1
|
Pita T, Feliciano JR, Leitão JH. Identification of Burkholderia cenocepacia non-coding RNAs expressed during Caenorhabditis elegans infection. Appl Microbiol Biotechnol 2023; 107:3653-3671. [PMID: 37097504 PMCID: PMC10175445 DOI: 10.1007/s00253-023-12530-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
Small non-coding RNAs (sRNAs) are key regulators of post-transcriptional gene expression in bacteria. Despite the identification of hundreds of bacterial sRNAs, their roles on bacterial physiology and virulence remain largely unknown, as is the case of bacteria of the Burkholderia cepacia complex (Bcc). Bcc is a group of opportunistic pathogens with relatively large genomes that can cause lethal lung infections amongst cystic fibrosis (CF) patients. To characterise sRNAs expressed by Bcc bacteria when infecting a host, the nematode Caenorhabditis elegans was used as an infection model by the epidemic CF strain B. cenocepacia J2315. A total of 108 new and 31 previously described sRNAs with a predicted Rho independent terminator were identified, most of them located on chromosome 1. RIT11b, a sRNA downregulated under C. elegans infection conditions, was shown to directly affect B. cenocepacia virulence, biofilm formation, and swimming motility. RIT11b overexpression reduced the expression of the direct targets dusA and pyrC, involved in biofilm formation, epithelial cell adherence, and chronic infections in other organisms. The in vitro direct interaction of RIT11b with the dusA and pyrC messengers was demonstrated by electrophoretic mobility shift assays. To the best of our knowledge this is the first report on the functional characterization of a sRNA directly involved in B. cenocepacia virulence. KEY POINTS: • 139 sRNAs expressed by B. cenocepacia during C. elegans infection were identified • The sRNA RIT11b affects B. cenocepacia virulence, biofilm formation, and motility • RIT11b directly binds to and regulates dusA and pyrC mRNAs.
Collapse
Affiliation(s)
- Tiago Pita
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Joana R Feliciano
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| | - Jorge H Leitão
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| |
Collapse
|
2
|
Yin Y, Li R, Liang WT, Zhang WB, Hu Z, Ma JC, Wang HH. Of its five acyl carrier proteins, only AcpP1 functions in Ralstonia solanacearum fatty acid synthesis. Front Microbiol 2022; 13:1014971. [PMID: 36212838 PMCID: PMC9542644 DOI: 10.3389/fmicb.2022.1014971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
The fatty acid synthesis (FAS) pathway is essential for bacterial survival. Acyl carrier proteins (ACPs), donors of acyl moieties, play a central role in FAS and are considered potential targets for the development of antibacterial agents. Ralstonia solanacearum, a primary phytopathogenic bacterium, causes bacterial wilt in more than 200 plant species. The genome of R. solanacearum contains five annotated acp genes, acpP1, acpP2, acpP3, acpP4, and acpP5. In this study, we characterized the five putative ACPs and confirmed that only AcpP1 is involved in FAS and is necessary for the growth of R. solanacearum. We also found that AcpP2 and AcpP4 participate in the polyketide synthesis pathway. Unexpectedly, the disruption of four acp genes (acpP2, acpP3, acpP4, and acpP5) allowed the mutant strain to grow as well as the wild-type strain, but attenuated the bacterium’s pathogenicity in the host plant tomato, suggesting that these four ACPs contribute to the virulence of R. solanacearum through mechanisms other than the FAS pathway.
Collapse
|
3
|
Ao X, Zhao J, Yan J, Liu S, Zhao K. Comparative transcriptomic analysis of Lactiplantibacillus plantarum RS66CD biofilm in high-salt conditions and planktonic cells. PeerJ 2020; 8:e9639. [PMID: 32832272 PMCID: PMC7409786 DOI: 10.7717/peerj.9639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background Lactiplantibacillus plantarum (L. plantarum), a dominant strain in traditional fermented foods, is widely used in fermentation industry because of its fast acid production. However, L. plantarum is easily inactivated due to acidity, high temperature and other factors. The formation of biofilm by bacteria can effectively increase environmental tolerance. Therefore, it is important to improve the environmental tolerance of L. plantarum by studying its biofilm formation conditions and regulatory mechanisms. Methods After determining a suitable NaCl concentration for promoting biofilm formation, L. plantarum was grown with 48 g L−1 NaCl. Differential gene expressions in L. plantarum biofilm vs. planktonic cells were analyzed using RNA sequencing and validated using qPCR. Result L. plantarum RS66CD biofilm formation formed highest amount of when grown at 48 g L−1 NaCl. Altogether 447 genes were up-regulated and 426 genes were down-regulated in the biofilm. KEGG pathway analysis showed that genes coding for D-Alanine metabolism, peptidoglycan biosynthesis, two-component system, carbon metabolism, bacterial secretion system, lysine biosynthesis and fatty acid metabolism were crucial for biofilm formation. In addition, eight other genes related to biofilm formation were differentially expressed. Our results provide insights into the differential gene expression involved in biofilm formation, which can help to reveal gene regulation during L. plantarum biofilm formation.
Collapse
Affiliation(s)
- Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jiawei Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Junling Yan
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Ke Zhao
- Colloge of Resources, Sichuan Agricultural University, Cheng'du', China
| |
Collapse
|
4
|
Scoffone VC, Barbieri G, Buroni S, Scarselli M, Pizza M, Rappuoli R, Riccardi G. Vaccines to Overcome Antibiotic Resistance: The Challenge of Burkholderia cenocepacia. Trends Microbiol 2020; 28:315-326. [DOI: 10.1016/j.tim.2019.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022]
|
5
|
Comparative Genomics and Evolutionary Analysis of RNA-Binding Proteins of Burkholderia cenocepacia J2315 and Other Members of the B. cepacia Complex. Genes (Basel) 2020; 11:genes11020231. [PMID: 32098200 PMCID: PMC7074383 DOI: 10.3390/genes11020231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
RNA-binding proteins (RBPs) are important regulators of cellular functions, playing critical roles on the survival of bacteria and in the case of pathogens, on their interaction with the host. RBPs are involved in transcriptional, post-transcriptional, and translational processes. However, except for model organisms like Escherichia coli, there is little information about the identification or characterization of RBPs in other bacteria, namely in members of the Burkholderia cepacia complex (Bcc). Bcc is a group of bacterial species associated with a poor clinical prognosis in cystic fibrosis patients. These species have some of the largest bacterial genomes, and except for the presence of two-distinct Hfq-like proteins, their RBP repertoire has not been analyzed so far. Using in silico approaches, we identified 186 conventional putative RBPs in Burkholderia cenocepacia J2315, an epidemic and multidrug resistant pathogen of cystic fibrosis patients. Here we describe the comparative genomics and phylogenetic analysis of RBPs present in multiple copies and predicted to play a role in transcription, protein synthesis, and RNA decay in Bcc bacteria. In addition to the two different Hfq chaperones, five cold shock proteins phylogenetically close to E. coli CspD protein and three distinct RhlE-like helicases could be found in the B. cenocepacia J2315 genome. No RhlB, SrmB, or DeaD helicases could be found in the genomes of these bacteria. These results, together with the multiple copies of other proteins generally involved in RNA degradation, suggest the existence, in B. cenocepacia and in other Bcc bacteria, of some extra and unexplored functions for the mentioned RBPs, as well as of alternative mechanisms involved in RNA regulation and metabolism in these bacteria.
Collapse
|
6
|
Perche F, Le Gall T, Montier T, Pichon C, Malinge JM. Cardiolipin-Based Lipopolyplex Platform for the Delivery of Diverse Nucleic Acids into Gram-Negative Bacteria. Pharmaceuticals (Basel) 2019; 12:ph12020081. [PMID: 31141930 PMCID: PMC6630428 DOI: 10.3390/ph12020081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Antibiotic resistance is a growing public health concern. Because only a few novel classes of antibiotics have been developed in the last 40 years, such as the class of oxazolidinones, new antibacterial strategies are urgently needed [1]. Nucleic acid-based antibiotics are a new type of antimicrobials. However, free nucleic acids cannot spontaneously cross the bacterial cell wall and membrane;consequently, their intracellular delivery into bacteria needs to be assisted. Here, we introduce an original lipopolyplex system named liposome polymer nucleic acid (LPN), capable of versatile nucleic acid delivery into bacteria. We characterized LPN formed with significant therapeutic nucleic acids: 11 nt antisense single-stranded (ss) DNA and double-stranded (ds) DNA of 15 and 95 base pairs (bp), 9 kbp plasmid DNA (pDNA), and 1,000 nt ssRNA. All these complexes were efficiently internalized by two different bacterial species, i.e., Escherichia coli and Pseudomonas aeruginosa, as shown by flow cytometry. Consistent with intracellular delivery, LPN prepared with an antisense oligonucleotide and directed against an essential gene, induced specific and important bacterial growth inhibition likely leading to a bactericidal effect. Our findings indicate that LPN is a versatile platform for efficient delivery of diverse nucleic acids into Gram-negative bacteria.
Collapse
Affiliation(s)
- Federico Perche
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Rue Charles Sadron Orléans CEDEX 02, France.
| | - Tony Le Gall
- Unité INSERM 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238 Brest CEDEX 3, France.
| | - Tristan Montier
- Unité INSERM 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238 Brest CEDEX 3, France.
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Rue Charles Sadron Orléans CEDEX 02, France.
| | - Jean-Marc Malinge
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Rue Charles Sadron Orléans CEDEX 02, France.
| |
Collapse
|
7
|
Daly SM, Sturge CR, Marshall-Batty KR, Felder-Scott CF, Jain R, Geller BL, Greenberg DE. Antisense Inhibitors Retain Activity in Pulmonary Models of Burkholderia Infection. ACS Infect Dis 2018; 4:806-814. [PMID: 29461800 DOI: 10.1021/acsinfecdis.7b00235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Burkholderia cepacia complex is a group of Gram-negative bacteria that are opportunistic pathogens in immunocompromised individuals, such as those with cystic fibrosis (CF) or chronic granulomatous disease (CGD). Burkholderia are intrinsically resistant to many antibiotics and the lack of antibiotic development necessitates novel therapeutics. Peptide-conjugated phosphorodiamidate morpholino oligomers are antisense molecules that inhibit bacterial mRNA translation. Targeting of PPMOs to the gene acpP, which is essential for membrane synthesis, lead to defects in the membrane and ultimately bactericidal activity. Exploration of additional PPMO sequences identified the ATG and Shine-Dalgarno sites as the most efficacious for targeting acpP. The CF lung is a complex microenvironment, but PPMO inhibition was still efficacious in an artificial model of CF sputum. PPMOs had low toxicity in human CF cells at doses that were antibacterial. PPMOs also reduced the bacterial burden in the lungs of immunocompromised CyBB mice, a model of CGD. Finally, the use of multiple PPMOs was efficacious in inhibiting the growth of both Burkholderia and Pseudomonas in an in vitro model of coinfection. Due to the intrinsic resistance of Burkholderia to traditional antibiotics, PPMOs represent a novel and viable approach to the treatment of Burkholderia infections.
Collapse
Affiliation(s)
- Seth M. Daly
- Department of Internal Medicine, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Carolyn R. Sturge
- Department of Internal Medicine, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Kimberly R. Marshall-Batty
- Department of Internal Medicine, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Christina F. Felder-Scott
- Department of Internal Medicine, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Raksha Jain
- Department of Internal Medicine, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
- Department of Microbiology, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Bruce L. Geller
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, Oregon 97331, United States
| | - David E. Greenberg
- Department of Internal Medicine, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
- Department of Microbiology, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
8
|
Alves LG, Pinheiro PF, Feliciano JR, Dâmaso DP, Leitão JH, Martins AM. Synthesis, antimicrobial activity and toxicity to nematodes of cyclam derivatives. Int J Antimicrob Agents 2017; 49:646-649. [PMID: 28315730 DOI: 10.1016/j.ijantimicag.2017.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/28/2016] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
The antimicrobial activity and toxicity to nematodes of the cyclam salt [H2{H2(4-CF3PhCH2)2Cyclam}](CH3COO)2⋅(CH3COOH)2 were evaluated. Estimated minimum inhibitory concentrations (MICs) of 9, 261 and 15 µg/mL were obtained for Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, respectively. For selected Candida spp., the estimated MICs obtained ranged from 32 µg/mL to 63 µg/mL. Bactericidal activity was demonstrated but the compound was not reliably fungicidal. Concentrations of the cyclam salt up to 32 µg/mL did not significantly affect survival of the nematode Caenorhabditis elegans; however, concentrations equal or above this value significantly affected nematode survival in a dose-dependent manner.
Collapse
Affiliation(s)
- Luis G Alves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Pedro F Pinheiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Joana R Feliciano
- iBB-Instituto de Bioengenharia e Biociências, Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Torre Sul, Piso 6, 1049-001 Lisbon, Portugal
| | - Diana P Dâmaso
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; iBB-Instituto de Bioengenharia e Biociências, Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Torre Sul, Piso 6, 1049-001 Lisbon, Portugal
| | - Jorge H Leitão
- iBB-Instituto de Bioengenharia e Biociências, Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Torre Sul, Piso 6, 1049-001 Lisbon, Portugal.
| | - Ana M Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
| |
Collapse
|
9
|
Sousa SA, Morad M, Feliciano JR, Pita T, Nady S, El-Hennamy RE, Abdel-Rahman M, Cavaco J, Pereira L, Barreto C, Leitão JH. The Burkholderia cenocepacia OmpA-like protein BCAL2958: identification, characterization, and detection of anti-BCAL2958 antibodies in serum from B. cepacia complex-infected Cystic Fibrosis patients. AMB Express 2016; 6:41. [PMID: 27325348 PMCID: PMC4916078 DOI: 10.1186/s13568-016-0212-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022] Open
Abstract
Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc.
Collapse
|
10
|
Short Palate, Lung, and Nasal Epithelial Clone 1 Has Antimicrobial and Antibiofilm Activities against the Burkholderia cepacia Complex. Antimicrob Agents Chemother 2016; 60:6003-12. [PMID: 27458217 DOI: 10.1128/aac.00975-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/17/2016] [Indexed: 02/07/2023] Open
Abstract
The opportunistic bacteria of the Burkholderia cepacia complex (Bcc) are extremely pathogenic to cystic fibrosis (CF) patients, and acquisition of Bcc bacteria is associated with a significant increase in mortality. Treatment of Bcc infections is difficult because the bacteria are multidrug resistant and able to survive in biofilms. Short palate, lung, and nasal epithelial clone 1 (SPLUNC1) is an innate defense protein that is secreted by the upper airways and pharynx. While SPLUNC1 is known to have antimicrobial functions, its effects on Bcc strains are unclear. We therefore tested the hypothesis that SPLUNC1 is able to impair Bcc growth and biofilm formation. We found that SPLUNC1 exerted bacteriostatic effects against several Bcc clinical isolates, including B. cenocepacia strain J2315 (50% inhibitory concentration [IC50] = 0.28 μM), and reduced biofilm formation and attachment (IC50 = 0.11 μM). We then determined which domains of SPLUNC1 are responsible for its antimicrobial activity. Deletions of SPLUNC1's N terminus and α6 helix did not affect its function. However, deletion of the α4 helix attenuated antimicrobial activity, while the corresponding α4 peptide displayed antimicrobial activity. Chronic neutrophilia is a hallmark of CF lung disease, and neutrophil elastase (NE) cleaves SPLUNC1. However, we found that the ability of SPLUNC1 to disrupt biofilm formation was significantly potentiated by NE pretreatment. While the impact of CF on SPLUNC1-Bcc interactions is not currently known, our data suggest that understanding this interaction may have important implications for CF lung disease.
Collapse
|
11
|
Moreira AS, Mil-Homens D, Sousa SA, Coutinho CP, Pinto-de-Oliveira A, Ramos CG, Dos Santos SC, Fialho AM, Leitão JH, Sá-Correia I. Variation of Burkholderia cenocepacia virulence potential during cystic fibrosis chronic lung infection. Virulence 2016; 8:782-796. [PMID: 27652671 DOI: 10.1080/21505594.2016.1237334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
During long-term lung infection in cystic fibrosis (CF) patients, Burkholderia cenocepacia faces multiple selective pressures in this highly stressful and fluctuating environment. As a consequence, the initial infecting strain undergoes genetic changes that result in the diversification of genotypes and phenotypes. Whether this clonal expansion influences the pathogenic potential is unclear. The virulence potential of 39 sequential B. cenocepacia (recA lineage IIIA) isolates, corresponding to 3 different clones retrieved from 3 chronically infected CF patients was compared in this study using the non-mammalian infection hosts Galleria mellonella and Caenorhabditis elegans. The isolates used in this retrospective study were picked randomly from selective agar plates as part of a CF Center routine, from the onset of infection until patients' death after 3.5 and 7.5 y or the more recent isolation date after 12.5 y of chronic infection. The infection models proved useful to assess virulence potential diversification, but for some isolates the relative values diverged in C. elegans and G. mellonella. Results also reinforce the concept of the occurrence of clonal diversification and co-existence of multiple phenotypes within the CF lungs, also with respect to pathogenicity. No clear trend of decrease (or increase) of the virulence potential throughout long-term infection was found but there is an apparent tendency for a clone/patient-dependent decrease of virulence when the G. mellonella model was used. The sole avirulent variant in both infection hosts was found to lack the small third replicon previously associated to virulence. Although possible, the in vivo loss of this nonessential megaplasmid was found to be a rare event (1 among a total of 64 isolates examined).
Collapse
Affiliation(s)
- Ana S Moreira
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Dalila Mil-Homens
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Sílvia A Sousa
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Carla P Coutinho
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Ana Pinto-de-Oliveira
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Christian G Ramos
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Sandra C Dos Santos
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Arsénio M Fialho
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Jorge H Leitão
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Isabel Sá-Correia
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
12
|
Shommu NS, Vogel HJ, Storey DG. Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance. Front Microbiol 2015. [PMID: 26217312 PMCID: PMC4499752 DOI: 10.3389/fmicb.2015.00668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a collection of closely related, genetically distinct, ecologically diverse species known to cause life-threatening infections in cystic fibrosis (CF) patients. By virtue of a flexible genomic structure and diverse metabolic activity, Bcc bacteria employ a wide array of virulence factors for pathogenesis in CF patients and have developed resistance to most of the commonly used antibiotics. However, the mechanism of pathogenesis and antibiotic resistance is still not fully understood. This mini review discusses the established and potential virulence determinants of Bcc and some of the contemporary strategies including transcriptomics and proteomics used to identify these traits. We also propose the application of metabolic profiling, a cost-effective modern-day approach to achieve new insights.
Collapse
Affiliation(s)
- Nusrat S Shommu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| | - Douglas G Storey
- Microbiology Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| |
Collapse
|
13
|
MtvR is a global small noncoding regulatory RNA in Burkholderia cenocepacia. J Bacteriol 2013; 195:3514-23. [PMID: 23729649 DOI: 10.1128/jb.00242-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia J2315 is a highly epidemic and transmissible clinical isolate of the Burkholderia cepacia complex (Bcc), a group of bacteria causing life-threatening respiratory infections among cystic fibrosis patients. This work describes the functional analysis of the 136-nucleotide (nt)-long MtvR small noncoding RNA (sRNA) from the Bcc member B. cenocepacia J2315, with homologues restricted to the genus Burkholderia. Bioinformatic target predictions revealed a total of 309 mRNAs to be putative MtvR targets. The mRNA levels corresponding to 17 of 19 selected genes were found to be affected when MtvR was either overexpressed or silenced. Analysis of the interaction between MtvR and the hfq mRNA, one of its targets, showed that the sRNA binds exclusively to the 5' untranslated region (UTR) of the hfq mRNA. This interaction resulted in decreased protein synthesis, suggesting a negative regulatory effect of MtvR on the RNA chaperone Hfq. Bacterial strains with MtvR silenced or overexpressed exhibited pleiotropic phenotypes related to growth and survival after several stresses, swimming and swarming motilities, biofilm formation, resistance to antibiotics, and ability to colonize and kill the nematode Caenorhabditis elegans. Together, the results indicate that the MtvR sRNA is a major posttranscriptional regulator in B. cenocepacia.
Collapse
|
14
|
Ramos CG, da Costa PJP, Döring G, Leitão JH. The novel cis-encoded small RNA h2cR is a negative regulator of hfq2 in Burkholderia cenocepacia. PLoS One 2012; 7:e47896. [PMID: 23082228 PMCID: PMC3474761 DOI: 10.1371/journal.pone.0047896] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/17/2012] [Indexed: 12/16/2022] Open
Abstract
Small non-coding regulatory RNAs (sRNAs) post-transcriptionally affect multiple phenotypes in prokaryotes and eukaryotes, yet most of the underlying regulatory mechanisms and the nature of the target mRNAs remain unclear. Here we report the identification and functional analysis of the novel cis-encoded sRNA h2cR, from the human opportunistic pathogen Burkholderia cenocepacia J2315. The sRNA was found to negatively regulate the hfq2 mRNA, through binding to part of the 5′-UTR region of the hfq2 mRNA, resulting in accelerated hfq2 mRNA decay and reduced protein levels in exponentially growing cells. Both the h2cR transcript and the hfq2 mRNA are stabilized by the other B. cenocepacia RNA chaperone, Hfq. Infection experiments using the nematode Caenorhabditis elegans revealed that down-regulation of Hfq2 by h2cR decreases the B. cenocepacia ability to colonize and persist within the nematode, suggesting a role for h2cR on bacterial persistence in the host.
Collapse
Affiliation(s)
- Christian G. Ramos
- Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal
| | - Paulo J. P. da Costa
- Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal
| | - Gerd Döring
- Institut für Medizinische Mikrobiologie und Hygiene, University of Tübingen, Tübingen, Germany
| | - Jorge H. Leitão
- Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
15
|
Fang K, Zhao H, Sun C, Lam CMC, Chang S, Zhang K, Panda G, Godinho M, Martins dos Santos VAP, Wang J. Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction. BMC SYSTEMS BIOLOGY 2011; 5:83. [PMID: 21609491 PMCID: PMC3123600 DOI: 10.1186/1752-0509-5-83] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/25/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Burkholderia cenocepacia is a threatening nosocomial epidemic pathogen in patients with cystic fibrosis (CF) or a compromised immune system. Its high level of antibiotic resistance is an increasing concern in treatments against its infection. Strain B. cenocepacia J2315 is the most infectious isolate from CF patients. There is a strong demand to reconstruct a genome-scale metabolic network of B. cenocepacia J2315 to systematically analyze its metabolic capabilities and its virulence traits, and to search for potential clinical therapy targets. RESULTS We reconstructed the genome-scale metabolic network of B. cenocepacia J2315. An iterative reconstruction process led to the establishment of a robust model, iKF1028, which accounts for 1,028 genes, 859 internal reactions, and 834 metabolites. The model iKF1028 captures important metabolic capabilities of B. cenocepacia J2315 with a particular focus on the biosyntheses of key metabolic virulence factors to assist in understanding the mechanism of disease infection and identifying potential drug targets. The model was tested through BIOLOG assays. Based on the model, the genome annotation of B. cenocepacia J2315 was refined and 24 genes were properly re-annotated. Gene and enzyme essentiality were analyzed to provide further insights into the genome function and architecture. A total of 45 essential enzymes were identified as potential therapeutic targets. CONCLUSIONS As the first genome-scale metabolic network of B. cenocepacia J2315, iKF1028 allows a systematic study of the metabolic properties of B. cenocepacia and its key metabolic virulence factors affecting the CF community. The model can be used as a discovery tool to design novel drugs against diseases caused by this notorious pathogen.
Collapse
Affiliation(s)
- Kechi Fang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Asghar AH, Shastri S, Dave E, Wowk I, Agnoli K, Cook AM, Thomas MS. The pobA gene of Burkholderia cenocepacia encodes a Group I Sfp-type phosphopantetheinyltransferase required for biosynthesis of the siderophores ornibactin and pyochelin. Microbiology (Reading) 2011; 157:349-361. [DOI: 10.1099/mic.0.045559-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The opportunistic pathogen Burkholderia cenocepacia produces the siderophores ornibactin and pyochelin under iron-restricted conditions. Biosynthesis of both siderophores requires the involvement of non-ribosomal peptide synthetases (NRPSs). Using a transposon containing the lacZ reporter gene, two B. cenocepacia mutants were isolated which were deficient in siderophore production. Mutant IW10 was shown to produce normal amounts of ornibactin but only trace amounts of pyochelin, whereas synthesis of both siderophores was abolished in AHA27. Growth of AHA27, but not IW10, was inhibited under iron-restricted conditions. In both mutants, the transposon had integrated into the pobA gene, which encodes a polypeptide exhibiting similarity to the Sfp-type phosphopantetheinyltransferases (PPTases). These enzymes are responsible for activation of NRPSs by the covalent attachment of the 4′-phosphopantetheine (P-pant) moiety of coenzyme A. Previously characterized PPTase genes from other bacteria were shown to efficiently complement both mutants for siderophore production when provided in trans. The B. cenocepacia pobA gene was also able to efficiently complement an Escherichia coli entD mutant for production of the siderophore enterobactin. Using mutant IW10, in which the lacZ gene carried by the transposon is inserted in the same orientation as pobA, it was shown that pobA is not appreciably iron-regulated. Finally, we confirmed that Sfp-type bacterial PPTases can be subdivided into two distinct groups, and we present the amino acid signature sequences which characterize each of these groups.
Collapse
Affiliation(s)
- Atif H. Asghar
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Sravanthi Shastri
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Emma Dave
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Irena Wowk
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Kirsty Agnoli
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anne M. Cook
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Mark S. Thomas
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
17
|
Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol 2010; 87:31-40. [PMID: 20390415 DOI: 10.1007/s00253-010-2528-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 12/31/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of 17 closely related species of the beta-proteobacteria subdivision that emerged in the 1980s as important human pathogens, especially to patients suffering from cystic fibrosis. Since then, a remarkable progress has been achieved on the taxonomy and molecular identification of these bacteria. Although some progress have been achieved on the knowledge of the pathogenesis traits and virulence factors used by these bacteria, further work envisaging the identification of potential targets for the scientifically based design of new therapeutic strategies is urgently needed, due to the very difficult eradication of these bacteria with available therapies. An overview of these aspects of Bcc pathogenesis and opportunities for the design of future therapies is presented and discussed in this work.
Collapse
|
18
|
Abstract
The Burkholderia cepacia complex (Bcc) is a group of genetically related environmental bacteria that can cause chronic opportunistic infections in patients with cystic fibrosis (CF) and other underlying diseases. These infections are difficult to treat due to the inherent resistance of the bacteria to antibiotics. Bacteria can spread between CF patients through social contact and sometimes cause cepacia syndrome, a fatal pneumonia accompanied by septicemia. Burkholderia cenocepacia has been the focus of attention because initially it was the most common Bcc species isolated from patients with CF in North America and Europe. Today, B. cenocepacia, along with Burkholderia multivorans, is the most prevalent Bcc species in patients with CF. Given the progress that has been made in our understanding of B. cenocepacia over the past decade, we thought that it was an appropriate time to review our knowledge of the pathogenesis of B. cenocepacia, paying particular attention to the characterization of virulence determinants and the new tools that have been developed to study them. A common theme emerging from these studies is that B. cenocepacia establishes chronic infections in immunocompromised patients, which depend more on determinants mediating host niche adaptation than those involved directly in host cells and tissue damage.
Collapse
Affiliation(s)
- Slade A. Loutet
- Centre for Human Immunology, Department of Microbiology and Immunology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Miguel A. Valvano
- Centre for Human Immunology, Department of Microbiology and Immunology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Burkholderia cepacia Complex: Emerging Multihost Pathogens Equipped with a Wide Range of Virulence Factors and Determinants. Int J Microbiol 2010; 2011. [PMID: 20811541 PMCID: PMC2929507 DOI: 10.1155/2011/607575] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 06/02/2010] [Indexed: 12/04/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) comprises at least 17 closely-related species of the β-proteobacteria subdivision, widely distributed in natural and man-made inhabitats. Bcc bacteria are endowed with an extraordinary metabolic diversity and emerged in the 1980s as life-threatening and difficult-to-treat pathogens among patients suffering from cystic fibrosis. More recently, these bacteria became recognized as a threat to hospitalized patients suffering from other diseases, in particular oncological patients. In the present paper, we review these and other traits of Bcc bacteria, as well as some of the strategies used to identify and validate the virulence factors and determinants used by these bacteria. The identification and characterization of these virulence factors is expected to lead to the design of novel therapeutic strategies to fight the infections caused by these emergent multidrug resistant human pathogens.
Collapse
|
20
|
Greenberg DE, Marshall-Batty KR, Brinster LR, Zarember KA, Shaw PA, Mellbye BL, Iversen PL, Holland SM, Geller BL. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex. J Infect Dis 2010; 201:1822-30. [PMID: 20438352 PMCID: PMC2872041 DOI: 10.1086/652807] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Members of the Burkholderia cepacia complex (Bcc) cause considerable morbidity and mortality in patients with chronic granulomatous disease and cystic fibrosis. Many Bcc strains are antibiotic resistant, which requires the exploration of novel antimicrobial approaches, including antisense technologies such as phosphorodiamidate morpholino oligomers (PMOs). METHODS Peptide-conjugated PMOs (PPMOs) were developed to target acpP, which encodes an acyl carrier protein (AcpP) that is thought to be essential for growth. Their antimicrobial activities were tested against different strains of Bcc in vitro and in infection models. RESULTS PPMOs targeting acpP were bactericidal against clinical isolates of Bcc (>4 log reduction), whereas a PPMO with a scrambled base sequence (scrambled PPMO) had no effect on growth. Human neutrophils were infected with Burkholderia multivorans and treated with AcpP PPMO. AcpP PPMO augmented killing, compared with neutrophils alone and compared with neutrophils alone plus scrambled PPMO. Mice with chronic granulomatous disease that were infected with B. multivorans were treated with AcpP PPMO, scrambled PPMO, or water at 0, 3, and 6 h after infection. Compared with water-treated control mice, the AcpP PPMO-treated mice showed an approximately 80% reduction in the risk of dying by day 30 of the experiment and relatively little pathology. CONCLUSION AcpP PPMO is active against Bcc infections in vitro and in vivo.
Collapse
Affiliation(s)
- David E Greenberg
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The Burkholderia cenocepacia K56-2 pleiotropic regulator Pbr, is required for stress resistance and virulence. Microb Pathog 2010; 48:168-77. [PMID: 20206249 DOI: 10.1016/j.micpath.2010.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/22/2010] [Accepted: 02/25/2010] [Indexed: 11/23/2022]
Abstract
Burkholderia cenocepacia is one of the most virulent species of the Burkholderia cepacia complex, a group of bacteria that emerged as important pathogens, especially to cystic fibrosis (CF) patients. In this study, we report the identification and characterization of a mutant strain derived form the CF isolate Burkholderia cenocepacia K56-2, carrying a plasposon insertion in a gene, located in a 3516 bp chromosomal region with an atypical G+C content, encoding a 80 amino acid putative regulatory protein named Pbr. Besides its inability to produce phenazines, the B. cenocepacia K56-2 pbr mutant exhibited a pleiotropic phenotype, including impaired survival to oxidative and osmotic stress, aromatic amino acid and prolonged nutrient starvation periods. In addition, the pbr mutant exhibited decreased virulence the nematode Caenorhabditis elegans. Altogether, our results demonstrate the involvement of Pbr on the regulation of phenazine biosynthesis, and an important role for this regulatory protein on several cellular processes related to stress resistance and virulence.
Collapse
|
22
|
Sousa SA, Ramos CG, Moreira LM, Leitão JH. The hfq gene is required for stress resistance and full virulence of Burkholderia cepacia to the nematode Caenorhabditis elegans. MICROBIOLOGY-SGM 2009; 156:896-908. [PMID: 19942656 DOI: 10.1099/mic.0.035139-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Burkholderia cepacia complex (Bcc) emerged as problematic opportunistic pathogens to cystic fibrosis (CF) patients. Although several virulence factors have been identified in Bcc, the knowledge of their relative contribution to Bcc pathogenicity remains scarce. In this work, we describe the identification and characterization of a B. cepacia IST408 mutant containing a disruption in the hfq gene. In other bacteria, Hfq is a global regulator of metabolism, acting as an RNA chaperone involved in the riboregulation of target mRNAs by small regulatory non-coding RNAs (sRNAs). The B. cepacia Hfq protein was overproduced as a histidine-tagged derivative, and we show evidence that the protein forms hexamers and binds sRNAs. When provided in trans, the B. cepacia IST408 hfq gene complemented the Escherichia coli hfq mutant strain GS081. Our results also show that the B. cepacia hfq mutant is more susceptible to stress conditions mimicking those faced by Bcc bacteria when infecting the CF host. In addition, the B. cepacia hfq mutant and two hfq mutants derived from B. dolosa and B. ambifaria clinical isolates also exhibited a reduced ability to colonize and kill the nematode Caenorhabditis elegans, used as an infection model. These data, together with the conservation of Hfq orthologues among Bcc, strongly suggest that Hfq plays a major role in the survival of Bcc under stress conditions, contributing to the success of Bcc as CF pathogens.
Collapse
Affiliation(s)
- Silvia A Sousa
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Christian G Ramos
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Leonilde M Moreira
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H Leitão
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|