1
|
Identification of Key Factors for Anoxic Survival of B. cenocepacia H111. Int J Mol Sci 2022; 23:ijms23094560. [PMID: 35562951 PMCID: PMC9104464 DOI: 10.3390/ijms23094560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen that can lead to severe infections in patients suffering from cystic fibrosis (CF) and chronic granulomatous disease. Being an obligate aerobe, B. cenocepacia is unable to grow in the absence of oxygen. In this study, we show that the CF isolate B. cenocepacia H111 can survive in the absence of oxygen. Using a transposon sequencing (Tn-seq) approach, we identified 71 fitness determinants involved in anoxic survival, including a Crp-Fnr family transcriptional regulatory gene (anr2), genes coding for the sensor kinase RoxS and its response regulator RoxR, the sigma factor for flagella biosynthesis (FliA) and subunits of a cytochrome bd oxidase (CydA, CydB and the potentially novel subunit CydP). Individual knockouts of these fitness determinants significantly reduced anoxic survival, and inactivation of both anr copies is shown to be lethal under anoxic conditions. We also show that the two-component system RoxS/RoxR and FliA are important for virulence and swarming/swimming, respectively.
Collapse
|
2
|
Sousa SA, Morad M, Feliciano JR, Pita T, Nady S, El-Hennamy RE, Abdel-Rahman M, Cavaco J, Pereira L, Barreto C, Leitão JH. The Burkholderia cenocepacia OmpA-like protein BCAL2958: identification, characterization, and detection of anti-BCAL2958 antibodies in serum from B. cepacia complex-infected Cystic Fibrosis patients. AMB Express 2016; 6:41. [PMID: 27325348 PMCID: PMC4916078 DOI: 10.1186/s13568-016-0212-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022] Open
Abstract
Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc.
Collapse
|
3
|
Shommu NS, Vogel HJ, Storey DG. Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance. Front Microbiol 2015. [PMID: 26217312 PMCID: PMC4499752 DOI: 10.3389/fmicb.2015.00668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a collection of closely related, genetically distinct, ecologically diverse species known to cause life-threatening infections in cystic fibrosis (CF) patients. By virtue of a flexible genomic structure and diverse metabolic activity, Bcc bacteria employ a wide array of virulence factors for pathogenesis in CF patients and have developed resistance to most of the commonly used antibiotics. However, the mechanism of pathogenesis and antibiotic resistance is still not fully understood. This mini review discusses the established and potential virulence determinants of Bcc and some of the contemporary strategies including transcriptomics and proteomics used to identify these traits. We also propose the application of metabolic profiling, a cost-effective modern-day approach to achieve new insights.
Collapse
Affiliation(s)
- Nusrat S Shommu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| | - Douglas G Storey
- Microbiology Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| |
Collapse
|
4
|
Ramos CG, da Costa PJP, Döring G, Leitão JH. The novel cis-encoded small RNA h2cR is a negative regulator of hfq2 in Burkholderia cenocepacia. PLoS One 2012; 7:e47896. [PMID: 23082228 PMCID: PMC3474761 DOI: 10.1371/journal.pone.0047896] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/17/2012] [Indexed: 12/16/2022] Open
Abstract
Small non-coding regulatory RNAs (sRNAs) post-transcriptionally affect multiple phenotypes in prokaryotes and eukaryotes, yet most of the underlying regulatory mechanisms and the nature of the target mRNAs remain unclear. Here we report the identification and functional analysis of the novel cis-encoded sRNA h2cR, from the human opportunistic pathogen Burkholderia cenocepacia J2315. The sRNA was found to negatively regulate the hfq2 mRNA, through binding to part of the 5′-UTR region of the hfq2 mRNA, resulting in accelerated hfq2 mRNA decay and reduced protein levels in exponentially growing cells. Both the h2cR transcript and the hfq2 mRNA are stabilized by the other B. cenocepacia RNA chaperone, Hfq. Infection experiments using the nematode Caenorhabditis elegans revealed that down-regulation of Hfq2 by h2cR decreases the B. cenocepacia ability to colonize and persist within the nematode, suggesting a role for h2cR on bacterial persistence in the host.
Collapse
Affiliation(s)
- Christian G. Ramos
- Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal
| | - Paulo J. P. da Costa
- Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal
| | - Gerd Döring
- Institut für Medizinische Mikrobiologie und Hygiene, University of Tübingen, Tübingen, Germany
| | - Jorge H. Leitão
- Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
5
|
León-Martínez DG, Vielle-Calzada JP, Olalde-Portugal V. Expression of phenazine biosynthetic genes during the arbuscular mycorrhizal symbiosis of Glomus intraradices. Braz J Microbiol 2012; 43:716-38. [PMID: 24031884 PMCID: PMC3768803 DOI: 10.1590/s1517-83822012000200037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/15/2011] [Accepted: 06/07/2012] [Indexed: 12/01/2022] Open
Abstract
To explore the molecular mechanisms that prevail during the establishment of the arbuscular mycorrhiza symbiosis involving the genus Glomus, we transcriptionally analysed spores of Glomus intraradices BE3 during early hyphal growth. Among 458 transcripts initially identified as being expressed at presymbiotic stages, 20% of sequences had homology to previously characterized eukaryotic genes, 30% were homologous to fungal coding sequences, and 9% showed homology to previously characterized bacterial genes. Among them, GintPbr1a encodes a homolog to Phenazine Biosynthesis Regulator (Pbr) of Burkholderia cenocepacia, an pleiotropic regulatory protein that activates phenazine production through transcriptional activation of the protein D isochorismatase biosynthetic enzyme phzD (Ramos et al., 2010). Whereas GintPbr1a is expressed during the presymbiotic phase, the G. intraradices BE3 homolog of phzD (BGintphzD) is transcriptionally active at the time of the establishment of the arbuscular mycorrhizal symbiosis. DNA from isolated bacterial cultures found in spores of G. intraradices BE3 confirmed that both BGintPbr1a and BGintphzD are present in the genome of its potential endosymbionts. Taken together, our results indicate that spores of G. intraradices BE3 express bacterial phenazine biosynthetic genes at the onset of the fungal-plant symbiotic interaction.
Collapse
Affiliation(s)
- Dionicia Gloria León-Martínez
- Laboratorio de Bioquímica Ecológica. Centro de Investigación y Estudios Avanzados del IPN. CP 36821, Irapuato Guanajuato, México
- Grupo de Desarrollo Reproductivo y Apomixis. Departamento de Ingeniería Genética de Plantas y Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y Estudios Avanzados, CP 36821, Irapuato Guanajuato, México
| | - Jean-Philippe Vielle-Calzada
- Grupo de Desarrollo Reproductivo y Apomixis. Departamento de Ingeniería Genética de Plantas y Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y Estudios Avanzados, CP 36821, Irapuato Guanajuato, México
| | - Víctor Olalde-Portugal
- Laboratorio de Bioquímica Ecológica. Centro de Investigación y Estudios Avanzados del IPN. CP 36821, Irapuato Guanajuato, México
| |
Collapse
|
6
|
Coutinho CP, dos Santos SC, Madeira A, Mira NP, Moreira AS, Sá-Correia I. Long-term colonization of the cystic fibrosis lung by Burkholderia cepacia complex bacteria: epidemiology, clonal variation, and genome-wide expression alterations. Front Cell Infect Microbiol 2011; 1:12. [PMID: 22919578 PMCID: PMC3417363 DOI: 10.3389/fcimb.2011.00012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/15/2011] [Indexed: 01/06/2023] Open
Abstract
Long-term respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) patients generally lead to a more rapid decline in lung function and, in some cases, to a fatal necrotizing pneumonia known as the "cepacia syndrome." Bcc bacteria are ubiquitous in the environment and are recognized as serious opportunistic pathogens that are virtually impossible to eradicate from the CF lung, posing a serious clinical threat. The epidemiological survey of Bcc bacteria involved in respiratory infections at the major Portuguese CF Treatment Center at Santa Maria Hospital, in Lisbon, has been carried out by our research group for the past 16 years, covering over 500 clinical isolates where B. cepacia and B. cenocepacia are the predominant species, with B. stabilis, B. contaminans, B. dolosa, and B. multivorans also represented. The systematic and longitudinal study of this CF population during such an extended period of time represents a unique case-study, comprehending 41 Bcc-infected patients (29 pediatric and 12 adult) of whom around 70% have been persistently colonized between 7 months and 9 years. During chronic infection, the CF airways represent an evolving ecosystem, with multiple phenotypic variants emerging from the clonal population and becoming established in the patients' airways as the result of genetic adaptation. Understanding the evolutionary mechanisms involved is crucial for an improved therapeutic outcome of chronic infections in CF. This review focuses on our contribution to the understanding of these adaptive mechanisms based on extensive phenotypic, genotypic, and genome-wide expression approaches of selected Bcc clonal variants obtained during long-term colonization of the CF airways.
Collapse
Affiliation(s)
- Carla P. Coutinho
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Sandra C. dos Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Andreia Madeira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Nuno P. Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Ana S. Moreira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| |
Collapse
|
7
|
Behrends V, Bundy JG, Williams HD. Differences in strategies to combat osmotic stress in Burkholderia cenocepacia elucidated by NMR-based metabolic profiling. Lett Appl Microbiol 2011; 52:619-25. [PMID: 21446999 DOI: 10.1111/j.1472-765x.2011.03050.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To investigate mechanisms of osmotic tolerance in Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc) of closely related strains, which is of clinical as well as environmental importance. METHODS AND RESULTS We employed NMR-based metabolic profiling (metabolomics) to elucidate the metabolic consequences of high osmotic stress for five isolates of B. cenocepacia. The strains differed significantly in their levels of osmotic stress tolerance, and we identified three different sets of metabolic responses with the strains least impacted by osmotic stress exhibiting higher levels of the osmo-protective metabolites glycine-betaine and/or trehalose. Strains either increased concentrations or had constitutively high levels of these metabolites. CONCLUSIONS Even within the small set of B. cenocepacia isolates, there was a surprising degree of variability in the metabolic responses to osmotic stress. SIGNIFICANCE AND IMPACT OF THE STUDY The metabolic responses, and hence osmotic stress tolerance, vary between different B. cenocepacia isolates. This study provides a first look into the potentially highly diverse physiology of closely related strains of one species of the Bcc and illustrates that physiological or clinically relevant phenotypes are unlikely to be inferable from genetic relatedness within this species group.
Collapse
Affiliation(s)
- V Behrends
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | | | | |
Collapse
|
8
|
The second RNA chaperone, Hfq2, is also required for survival under stress and full virulence of Burkholderia cenocepacia J2315. J Bacteriol 2011; 193:1515-26. [PMID: 21278292 DOI: 10.1128/jb.01375-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Burkholderia cenocepacia J2315 is a highly virulent and epidemic clinical isolate of the B. cepacia complex (Bcc), a group of bacteria that have emerged as important pathogens to cystic fibrosis patients. This bacterium, together with all Bcc strains and a few other prokaryotes, is unusual for encoding in its genome two distinct and functional Hfq-like proteins. In this work, we show results indicating that the 188-amino-acid Hfq2 protein is required for the full virulence and stress resistance of B. cenocepacia J2315, despite the presence on its genome of the functional 79-amino-acid Hfq protein encoded by the hfq gene. Similar to other Hfq proteins, Hfq2 is able to bind RNA. However, Hfq2 is unique in its ability to apparently form trimers in vitro. Maximal transcription of hfq was observed in B. cenocepacia J2315 cells in the early exponential phase of growth. In contrast, hfq2 transcription reached maximal levels in cells in the stationary phase, depending on the CepR quorum-sensing regulator. These results suggest that tight regulation of the expression of these two RNA chaperones is required to maximize the fitness and virulence of this bacterium. In addition, the ability of Hfq2 to bind DNA, not observed for Hfq, suggests that Hfq2 might play additional roles besides acting as an RNA chaperone.
Collapse
|
9
|
Abstract
The Burkholderia cepacia complex (Bcc) is a group of genetically related environmental bacteria that can cause chronic opportunistic infections in patients with cystic fibrosis (CF) and other underlying diseases. These infections are difficult to treat due to the inherent resistance of the bacteria to antibiotics. Bacteria can spread between CF patients through social contact and sometimes cause cepacia syndrome, a fatal pneumonia accompanied by septicemia. Burkholderia cenocepacia has been the focus of attention because initially it was the most common Bcc species isolated from patients with CF in North America and Europe. Today, B. cenocepacia, along with Burkholderia multivorans, is the most prevalent Bcc species in patients with CF. Given the progress that has been made in our understanding of B. cenocepacia over the past decade, we thought that it was an appropriate time to review our knowledge of the pathogenesis of B. cenocepacia, paying particular attention to the characterization of virulence determinants and the new tools that have been developed to study them. A common theme emerging from these studies is that B. cenocepacia establishes chronic infections in immunocompromised patients, which depend more on determinants mediating host niche adaptation than those involved directly in host cells and tissue damage.
Collapse
Affiliation(s)
- Slade A. Loutet
- Centre for Human Immunology, Department of Microbiology and Immunology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Miguel A. Valvano
- Centre for Human Immunology, Department of Microbiology and Immunology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Burkholderia cepacia Complex: Emerging Multihost Pathogens Equipped with a Wide Range of Virulence Factors and Determinants. Int J Microbiol 2010; 2011. [PMID: 20811541 PMCID: PMC2929507 DOI: 10.1155/2011/607575] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 06/02/2010] [Indexed: 12/04/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) comprises at least 17 closely-related species of the β-proteobacteria subdivision, widely distributed in natural and man-made inhabitats. Bcc bacteria are endowed with an extraordinary metabolic diversity and emerged in the 1980s as life-threatening and difficult-to-treat pathogens among patients suffering from cystic fibrosis. More recently, these bacteria became recognized as a threat to hospitalized patients suffering from other diseases, in particular oncological patients. In the present paper, we review these and other traits of Bcc bacteria, as well as some of the strategies used to identify and validate the virulence factors and determinants used by these bacteria. The identification and characterization of these virulence factors is expected to lead to the design of novel therapeutic strategies to fight the infections caused by these emergent multidrug resistant human pathogens.
Collapse
|