1
|
Mucolytic bacteria: prevalence in various pathological diseases. World J Microbiol Biotechnol 2021; 37:176. [PMID: 34519941 DOI: 10.1007/s11274-021-03145-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
All mucins are highly glycosylated and a key constituent of the mucus layer that is vigilant against pathogens in many organ systems of animals and humans. The viscous layer is organized in bilayers, i.e., an outer layer that is loosely arranged, variable in thickness, home to the commensal microbiota that grows in the complex environment, and an innermost layer that is stratified, non-aspirated, firmly adherent to the epithelial cells and devoid of any microorganisms. The O-glycosylation moiety represents the site of adhesion for pathogens and due to the increase of motility, mucolytic activity, and upregulation of virulence factors, some microorganisms can circumvent the component of the mucus layer and cause disruption in organ homeostasis. A dysbiotic microbiome, defective mucus barrier, and altered immune response often result in various diseases. In this review, paramount emphasis is given to the role played by the bacterial species directly or indirectly involved in mucin degradation, alteration in mucus secretion or its composition or mucin gene expression, which instigates many diseases in the digestive, respiratory, and other organ systems. A systematic view can help better understand the etiology of some complex disorders such as cystic fibrosis, ulcerative colitis and expand our knowledge about mucin degraders to develop new therapeutic approaches to correct ill effects caused by these mucin-dwelling pathogens.
Collapse
|
2
|
Livingston ET, Mursalin MH, Callegan MC. A Pyrrhic Victory: The PMN Response to Ocular Bacterial Infections. Microorganisms 2019; 7:E537. [PMID: 31703354 PMCID: PMC6920826 DOI: 10.3390/microorganisms7110537] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Some tissues of the eye are susceptible to damage due to their exposure to the outside environment and inability to regenerate. Immune privilege, although beneficial to the eye in terms of homeostasis and protection, can be harmful when breached or when an aberrant response occurs in the face of challenge. In this review, we highlight the role of the PMN (polymorphonuclear leukocyte) in different bacterial ocular infections that invade the immune privileged eye at the anterior and posterior segments: keratitis, conjunctivitis, uveitis, and endophthalmitis. Interestingly, the PMN response from the host seems to be necessary for pathogen clearance in ocular disease, but the inflammatory response can also be detrimental to vision retention. This "Pyrrhic Victory" scenario is explored in each type of ocular infection, with details on PMN recruitment and response at the site of ocular infection. In addition, we emphasize the differences in PMN responses between each ocular disease and its most common corresponding bacterial pathogen. The in vitro and animal models used to identify PMN responses, such as recruitment, phagocytosis, degranulation, and NETosis, are also outlined in each ocular infection. This detailed study of the ocular acute immune response to infection could provide novel therapeutic strategies for blinding diseases, provide more general information on ocular PMN responses, and reveal areas of bacterial ocular infection research that lack PMN response studies.
Collapse
Affiliation(s)
- Erin T. Livingston
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (E.T.L.); (M.H.M.)
| | - Md Huzzatul Mursalin
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (E.T.L.); (M.H.M.)
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (E.T.L.); (M.H.M.)
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Neuroscience, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
The Role of Pneumococcal Virulence Factors in Ocular Infectious Diseases. Interdiscip Perspect Infect Dis 2018; 2018:2525173. [PMID: 30538741 PMCID: PMC6257906 DOI: 10.1155/2018/2525173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pneumoniae is a gram-positive, facultatively anaerobic pathogen that can cause severe infections such as pneumonia, meningitis, septicemia, and middle ear infections. It is also one of the top pathogens contributing to bacterial keratitis and conjunctivitis. Though two pneumococcal vaccines exist for the prevention of nonocular diseases, they do little to fully prevent ocular infections. This pathogen has several virulence factors that wreak havoc on the conjunctiva, cornea, and intraocular system. Polysaccharide capsule aids in the evasion of host complement system. Pneumolysin (PLY) is a cholesterol-dependent cytolysin that acts as pore-forming toxin. Neuraminidases assist in adherence and colonization by exposing cell surface receptors to the pneumococcus. Zinc metalloproteinases contribute to evasion of the immune system and disease severity. The main purpose of this review is to consolidate the multiple studies that have been conducted on several pneumococcal virulence factors and the role each plays in conjunctivitis, keratitis, and endophthalmitis.
Collapse
|
4
|
Hiller NL, Sá-Leão R. Puzzling Over the Pneumococcal Pangenome. Front Microbiol 2018; 9:2580. [PMID: 30425695 PMCID: PMC6218428 DOI: 10.3389/fmicb.2018.02580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
The Gram positive bacterium Streptococcus pneumoniae (pneumococcus) is a major human pathogen. It is a common colonizer of the human host, and in the nasopharynx, sinus, and middle ear it survives as a biofilm. This mode of growth is optimal for multi-strain colonization and genetic exchange. Over the last decades, the far-reaching use of antibiotics and the widespread implementation of pneumococcal multivalent conjugate vaccines have posed considerable selective pressure on pneumococci. This scenario provides an exceptional opportunity to study the evolution of the pangenome of a clinically important bacterium, and has the potential to serve as a case study for other species. The goal of this review is to highlight key findings in the studies of pneumococcal genomic diversity and plasticity.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Gene Acquisition by a Distinct Phyletic Group within Streptococcus pneumoniae Promotes Adhesion to the Ocular Epithelium. mSphere 2017; 2:mSphere00213-17. [PMID: 29085912 PMCID: PMC5656748 DOI: 10.1128/msphere.00213-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/14/2017] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) displays broad tissue tropism and infects multiple body sites in the human host. However, infections of the conjunctiva are limited to strains within a distinct phyletic group with multilocus sequence types ST448, ST344, ST1186, ST1270, and ST2315. In this study, we sequenced the genomes of six pneumococcal strains isolated from eye infections. The conjunctivitis isolates are grouped in a distinct phyletic group together with a subset of nasopharyngeal isolates. The keratitis (infection of the cornea) and endophthalmitis (infection of the vitreous body) isolates are grouped with the remainder of pneumococcal strains. Phenotypic characterization is consistent with morphological differences associated with the distinct phyletic group. Specifically, isolates from the distinct phyletic group form aggregates in planktonic cultures and chain-like structures in biofilms grown on abiotic surfaces. To begin to investigate the association between genotype and epidemiology, we focused on a predicted surface-exposed adhesin (SspB) encoded exclusively by this distinct phyletic group. Phylogenetic analysis of the gene encoding SspB in the context of a streptococcal species tree suggests that sspB was acquired by lateral gene transfer from Streptococcus suis. Furthermore, an sspB deletion mutant displays decreased adherence to cultured cells from the ocular epithelium compared to the isogenic wild-type and complemented strains. Together these findings suggest that acquisition of genes from outside the species has contributed to pneumococcal tissue tropism by enhancing the ability of a subset of strains to infect the ocular epithelium causing conjunctivitis. IMPORTANCE Changes in the gene content of pathogens can modify their ability to colonize and/or survive in different body sites in the human host. In this study, we investigate a gene acquisition event and its role in the pathogenesis of Streptococccus pneumoniae (pneumococcus). Our findings suggest that the gene encoding the predicted surface protein SspB has been transferred from Streptococcus suis (a distantly related streptococcal species) into a distinct set of pneumococcal strains. This group of strains distinguishes itself from the remainder of pneumococcal strains by extensive differences in genomic composition and by the ability to cause conjunctivitis. We find that the presence of sspB increases adherence of pneumococcus to the ocular epithelium. Thus, our data support the hypothesis that a subset of pneumococcal strains has gained genes from neighboring species that enhance their ability to colonize the epithelium of the eye, thus expanding into a new niche.
Collapse
|
6
|
Jolly AL, Agarwal P, Metruccio MME, Spiciarich DR, Evans DJ, Bertozzi CR, Fleiszig SMJ. Corneal surface glycosylation is modulated by IL-1R and Pseudomonas aeruginosa challenge but is insufficient for inhibiting bacterial binding. FASEB J 2017; 31:2393-2404. [PMID: 28223334 DOI: 10.1096/fj.201601198r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/30/2017] [Indexed: 11/11/2022]
Abstract
Cell surface glycosylation is thought to be involved in barrier function against microbes at mucosal surfaces. Previously we showed that the epithelium of healthy mouse corneas becomes vulnerable to Pseudomonas aeruginosa adhesion if it lacks the innate defense protein MyD88 (myeloid differentiation primary response gene 88), or after superficial injury by blotting with tissue paper. Here we explored their effect on corneal surface glycosylation using a metabolic label, tetra-acetylated N-azidoacetylgalactosamine (Ac4GalNAz). Ac4GalNAz treatment labeled the surface of healthy mouse corneas, leaving most cells viable, and bacteria preferentially associated with GalNAz-labeled regions. Surprisingly, corneas from MyD88-/- mice displayed similar GalNAz labeling to wild-type corneas, but labeling was reduced and patchy on IL-1 receptor (IL-1R)-knockout mouse corneas (P < 0.05, ANOVA). Tissue paper blotting removed GalNAz-labeled surface cells, causing DAPI labeling (permeabilization) of underlying cells. MS of material collected on the tissue paper blots revealed 67 GalNAz-labeled proteins, including intracellular proteins. These data show that the normal distribution of surface glycosylation requires IL-1R, but not MyD88, and is not sufficient to prevent bacterial binding. They also suggest increased P. aeruginosa adhesion to MyD88-/- and blotted corneas is not due to reduction in total surface glycosylation, and for tissue paper blotting is likely due to cell permeabilization.-Jolly, A. L., Agarwal, P., Metruccio, M. M. E., Spiciarich, D. R., Evans, D. J., Bertozzi, C. R., Fleiszig, S. M. J. Corneal surface glycosylation is modulated by IL-1R and Pseudomonas aeruginosa challenge but is insufficient for inhibiting bacterial binding.
Collapse
Affiliation(s)
- Amber L Jolly
- School of Optometry, University of California, Berkeley, Berkeley, California, USA
| | - Paresh Agarwal
- College of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Matteo M E Metruccio
- School of Optometry, University of California, Berkeley, Berkeley, California, USA
| | - David R Spiciarich
- College of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - David J Evans
- School of Optometry, University of California, Berkeley, Berkeley, California, USA.,College of Pharmacy, Touro University California, Vallejo, California, USA
| | - Carolyn R Bertozzi
- College of Chemistry, University of California, Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, Berkeley, California, USA; .,Graduate Division of Vision Sciences, University of California, Berkeley, Berkeley, California, USA.,Graduate Division of Microbiology, University of California, Berkeley, Berkeley, California, USA.,Graduate Division of Infectious Diseases and Immunity, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
7
|
Mutations in pneumococcal cpsE generated via in vitro serial passaging reveal a potential mechanism of reduced encapsulation utilized by a conjunctival isolate. J Bacteriol 2015; 197:1781-91. [PMID: 25777672 DOI: 10.1128/jb.02602-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/05/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED The polysaccharide capsule of Streptococcus pneumoniae is required for nasopharyngeal colonization and for invasive disease in the lungs, blood, and meninges. In contrast, the vast majority of conjunctival isolates are acapsular. The first serotype-specific gene in the capsule operon, cpsE, encodes the initiating glycosyltransferase and is one of the few serotype-specific genes that can tolerate null mutations. This report characterizes a spontaneously arising TIGR4 mutant exhibiting a reduced capsule, caused by a 6-nucleotide duplication in cpsE which results in duplication of Ala and Ile at positions 45 and 46. This strain (AI45dup) possessed more exposed phosphorylcholine and was hypersusceptible to C3 complement deposition compared to the wild type. Accordingly, the mutant was significantly better at forming abiotic biofilms and binding epithelial cells in vitro but was avirulent in a sepsis model. In vitro serial passaging of the wild-type strain failed to reproduce the AI45dup mutation but instead led to a variety of mutants with reduced capsule harboring single nucleotide polymorphisms (SNPs) in cpsE. A single passage in the sepsis model after high-dose inoculation readily yielded revertants of AI45dup with restored wild-type capsule level, but the majority of SNP alleles of cpsE could not revert, suppress, or bypass. Analysis of cpsE in conjunctival isolates revealed a strain with a single missense mutation at amino acid position 377, which was responsible for reduced encapsulation. This study supports the hypothesis that spontaneous, nonreverting mutations in cpsE serve as a form of adaptive mutation by providing a selective advantage to S. pneumoniae in niches where expression of capsule is detrimental. IMPORTANCE While the capsule of Streptococcus pneumoniae is required for colonization and invasive disease, most conjunctival isolates are acapsular by virtue of deletion of the entire capsular operon. We show that spontaneous acapsular mutants isolated in vitro harbor mostly nonrevertible single nucleotide polymorphism (SNP) null mutations in cpsE, encoding the initiating glycosyltransferase. From a small collection of acapsular conjunctival isolates, we identified one strain with a complete capsular operon but containing a SNP in cpsE that we show is responsible for the acapsular phenotype. We propose that acapsular conjunctival isolates may arise initially from such nonreverting SNP null mutations in cpsE, which can be followed later by deletion of portions or all of the cps operon.
Collapse
|
8
|
Thornton JA, Tullos NA, Sanders ME, Ridout G, Wang YD, Taylor SD, McDaniel LS, Marquart ME. Differential bacterial gene expression during experimental pneumococcal endophthalmitis. Ophthalmic Res 2015; 53:149-61. [PMID: 25791614 DOI: 10.1159/000371713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is a potential cause of bacterial endophthalmitis in humans that can result in ocular morbidity. We sought to identify pneumococcal genes that are differentially expressed during growth in the vitreous humor of the eye in an experimental endophthalmitis model. Microarray analysis was used to identify genes that were differentially expressed when pneumococci replicated in the vitreous of rabbit eyes as compared with bacteria grown in vitro in Todd Hewitt medium. Array results were verified by quantitative real-time PCR analysis of representative genes. Select genes potentially playing a role in virulence during endophthalmitis were deleted, and mutants were tested for reduced eye pathogenesis and altered adhesion to host cells. Array analysis identified 134 genes that were differentially expressed during endophthalmitis; 112 genes demonstrated increased expression during growth in the eye whereas 22 were downregulated. Real-time analysis verified increased expression of neuraminidase A (NanA; SP1693), neuraminidase B (NanB; SP1687) and serine protease (SP1954), and decreased expression of RlrA (SP0461) and choline transporter (SP1861). Mutation of NanA and NanB had no major effect on pathogenesis. Loss of SP1954 led to increased adherence to host cells. S. pneumoniae enhances and represses the expression of a variety of genes during endophthalmitis. While some of these genes reflect changes in metabolic requirements, some appear to play a role in immune evasion and pathogenesis in the eye.
Collapse
Affiliation(s)
- Justin A Thornton
- Department of Biological Sciences, Mississippi State University, Starkville, Miss., USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kimaro Mlacha SZ, Romero-Steiner S, Hotopp JCD, Kumar N, Ishmael N, Riley DR, Farooq U, Creasy TH, Tallon LJ, Liu X, Goldsmith CS, Sampson J, Carlone GM, Hollingshead SK, Scott JAG, Tettelin H. Phenotypic, genomic, and transcriptional characterization of Streptococcus pneumoniae interacting with human pharyngeal cells. BMC Genomics 2013; 14:383. [PMID: 23758733 PMCID: PMC3708772 DOI: 10.1186/1471-2164-14-383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 05/24/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a leading cause of childhood morbidity and mortality worldwide, despite the availability of effective pneumococcal vaccines. Understanding the molecular interactions between the bacterium and the host will contribute to the control and prevention of pneumococcal disease. RESULTS We used a combination of adherence assays, mutagenesis and functional genomics to identify novel factors involved in adherence. By contrasting these processes in two pneumococcal strains, TIGR4 and G54, we showed that adherence and invasion capacities vary markedly by strain. Electron microscopy showed more adherent bacteria in association with membranous pseudopodia in the TIGR4 strain. Operons for cell wall phosphorylcholine incorporation (lic), manganese transport (psa) and phosphate utilization (phn) were up-regulated in both strains on exposure to epithelial cells. Pneumolysin, pili, stress protection genes (adhC-czcD) and genes of the type II fatty acid synthesis pathway were highly expressed in the naturally more invasive strain, TIGR4. Deletion mutagenesis of five gene regions identified as regulated in this study revealed attenuation in adherence. Most strikingly, ∆SP_1922 which was predicted to contain a B-cell epitope and revealed significant attenuation in adherence, appeared to be expressed as a part of an operon that includes the gene encoding the cytoplasmic pore-forming toxin and vaccine candidate, pneumolysin. CONCLUSION This work identifies a list of novel potential pneumococcal adherence determinants.
Collapse
|
10
|
Argüeso P. Glycobiology of the ocular surface: mucins and lectins. Jpn J Ophthalmol 2013; 57:150-5. [PMID: 23325272 DOI: 10.1007/s10384-012-0228-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/02/2012] [Indexed: 11/28/2022]
Abstract
Glycosylation is an important and common form of posttranscriptional modification of proteins in cells. During the last decade, a vast array of biological functions has been ascribed to glycans because of a rapid evolution in glycomic technologies. Glycogenes that are highly expressed at the human ocular surface include families of glycosyltransferases, proteoglycans, and glycan degradation proteins, as well as mucins and carbohydrate-binding proteins, such as the galectins. On the apical glycocalyx, mucin O-glycans promote boundary lubrication, prevent bacterial adhesion and endocytic activity, and maintain epithelial barrier function through interactions with galectins. The emerging roles attributed to glycans are contributing to the appreciation of their biological capabilities at the ocular surface.
Collapse
Affiliation(s)
- Pablo Argüeso
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Infectious keratitis: secreted bacterial proteins that mediate corneal damage. J Ophthalmol 2013; 2013:369094. [PMID: 23365719 PMCID: PMC3556867 DOI: 10.1155/2013/369094] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022] Open
Abstract
Ocular bacterial infections are universally treated with antibiotics, which can eliminate the organism but cannot reverse the damage caused by bacterial products already present. The three very common causes of bacterial keratitis—Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae—all produce proteins that directly or indirectly cause damage to the cornea that can result in reduced vision despite antibiotic treatment. Most, but not all, of these proteins are secreted toxins and enzymes that mediate host cell death, degradation of stromal collagen, cleavage of host cell surface molecules, or induction of a damaging inflammatory response. Studies of these bacterial pathogens have determined the proteins of interest that could be targets for future therapeutic options for decreasing corneal damage.
Collapse
|
12
|
Brittan JL, Buckeridge TJ, Finn A, Kadioglu A, Jenkinson HF. Pneumococcal neuraminidase A: an essential upper airway colonization factor for Streptococcus pneumoniae. Mol Oral Microbiol 2012; 27:270-83. [PMID: 22759312 DOI: 10.1111/j.2041-1014.2012.00658.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Streptococcus pneumoniae colonizes the upper respiratory tract from where the organisms may disseminate systemically to cause life threatening infections. The mechanisms by which pneumococci colonize epithelia are not understood, but neuraminidase A (NanA) has a major role in promoting growth and survival in the upper respiratory tract. In this article we show that mutants of S. pneumoniae D39 deficient in NanA or neuraminidase B (NanB) are abrogated in adherence to three epithelial cell lines, and to primary nasopharyngeal cells. Adherence levels were partly restored by nanA complementation in trans. Enzymic activity of NanA was shown to be necessary for pneumococcal adherence to epithelial cells, and adherence of the nanA mutant was restored to wild-type level by pre-incubation of epithelial cells with Lactococcus lactis cells expressing NanA. Pneumococcal nanA or nanB mutants were deficient in biofilm formation, while expression of NanA on L. lactis or Streptococcus gordonii promoted biofilm formation by these heterologous host organisms. The results suggest that NanA is an enzymic factor mediating adherence to epithelial cells by decrypting receptors for adhesion, and functions at least in part as an adhesin in biofilm formation. Neuraminidase A thus appears to play multiple temporal roles in pneumococcal infection, from adherence to host tissues, colonization, and community development, to systemic spread and crossing of the blood-brain barrier.
Collapse
Affiliation(s)
- J L Brittan
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
13
|
Menon BB, Govindarajan B. Identification of an atypical zinc metalloproteinase, ZmpC, from an epidemic conjunctivitis-causing strain of Streptococcus pneumoniae. Microb Pathog 2012; 56:40-6. [PMID: 23168398 DOI: 10.1016/j.micpath.2012.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/08/2012] [Indexed: 11/26/2022]
Abstract
Streptococcus pneumoniae is a pathogen associated with a range of invasive and noninvasive infections. Despite the identification of the majority of virulence factors expressed by S. pneumoniae, knowledge of the strategies used by this bacterium to trigger infections, especially those originating at wet-surfaced epithelia, remains limited. In this regard, we recently reported a mechanism used by a nonencapsulated, epidemic conjunctivitis-causing strain of S. pneumoniae (strain SP168) to gain access into ocular surface epithelial cells. Mechanistically, strain SP168 secretes a zinc metalloproteinase, encoded by a truncated zmpC gene, to cleave off the ectodomain of a vital defense component - the membrane mucin MUC16 - from the apical glycocalyx barrier of ocular surface epithelial cells and, thereby invades underlying epithelial cells. Here, we compare the truncated SP168 ZmpC to its highly conserved archetype from S. pneumoniae serotype 4 (TIGR4), which has been linked to pneumococcal virulence in previous studies. Comparative nucleotide sequence analyses revealed that the zmpC gene corresponding to strain SP168 has two stretches of DNA deleted near its 5' end. A third 3 bp in-frame deletion, resulting in the elimination of an alanine residue, was found towards the middle segment of the SP168 zmpC. Closer examination of the primary structure revealed that the SP168 ZmpC lacks the canonical LPXTG motif - a signature typical of several surface proteins of gram-positive bacteria and of other pneumococcal zinc metalloproteinases. Surprisingly, in vitro assays performed using recombinant forms of ZmpC indicated that the truncated SP168 ZmpC induces more cleavage of the MUC16 ectodomain than its TIGR4 counterpart. This feature may help explain, in part, why S. pneumoniae strain SP168 is better equipped at abrogating the MUC16 glycocalyx barrier en route to causing epidemic conjunctivitis.
Collapse
Affiliation(s)
- Balaraj B Menon
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114, USA.
| | | |
Collapse
|
14
|
Khan MN, Sharma SK, Filkins LM, Pichichero ME. PcpA of Streptococcus pneumoniae mediates adherence to nasopharyngeal and lung epithelial cells and elicits functional antibodies in humans. Microbes Infect 2012; 14:1102-10. [PMID: 22796387 DOI: 10.1016/j.micinf.2012.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 12/21/2022]
Abstract
Streptococcus pneumoniae (pneumococci) adhere to human nasopharyngeal (NP) epithelial cells as a first step in colonization and adherence of pneumococci to lung epithelia may be required to establish pneumonia. We sought to determine if PcpA can serve as an adhesin to human NP (D562) and lung (A549) epithelial cells and whether PcpA mediated adherence can be inhibited by human anti-PcpA antibodies. A PcpA isogenic mutant was constructed in a pneumococcal TIGR4 background. When the mutant and wild type strains were compared for their adherence to D562 and A549 cell lines, a reduction in adherence by the mutant was observed (p = 0.0001 for both cell types). PcpA was ectopically expressed on the surface of minimally-adherent heterologous host Escherichia coli resulting in augmented adherence to D562 (p = 0.002) and A549 (p = 0.015) cells. Total IgG was purified from a pool of 6 human sera having high IgG titers of anti-pneumococcal proteins. The purified IgG reduced TIGR4 adherence to D562 cells but we determined that this effect was largely due to bacterial cell aggregation as determined by flow cytometry and confocal microscopy. Fab fragments were prepared from pooled IgG sera. Inhibition of TIGR4 adherence to D562 cells was observed using the Fab fragments without causing bacterial aggregation (p = 0.0001). Depletion of PcpA-specific Fab fragments resulted in an increase in adherence of TIGR4 to D562 cells (p = 0.028). We conclude that PcpA can mediate adherence of pneumococci to human NP and lung epithelial cells and PcpA mediated adherence can be inhibited by human anti-PcpA antibodies.
Collapse
Affiliation(s)
- M Nadeem Khan
- Center for Infectious Diseases and Vaccine Immunology, Research Institute, Rochester General Hospital, Rochester, NY 14621, USA
| | | | | | | |
Collapse
|
15
|
Govindarajan B, Menon BB, Spurr-Michaud S, Rastogi K, Gilmore MS, Argüeso P, Gipson IK. A metalloproteinase secreted by Streptococcus pneumoniae removes membrane mucin MUC16 from the epithelial glycocalyx barrier. PLoS One 2012; 7:e32418. [PMID: 22412870 PMCID: PMC3296694 DOI: 10.1371/journal.pone.0032418] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/29/2012] [Indexed: 12/19/2022] Open
Abstract
The majority of bacterial infections occur across wet-surfaced mucosal epithelia, including those that cover the eye, respiratory tract, gastrointestinal tract and genitourinary tract. The apical surface of all these mucosal epithelia is covered by a heavily glycosylated glycocalyx, a major component of which are membrane-associated mucins (MAMs). MAMs form a barrier that serves as one of the first lines of defense against invading bacteria. While opportunistic bacteria rely on pre-existing defects or wounds to gain entry to epithelia, non opportunistic bacteria, especially the epidemic disease-causing ones, gain access to epithelial cells without evidence of predisposing injury. The molecular mechanisms employed by these non opportunistic pathogens to breach the MAM barrier remain unknown. To test the hypothesis that disease-causing non opportunistic bacteria gain access to the epithelium by removal of MAMs, corneal, conjunctival, and tracheobronchial epithelial cells, cultured to differentiate to express the MAMs, MUCs 1, 4, and 16, were exposed to a non encapsulated, non typeable strain of Streptococcus pneumoniae (SP168), which causes epidemic conjunctivitis. The ability of strain SP168 to induce MAM ectodomain release from epithelia was compared to that of other strains of S. pneumoniae, as well as the opportunistic pathogen Staphylococcus aureus. The experiments reported herein demonstrate that the epidemic disease-causing S. pneumoniae species secretes a metalloproteinase, ZmpC, which selectively induces ectodomain shedding of the MAM MUC16. Furthermore, ZmpC-induced removal of MUC16 from the epithelium leads to loss of the glycocalyx barrier function and enhanced internalization of the bacterium. These data suggest that removal of MAMs by bacterial enzymes may be an important virulence mechanism employed by disease-causing non opportunistic bacteria to gain access to epithelial cells to cause infection.
Collapse
Affiliation(s)
- Bharathi Govindarajan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Balaraj B. Menon
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sandra Spurr-Michaud
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Komal Rastogi
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael S. Gilmore
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pablo Argüeso
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ilene K. Gipson
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Xu Q, Kaur R, Casey JR, Sabharwal V, Pelton S, Pichichero ME. Nontypeable Streptococcus pneumoniae as an otopathogen. Diagn Microbiol Infect Dis 2011; 69:200-4. [PMID: 21251566 DOI: 10.1016/j.diagmicrobio.2010.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/23/2010] [Accepted: 09/23/2010] [Indexed: 11/26/2022]
Abstract
Among 34 Streptococcus pneumoniae (Spn) sequential isolates from middle ear fluid, we found a case of a nontypeable S. pneumoniae (NT-Spn) in a child with acute otitis media (AOM). The strain was pneumolysin PCR positive and capsule gene PCR negative. Virulence of the NT-Spn was confirmed in a chinchilla model of AOM.
Collapse
Affiliation(s)
- Qingfu Xu
- Rochester General Hospital Research Institute, Rochester, NY 14621, USA
| | | | | | | | | | | |
Collapse
|
17
|
Norcross EW, Tullos NA, Taylor SD, Sanders ME, Marquart ME. Assessment of Streptococcus pneumoniae capsule in conjunctivitis and keratitis in vivo neuraminidase activity increases in nonencapsulated pneumococci following conjunctival infection. Curr Eye Res 2010; 35:787-98. [PMID: 20795860 PMCID: PMC2997481 DOI: 10.3109/02713683.2010.492462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE The pneumococcal capsule is required for pathogenesis in systemic infections, yet reports show most conjunctivitis outbreaks are caused by nonencapsulated pneumococci, while keratitis infections are caused by encapsulated strains. This study aims to determine the effect of capsule in pneumococcal keratitis and conjunctivitis in rabbit models of infection. METHODS A capsule-deficient isogenic mutant was created using homologous transformation. Parent and mutant strains were injected within the upper bulbar conjunctiva (conjunctivitis) or into the corneal stroma (keratitis) of New Zealand white rabbits. Clinical examinations were performed 24 and 48 hr post-infection at which time corneas or conjunctivae were removed, homogenized, and plated to determine the recovered bacterial load. Whole eyes were removed for histological examination. The neuraminidase activity was determined following in vitro and in vivo growth. RESULTS There were no significant differences in clinical scores between the eyes infected with the parent or mutant for either infection, nor was there a difference in the amount of bacteria recovered from the cornea. In the conjunctivae, however, the mutant strain was cleared by the host faster than the parent strain. Histological examination showed slightly more infiltrating polymorphonuclear leukocytes (PMN) and macrophages in the conjunctivae infected with the parent strain. The neuraminidase activity of both strains was not significantly different when the strains were grown in vitro. However, the neuraminidase activity of the parent was significantly less than that of the mutant at 3 and 12 hr post conjunctival infection. CONCLUSIONS Although more outbreaks of pneumococcal conjunctivitis are tied to nonencapsulated S. pneumoniae strains, this study showed that an encapsulated strain was capable of establishing conjunctivitis in a rabbit injection model and survive attack by the host immune system longer than its nonencapsulated isogenic mutant. Nonetheless, the nonencapsulated pneumococci had an increased neuraminidase activity level in vivo when compared to the parent strain.
Collapse
Affiliation(s)
- Erin W Norcross
- Department of Microbiology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | |
Collapse
|
18
|
Sartor PA, Agusti R, Leguizamón MS, Campetella O, de Lederkremer RM. Continuous nonradioactive method for screening trypanosomal trans-sialidase activity and its inhibitors. Glycobiology 2010; 20:982-90. [PMID: 20375068 PMCID: PMC2895728 DOI: 10.1093/glycob/cwq056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi, the agent of American trypanosomiasis is unable to synthesize sialic acid (SA). Instead of using the corresponding nucleotide sugar as donor of the monosaccharide, the transfer occurs from alpha-2,3-linked SA in the host sialoglycoconjugates to terminal beta-galactopyranosyl units of the parasite mucins. For that purpose, T. cruzi expresses a glycosylphosphatidylinositol-anchored trans-sialidase (TcTS) that is shed into the milieu, being detected in the blood during the acute phase of the infection. The essential role of TcTS in infection and the absence of a similar activity in mammals make this enzyme an attractive target for the development of alternative chemotherapies. However, there is no effective inhibitor toward this enzyme. In vitro, 3'-sialyllactose (SL) as donor and radioactive lactose as acceptor substrate are widely used to measure TcTS activity. The radioactive sialylated product is then isolated by anion exchange chromatography and measured. Here we describe a new nonradioactive assay using SL or fetuin as donor and benzyl beta-d-Fuc-(1-->6)-alpha-d-GlcNAc (1) as acceptor. Disaccharide 1 was easily synthesized by regioselective glycosylation of benzyl alpha-d-GlcNAc with tetra-O-benzoyl-d-fucose followed by debenzoylation. Compound 1 lacks the hydroxyl group at C-6 of the acceptor galactose and therefore is not a substrate for galactose oxidase. Our method relies on the specific quantification of terminal galactose produced by trans-sialylation from the donor to the 6-deoxy-galactose (D-Fuc) unit of 1 by a spectrophotometric galactose oxidase assay. This method may also discriminate sialidase and trans-sialylation activities by running the assay in the absence of acceptor 1.
Collapse
Affiliation(s)
- Paula A Sartor
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Rosalía Agusti
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
| | - Maria S Leguizamón
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martin, 1650 San Martín, Argentina
| | - Rosa M de Lederkremer
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
| |
Collapse
|
19
|
Guzman-Aranguez A, Argüeso P. Structure and Biological Roles of Mucin-type O-glycans at the Ocular Surface. Ocul Surf 2010; 8:8-17. [DOI: 10.1016/s1542-0124(12)70213-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Milani CJE, Aziz RK, Locke JB, Dahesh S, Nizet V, Buchanan JT. The novel polysaccharide deacetylase homologue Pdi contributes to virulence of the aquatic pathogen Streptococcus iniae. MICROBIOLOGY-SGM 2009; 156:543-554. [PMID: 19762441 DOI: 10.1099/mic.0.028365-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aquatic zoonotic pathogen Streptococcus iniae represents a threat to the worldwide aquaculture industry and poses a risk to humans who handle raw fish. Because little is known about the mechanisms of S. iniae pathogenesis or virulence factors, we established a high-throughput system combining whole-genome pyrosequencing and transposon mutagenesis that allowed us to identify virulence proteins, including Pdi, the polysaccharide deacetylase of S. iniae, that we describe here. Using bioinformatics tools, we identified a highly conserved signature motif in Pdi that is also conserved in the peptidoglycan deacetylase PgdA protein family. A Deltapdi mutant was attenuated for virulence in the hybrid striped bass model and for survival in whole fish blood. Moreover, Pdi was found to promote bacterial resistance to lysozyme killing and the ability to adhere to and invade epithelial cells. On the other hand, there was no difference in the autolytic potential, resistance to oxidative killing or resistance to cationic antimicrobial peptides between S. iniae wild-type and Deltapdi. In conclusion, we have demonstrated that pdi is involved in S. iniae adherence and invasion, lysozyme resistance and survival in fish blood, and have shown that pdi plays a role in the pathogenesis of S. iniae. Identification of Pdi and other S. iniae virulence proteins is a necessary initial step towards the development of appropriate preventive and therapeutic measures against diseases and economic losses caused by this pathogen.
Collapse
Affiliation(s)
- Carlo J E Milani
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Jeffrey B Locke
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| | - Samira Dahesh
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0657, La Jolla, CA 92093-0657, USA.,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| | - John T Buchanan
- Aqua Bounty Technologies, 8395 Camino Santa Fe, Suite E, San Diego, CA 92121, USA.,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| |
Collapse
|
21
|
The NanA neuraminidase of Streptococcus pneumoniae is involved in biofilm formation. Infect Immun 2009; 77:3722-30. [PMID: 19564377 DOI: 10.1128/iai.00228-09] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae remains a major cause of bacteremia, pneumonia, and otitis media despite vaccines and effective antibiotics. The neuraminidase of S. pneumoniae, which catalyzes the release of terminal sialic acid residues from glycoconjugates, is involved in host colonization in animal models of infection and may provide a novel target for preventing pneumococcal infection. We demonstrate that the S. pneumoniae neuraminidase (NanA) cleaves sialic acid and show that it is involved in biofilm formation, suggesting an additional role in pathogenesis, and that it shares this property with the neuraminidase of Pseudomonas aeruginosa even though we show that the two enzymes are phylogenetically divergent. Using an in vitro model of biofilm formation incorporating human airway epithelial cells, we demonstrate that small-molecule inhibitors of NanA block biofilm formation and may provide a novel target for preventative therapy. This work highlights the role played by the neuraminidase in pathogenesis and represents an important step in drug development for prevention of colonization of the respiratory tract by this important pathogen.
Collapse
|
22
|
Ricciuto J, Heimer SR, Gilmore MS, Argüeso P. Cell surface O-glycans limit Staphylococcus aureus adherence to corneal epithelial cells. Infect Immun 2008; 76:5215-20. [PMID: 18794288 PMCID: PMC2573382 DOI: 10.1128/iai.00708-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/30/2008] [Accepted: 09/03/2008] [Indexed: 11/20/2022] Open
Abstract
The mucin-rich environment of the intact corneal epithelium is thought to contribute to the prevention of Staphylococcus aureus infection. This study examined whether O-glycans, which constitute the majority of the mucin mass of epithelial cell glycocalyces, prevented bacterial adhesion and growth. Abrogation of mucin O glycosylation using the chemical primer benzyl-alpha-GalNAc resulted in increased adherence of parental strain RN6390 to apical human corneal-limbal epithelial (HCLE) cells and to biotinylated cell surface protein in static and liquid phase adhesion assays, consistent with a role of mucin O-glycans in preventing bacterial adhesion. Comparable results were found with ALC135, an isogenic mutant strain defective in the accessory gene regulators agr and sar, indicating that the agr- and/or sar-regulated virulence factors did not play a major role in mediating adhesion to the corneal cell surface after mucin O-glycan truncation. In exoglycosidase digestion studies, treatment with sialidase from Arthrobacter ureafaciens--which hydrolyzed mucin-associated O-acetyl sialic acid--but not from Clostridium perfringens resulted in an increase in RN6390 and ALC135 adhesion. Abrogation of mucin O glycosylation in HCLE cell cultures did not affect bacterial growth. Overall, these data indicate that mucin O-glycans contribute to the prevention of bacterial adherence to the apical surface of corneal epithelial cells and suggest that alteration of cell surface glycosylation from disease or trauma, including that stemming from contact lens wear, could contribute to a higher risk of infection.
Collapse
Affiliation(s)
- Jessica Ricciuto
- Schepens Eye Research Institute and the Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|