1
|
Al-Obaidi MMJ, Al Siyabi MSK, Muthanna A, Mohd Desa MN. Understanding the mechanisms of Streptococcus pneumoniae in penetrating the blood-brain barrier: insights into bacterial binding with central nervous system host receptors. Tissue Barriers 2024:2434764. [PMID: 39629682 DOI: 10.1080/21688370.2024.2434764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
This review investigates the pathogenic processes through which Streptococcus pneumoniae crosses the blood-brain barrier (BBB) to cause meningitis, with a focus on the interaction with host receptors in the central nervous system (CNS). S. pneumoniae a primary cause of bacterial meningitis, utilizes unique receptor-mediated pathways to infiltrate the BBB. The bacterial interaction with the platelet-activating factor receptor (PAFR) and the polymeric immunoglobulin receptor (pIgR) is looked at in this study. The goal is to understand how this interaction helps the bacterium move across the BBB and cause infection in the CNS. We examine the functions of cellular and molecular participants at the endothelium level, such as cytokines, chemokines, and matrix metalloproteinases (MMP), which have a role in the development of the disease. This study consolidates data from multiple studies, providing a thorough summary of the interactions between S. pneumoniae and the BBB. It also explores potential treatment targets that could reduce the significant illness and death rates associated with pneumococcal meningitis.
Collapse
Affiliation(s)
- Mazen M Jamil Al-Obaidi
- University of Technology and Applied Sciences, Rustaq, College of Education, Science Department, Sultanate of Oman
| | - Muzna Saif Khalfan Al Siyabi
- University of Technology and Applied Sciences, College of applied sciences and pharmacy, Department of applied sciences, Biology section, Muscat, Sultanate of Oman
| | - AbdulRahman Muthanna
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
2
|
Takeda S, Kono M, Sugita G, Arai J, Briles DE, Hotomi M. Pneumococcal capsular phase shift is associated with invasion into cell-to-cell junctions and is inhibited by macrolides. Microb Pathog 2021; 153:104787. [PMID: 33609643 DOI: 10.1016/j.micpath.2021.104787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
Streptococcus pneumoniae frequently colonizes the human nasopharynx beginning in the early childhood. Pneumococci exhibit a spontaneous and reversible phase shift between opaque and transparent allowing them to adapt to different environments. This is the first report of the dynamics of pneumococcal phase shift during the course of adhesion and subsequent invasion into epithelial cell monolayers by bacteria-cell co-culture assay with a time-lapse microscopy. The invasion of an inoculum between the human epithelial cells was dependent on the transparent phenotype, but successful replication of the cells within the cell layer was strongly associated with its transformation into an opaque-like variant. We also observed that sub-MIC levels of clarithromycin inhibited the spontaneous pneumococcal phase shift. Our results show that the pneumococcus can modulate its fitness in part because it can switch phenotype in response to the environment during not only inflammation but also during the establishment of colonization. Our current findings provide a more in depth understanding not only of how the pneumococcal phase shift acts to protect pneumococci from commensal flora and the immune status of the host, but also illustrate a novel strategy for antimicrobial treatments to interfere with pneumococcal colonization.
Collapse
Affiliation(s)
- Saori Takeda
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Gen Sugita
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Jun Arai
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Alabama, USA
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
3
|
Le Guennec L, Coureuil M, Nassif X, Bourdoulous S. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol 2019; 22:e13132. [PMID: 31658405 DOI: 10.1111/cmi.13132] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
The skull, spine, meninges, and cellular barriers at the blood-brain and the blood-cerebrospinal fluid interfaces well protect the brain and meningeal spaces against microbial invasion. However, once in the bloodstream, a range of pathogenic bacteria is able to reach the brain and cause meningitis. Despite advances in antibacterial therapy, bacterial meningitis remains one of the most important infectious diseases worldwide. The most common causative bacteria in children and adults are Streptococcus pneumoniae and Neisseria meningitidis associated with high morbidity and mortality, while among neonates, most cases of bacterial meningitis are due to group B Streptococcus and Escherichia coli. Here we summarise our current knowledge on the strategies used by these bacterial pathogens to survive in the bloodstream, to colonise the brain vasculature and to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Loic Le Guennec
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | - Xavier Nassif
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
4
|
Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20215393. [PMID: 31671896 PMCID: PMC6862235 DOI: 10.3390/ijms20215393] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Infections of the central nervous system (CNS) are still a major cause of morbidity and mortality worldwide. Traversal of the barriers protecting the brain by pathogens is a prerequisite for the development of meningitis. Bacteria have developed a variety of different strategies to cross these barriers and reach the CNS. To this end, they use a variety of different virulence factors that enable them to attach to and traverse these barriers. These virulence factors mediate adhesion to and invasion into host cells, intracellular survival, induction of host cell signaling and inflammatory response, and affect barrier function. While some of these mechanisms differ, others are shared by multiple pathogens. Further understanding of these processes, with special emphasis on the difference between the blood-brain barrier and the blood-cerebrospinal fluid barrier, as well as virulence factors used by the pathogens, is still needed.
Collapse
|
5
|
Parrish JM, Soni M, Mittal R. Subversion of host immune responses by otopathogens during otitis media. J Leukoc Biol 2019; 106:943-956. [PMID: 31075181 PMCID: PMC7166519 DOI: 10.1002/jlb.4ru0119-003r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/11/2019] [Accepted: 04/05/2019] [Indexed: 12/26/2022] Open
Abstract
Otitis media (OM) is one of the most common ear diseases affecting humans. Children are at greater risk and suffer most frequently from OM, which can cause serious deterioration in the quality of life. OM is generally classified into two main types: acute and chronic OM (AOM and COM). AOM is characterized by tympanic membrane swelling or otorrhea and is accompanied by signs or symptoms of ear infection. In COM, there is a tympanic membrane perforation and purulent discharge. The most common pathogens that cause AOM are Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis whereas Pseudomonas aeruginosa and Staphylococcus aureus are commonly associated with COM. Innate and adaptive immune responses provide protection against OM. However, pathogens employ a wide arsenal of weapons to evade potent immune responses and these mechanisms likely contribute to AOM and COM. Immunologic evasion is multifactorial, and involves damage to host mucociliary tract, genetic polymorphisms within otopathogens, the number and variety of different otopathogens in the nasopharynx as well as the interaction between the host's innate and adaptive immune responses. Otopathogens utilize host mucin production, phase variation, biofilm production, glycans, as well as neutrophil and eosinophilic extracellular traps to induce OM. The objective of this review article is to discuss our current understanding about the mechanisms through which otopathogens escape host immunity to induce OM. A better knowledge about the molecular mechanisms leading to subversion of host immune responses will provide novel clues to develop effective treatment modalities for OM.
Collapse
Affiliation(s)
- James M Parrish
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Manasi Soni
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Blood‒Brain Barrier Pathology and CNS Outcomes in Streptococcus pneumoniae Meningitis. Int J Mol Sci 2018; 19:ijms19113555. [PMID: 30423890 PMCID: PMC6275034 DOI: 10.3390/ijms19113555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major meningitis-causing pathogen globally, bringing about significant morbidity and mortality, as well as long-term neurological sequelae in almost half of the survivors. Subsequent to nasopharyngeal colonisation and systemic invasion, translocation across the blood‒brain barrier (BBB) by S. pneumoniae is a crucial early step in the pathogenesis of meningitis. The BBB, which normally protects the central nervous system (CNS) from deleterious molecules within the circulation, becomes dysfunctional in S. pneumoniae invasion due to the effects of pneumococcal toxins and a heightened host inflammatory environment of cytokines, chemokines and reactive oxygen species intracranially. The bacteria‒host interplay within the CNS likely determines not only the degree of BBB pathological changes, but also host survival and the extent of neurological damage. This review explores the relationship between S. pneumoniae bacteria and the host inflammatory response, with an emphasis on the BBB and its roles in CNS protection, as well as both the acute and long-term pathogenesis of meningitis.
Collapse
|
7
|
Miao X, He J, Zhang L, Zhao X, Ge R, He QY, Sun X. A Novel Iron Transporter SPD_1590 in Streptococcus pneumoniae Contributing to Bacterial Virulence Properties. Front Microbiol 2018; 9:1624. [PMID: 30079056 PMCID: PMC6062600 DOI: 10.3389/fmicb.2018.01624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/28/2018] [Indexed: 12/27/2022] Open
Abstract
Streptococcus pneumoniae, a Gram-positive human pathogen, has evolved three main transporters for iron acquisition from the host: PiaABC, PiuABC, and PitABC. Our previous study had shown that the mRNA and protein levels of SPD_1590 are significantly upregulated in the ΔpiuA/ΔpiaA/ΔpitA triple mutant, suggesting that SPD_1590 might be a novel iron transporter in S. pneumoniae. In the present study, using spd1590-knockout, -complemented, and -overexpressing strains and the purified SPD_1590 protein, we show that SPD_1590 can bind hemin, probably supplementing the function of PiuABC, to provide the iron necessary for the bacterium. Furthermore, the results of iTRAQ quantitative proteomics and cell-infection studies demonstrate that, similarly to other metal-ion uptake proteins, SPD_1590 is important for bacterial virulence properties. Overall, these results provide a better understanding of the biology of this clinically important bacterium.
Collapse
Affiliation(s)
- Xinyu Miao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiaojiao He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xinlu Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Binsker U, Kohler TP, Krauel K, Kohler S, Habermeyer J, Schwertz H, Hammerschmidt S. Serotype 3 pneumococci sequester platelet-derived human thrombospondin-1 via the adhesin and immune evasion protein Hic. J Biol Chem 2017; 292:5770-5783. [PMID: 28209711 DOI: 10.1074/jbc.m116.760504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae serotype 3 strains emerge frequently within clinical isolates of invasive diseases. Bacterial invasion into deeper tissues is associated with colonization and immune evasion mechanisms. Thus, pneumococci express a versatile repertoire of surface proteins sequestering and interacting specifically with components of the human extracellular matrix and serum. Hic, a PspC-like pneumococcal surface protein, possesses vitronectin and factor H binding activity. Here, we show that heterologously expressed Hic domains interact, similar to the classical PspC molecule, with human matricellular thrombospondin-1 (hTSP-1). Binding studies with isolated human thrombospondin-1 and various Hic domains suggest that the interaction between hTSP-1 and Hic differs from binding to vitronectin and factor H. Binding of Hic to hTSP-1 is inhibited by heparin and chondroitin sulfate A, indicating binding to the N-terminal globular domain or type I repeats of hTSP-1. Competitive inhibition experiments with other pneumococcal hTSP-1 adhesins demonstrated that PspC and PspC-like Hic recognize similar domains, whereas PavB and Hic can bind simultaneously to hTSP-1. In conclusion, Hic binds specifically hTSP-1; however, truncation in the N-terminal part of Hic decreases the binding activity, suggesting that the full length of the α-helical regions of Hic is required for an optimal interaction.
Collapse
Affiliation(s)
- Ulrike Binsker
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| | - Thomas P Kohler
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| | - Krystin Krauel
- the Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, D-17489 Greifswald, Germany
| | - Sylvia Kohler
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| | - Johanna Habermeyer
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| | - Hansjörg Schwertz
- the Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, D-17489 Greifswald, Germany
| | - Sven Hammerschmidt
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| |
Collapse
|
9
|
CpsR, a GntR family regulator, transcriptionally regulates capsular polysaccharide biosynthesis and governs bacterial virulence in Streptococcus pneumoniae. Sci Rep 2016; 6:29255. [PMID: 27386955 PMCID: PMC4937376 DOI: 10.1038/srep29255] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulation of capsule expression is critical for pneumococcal transition from carriage to infection, yet the underlying mechanism remains incompletely understood. Here, we describe the regulation of capsular polysaccharide, one of the most important pneumococcal virulence factor by a GntR family regulator, CpsR. Electrophoretic mobility-shift assays have shown the direct interaction between CpsR and the cps promoter (cpsp), and their interaction could be competitively interfered by glucose. DNase I footprinting assays localized the binding site to a region −146 to −114 base pairs relative to the transcriptional start site of the cps locus in S. pneumoniae D39. We found that CpsR negatively controlled the transcription of the cps locus and hence CPS production, which was confirmed by fine-tuning expression of CpsR in a ΔcpsR complemented strain. Increased expression of CpsR in complemented strain led to a decreased resistance to the whole-blood-mediated killing, suggesting a protective role for CpsR-cpsp interaction in the establishment of invasive infection. Finally, animal experiments showed that CpsR-cpsp interaction was necessary for both pneumococcal colonization and invasive infection. Taken together, our results provide a thorough insight into the regulation of capsule production mediated by CpsR and its important roles in pneumococcal pathogenesis.
Collapse
|
10
|
Schaffner TO, Hinds J, Gould KA, Wüthrich D, Bruggmann R, Küffer M, Mühlemann K, Hilty M, Hathaway LJ. A point mutation in cpsE renders Streptococcus pneumoniae nonencapsulated and enhances its growth, adherence and competence. BMC Microbiol 2014; 14:210. [PMID: 25163487 PMCID: PMC4243769 DOI: 10.1186/s12866-014-0210-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The polysaccharide capsule is a major virulence factor of the important human pathogen Streptococcus pneumoniae. However, S. pneumoniae strains lacking capsule do occur. RESULTS Here, we report a nasopharyngeal isolate of Streptococcus pneumoniae composed of a mixture of two phenotypes; one encapsulated (serotype 18C) and the other nonencapsulated, determined by serotyping, electron microscopy and fluorescence isothiocyanate dextran exclusion assay.By whole genome sequencing, we demonstrated that the phenotypes differ by a single nucleotide base pair in capsular gene cpsE (C to G change at gene position 1135) predicted to result in amino acid change from arginine to glycine at position 379, located in the cytoplasmic, enzymatically active, region of this transmembrane protein. This SNP is responsible for loss of capsule production as the phenotype is transferred with the capsule operon. The nonencapsulated variant is superior in growth in vitro and is also 117-fold more adherent to and more invasive into Detroit 562 human epithelial cells than the encapsulated variant.Expression of six competence pathway genes and one competence-associated gene was 11 to 34-fold higher in the nonencapsulated variant than the encapsulated and transformation frequency was 3.7-fold greater. CONCLUSIONS We identified a new single point mutation in capsule gene cpsE of a clinical S. pneumoniae serotype 18C isolate sufficient to cause loss of capsule expression resulting in the co-existence of the encapsulated and nonencapsulated phenotype. The mutation caused phenotypic changes in growth, adherence to epithelial cells and transformability. Mutation in capsule gene cpsE may be a way for S. pneumoniae to lose its capsule and increase its colonization potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Bern, CH-3010, Switzerland.
| |
Collapse
|
11
|
Burghout P, Quintero B, Bos L, Beilharz K, Veening JW, de Jonge MI, van der Linden M, van der Ende A, Hermans PWM. A single amino acid substitution in the MurF UDP-MurNAc-pentapeptide synthetase renders Streptococcus pneumoniae dependent on CO2 and temperature. Mol Microbiol 2013; 89:494-506. [PMID: 23750975 DOI: 10.1111/mmi.12292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2013] [Indexed: 11/30/2022]
Abstract
The respiratory tract pathogen Streptococcus pneumoniae encounters different levels of environmental CO2 during transmission, host colonization and disease. About 8% of all pneumococcal isolates are capnophiles that require CO2 -enriched growth conditions. The underlying molecular mechanism for caphnophilic behaviour, as well as its biological function is unknown. Here, we found that capnophilic S. pneumoniae isolates from clonal complex (CC) 156 (i.e. Spain(9V) -3 ancestry) and CC344 (i.e. Norway(NT) -42 ancestry) have a valine at position 179 in the MurF UDP-MurNAc-pentapeptide synthetase. At ≤ 30°C, the growth characteristics of capnophilic and non-capnophilic CC156 strains were equal, but at > 30°C growth and survival of MurF(V) (179) strains was dependent on > 0.1% CO2 -enriched conditions. Expression of MurF(V) (179) in S. pneumoniae R6 and G54 rendered these, otherwise non-capnophilic strains, capnophilic. Time-lapse microscopy revealed that a capnophilic CC156 strain undergoes rapid autolysis upon exposure to CO2 -poor conditions at 37°C, and staining with fluorescently labelled vancomycin showed a defect in de novo cell wall synthesis. In summary, in capnophilic S. pneumoniae strains from CC156 and CC344 cell wall synthesis is placed under control of environmental CO2 levels and temperature. This mechanism might represent a novel strategy of the pneumococcus to rapidly adapt and colonize its host under changing environmental conditions.
Collapse
Affiliation(s)
- Peter Burghout
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Unified theory of bacterial sialometabolism: how and why bacteria metabolize host sialic acids. ISRN MICROBIOLOGY 2013; 2013:816713. [PMID: 23724337 PMCID: PMC3658417 DOI: 10.1155/2013/816713] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022]
Abstract
Sialic acids are structurally diverse nine-carbon ketosugars found mostly in humans and other animals as the terminal units on carbohydrate chains linked to proteins or lipids. The sialic acids function in cell-cell and cell-molecule interactions necessary for organismic development and homeostasis. They not only pose a barrier to microorganisms inhabiting or invading an animal mucosal surface, but also present a source of potential carbon, nitrogen, and cell wall metabolites necessary for bacterial colonization, persistence, growth, and, occasionally, disease. The explosion of microbial genomic sequencing projects reveals remarkable diversity in bacterial sialic acid metabolic potential. How bacteria exploit host sialic acids includes a surprisingly complex array of metabolic and regulatory capabilities that is just now entering a mature research stage. This paper attempts to describe the variety of bacterial sialometabolic systems by focusing on recent advances at the molecular and host-microbe-interaction levels. The hope is that this focus will provide a framework for further research that holds promise for better understanding of the metabolic interplay between bacterial growth and the host environment. An ability to modify or block this interplay has already yielded important new insights into potentially new therapeutic approaches for modifying or blocking bacterial colonization or infection.
Collapse
|
13
|
Sanchez CJ, Kumar N, Lizcano A, Shivshankar P, Dunning Hotopp JC, Jorgensen JH, Tettelin H, Orihuela CJ. Streptococcus pneumoniae in biofilms are unable to cause invasive disease due to altered virulence determinant production. PLoS One 2011; 6:e28738. [PMID: 22174882 PMCID: PMC3234282 DOI: 10.1371/journal.pone.0028738] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/14/2011] [Indexed: 11/19/2022] Open
Abstract
It is unclear whether Streptococcus pneumoniae in biofilms are virulent and contribute to development of invasive pneumococcal disease (IPD). Using electron microscopy we confirmed the development of mature pneumococcal biofilms in a continuous-flow-through line model and determined that biofilm formation occurred in discrete stages with mature biofilms composed primarily of dead pneumococci. Challenge of mice with equal colony forming units of biofilm and planktonic pneumococci determined that biofilm bacteria were highly attenuated for invasive disease but not nasopharyngeal colonization. Biofilm pneumococci of numerous serotypes were hyper-adhesive and bound to A549 type II pneumocytes and Detroit 562 pharyngeal epithelial cells at levels 2 to 11-fold greater than planktonic counterparts. Using genomic microarrays we examined the pneumococcal transcriptome and determined that during biofilm formation S. pneumoniae down-regulated genes involved in protein synthesis, energy production, metabolism, capsular polysaccharide (CPS) production, and virulence. We confirmed these changes by measuring CPS by ELISA and immunoblotting for the toxin pneumolysin and the bacterial adhesins phosphorylcholine (ChoP), choline-binding protein A (CbpA), and Pneumococcal serine-rich repeat protein (PsrP). We conclude that biofilm pneumococci were avirulent due to reduced CPS and pneumolysin production along with increased ChoP, which is known to bind C-reactive protein and is opsonizing. Likewise, biofilm pneumococci were hyper-adhesive due to selection for the transparent phase variant, reduced CPS, and enhanced production of PsrP, CbpA, and ChoP. These studies suggest that biofilms do not directly contribute to development of IPD and may instead confer a quiescent mode of growth during colonization.
Collapse
Affiliation(s)
- Carlos J. Sanchez
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nikhil Kumar
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anel Lizcano
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Pooja Shivshankar
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Julie C. Dunning Hotopp
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James H. Jorgensen
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Carlos J. Orihuela
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|