1
|
Kim JS, Cha SH, Kim WS, Han SJ, Cha SB, Kim HM, Kwon KW, Kim SJ, Choi HH, Lee J, Cho SN, Koh WJ, Park YM, Shin SJ. A Novel Therapeutic Approach Using Mesenchymal Stem Cells to Protect Against Mycobacterium abscessus. Stem Cells 2016; 34:1957-70. [PMID: 26946350 DOI: 10.1002/stem.2353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/22/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022]
Abstract
Recent studies have demonstrated the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of acute inflammatory injury and bacterial pneumonia, but their therapeutic applications in mycobacterial infections have not been investigated. In this study, we demonstrated the use of MSCs as a novel therapeutic strategy against Mycobacterium abscessus (M. abscessus), which is the most drug-resistant and difficult-to-treat mycobacterial pathogen. The systemic intravenous injection of MSCs not only improved mouse survival but also enhanced bacterial clearance in the lungs and spleen. Additionally, MSCs enhanced IFN-γ, TNF-α, IL-6, MCP-1, nitric oxide (NO) and PGE2 production and facilitated CD4(+) /CD8(+) T cell, CD11b(high) macrophage, and monocyte recruitment in the lungs of M. abscessus-infected mice. To precisely elucidate the functions of MSCs in M. abscessus infection, an in vitro macrophage infection system was used. MSCs caused markedly increased NO production via NF-κB activation in M. abscessus-infected macrophages cultured in the presence of IFN-γ. Inhibiting NO or NF-κB signaling using specific inhibitors reduced the antimycobacterial activity of MSCs. Furthermore, the cellular crosstalk between TNF-α released from IFN-γ-stimulated M. abscessus-infected macrophages and PGE2 produced by MSCs was necessary for the mycobacterial-killing activity of the macrophages. Finally, the importance of increased NO production in response to MSC administration was confirmed in the mouse M. abscessus infection model. Our results suggest that MSCs may offer a novel therapeutic strategy for treating this drug-resistant mycobacterial infection by enhancing the bacterial-killing power of macrophages. Stem Cells 2016;34:1957-1970.
Collapse
Affiliation(s)
- Jong-Seok Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Ho Cha
- Animal Stem Cells Research Lab, Animal and Plant Quarantine Agency, Anyang-si, Gyeonggi-do, South Korea
| | - Woo Sik Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Jung Han
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Bin Cha
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong Min Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - So Jeong Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Hee Choi
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jienny Lee
- Animal Stem Cells Research Lab, Animal and Plant Quarantine Agency, Anyang-si, Gyeonggi-do, South Korea
| | - Sang-Nae Cho
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yeong-Min Park
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|