cyclic nucleotide-dependent phosphodiesterases (PDEs) play essential roles in regulating the malaria parasite life cycle, suggesting that they may be promising antimalarial drug targets. PDE inhibitors are used safely to treat a range of noninfectious human disorders. Here, we report three subseries of fast-acting and potent Plasmodium falciparum PDEβ inhibitors that block asexual blood-stage parasite development and that are also active against human clinical isolates. Two of the inhibitor subseries also have potent transmission-blocking activity by targeting PDEs expressed during sexual parasite development. In vitro drug selection experiments generated parasites with moderately reduced susceptibility to the inhibitors. Whole-genome sequencing of these parasites detected no mutations in PDEβ but rather mutations in downstream effectors: either the catalytic or regulatory subunits of cyclic adenosine monophosphate-dependent protein kinase (PKA) or in the 3-phosphoinositide-dependent protein kinase that is required for PKA activation. Several properties of these P. falciparum PDE inhibitor series make them attractive for further progression through the antimalarial drug discovery pipeline.
Collapse
Affiliation(s)
| | - Antima Gupta
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Laura G. Drought
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Ryan Walker-Gray
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Kyra A. Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Sunil K. Narwal
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Talia S. Bloxham
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Eloise M. Walker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Joshua A. Rey
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Kate J. Fairhurst
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Heekuk Park
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Harry G. Pollard
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Lindsay B. Stewart
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Luke Brandner-Garrod
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - Emilia Manko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Donelly A. van Schalkwyk
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Yang Zheng
- Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rob Leurs
- Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | - Rafael V. C. Guido
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Dhelio B. Pereira
- Research Center for Tropical Medicine of Rondonia, Porto Velho, Brazil
| | | | | | | | | | | | | | - Jeremy N. Burrows
- Medicines for Malaria Venture, Geneva, Switzerland
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Jennifer L. Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - James Duffy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - David A. Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
2
|
Moss WJ, Brusini L, Kuehnel R, Brochet M, Brown KM. Apicomplexan phosphodiesterases in cyclic nucleotide turnover: conservation, function, and therapeutic potential. mBio 2024; 15:e0305623. [PMID: 38132724 PMCID: PMC10865986 DOI: 10.1128/mbio.03056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Apicomplexa encompasses a large number of intracellular parasites infecting a wide range of animals. Cyclic nucleotide signaling is crucial for a variety of apicomplexan life stages and cellular processes. The cyclases and kinases that synthesize and respond to cyclic nucleotides (i.e., 3',5'-cyclic guanosine monophosphate and 3',5'-cyclic adenosine monophosphate) are highly conserved and essential throughout the parasite phylum. Growing evidence indicates that phosphodiesterases (PDEs) are also critical for regulating cyclic nucleotide signaling via cyclic nucleotide hydrolysis. Here, we discuss recent advances in apicomplexan PDE biology and opportunities for therapeutic interventions, with special emphasis on the major human apicomplexan parasite genera Plasmodium, Toxoplasma, Cryptosporidium, and Babesia. In particular, we show a highly flexible repertoire of apicomplexan PDEs associated with a wide range of cellular requirements across parasites and lifecycle stages. Despite this phylogenetic diversity, cellular requirements of apicomplexan PDEs for motility, host cell egress, or invasion are conserved. However, the molecular wiring of associated PDEs is extremely malleable suggesting that PDE diversity and redundancy are key for the optimization of cyclic nucleotide turnover to respond to the various environments encountered by each parasite and life stage. Understanding how apicomplexan PDEs are regulated and integrating multiple signaling systems into a unified response represent an untapped avenue for future exploration.
Collapse
Affiliation(s)
- William J. Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ronja Kuehnel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin M. Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|