1
|
Weawsawang W, Homsombat T, Nuanmanee S, Saleetid N, Thawonsuwan J, Pumchan A, Hirono I, Kondo H, Unajak S. Characterization of Photobacterium damselae subsp. damselae isolated from diseased Asian seabass (Lates calcarifer) and the preliminary development of a formalin-killed cell vaccine. JOURNAL OF FISH DISEASES 2024; 47:e13987. [PMID: 39072799 DOI: 10.1111/jfd.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024]
Abstract
Asian seabass (Lates calcarifer) is an economically important fish species that is widely cultivated in Thailand. However, aquaculture of Asian seabass is limited by infectious diseases. One of the most serious diseases is photobacteriosis, caused by Photobacterium damselae. Vaccination is recognized as an efficient disease prevention and pathogen control method for strengthening the aquaculture industry. To promote vaccine development, the characterization of pathogenic bacteria and their pathogenesis is required. In this study, isolates of P. damselae were obtained from commercial aquaculture farms in Thailand during 2019-2021. Analyses of 16S rRNA and the urease subunit alpha genes identified the isolates as P. damselae subsp. damselae (Phdd). Antibiotic susceptibility analyses showed that all Phdd isolates were resistant to amoxicillin (10 μg). Haemolysis and phospholipase activities were used to categorize P. damselae into three groups based on their biological activities. The pathogenicity of four candidates (SK136, PD001, PD002 and T11L) was tested in Asian seabass. Isolate SK136 showed the highest virulence, with a lethal dose (LD50) of 1.47 × 105 CFU/fish, whereas isolate PD001 did not show any virulence. Genotypic characterization, based on multi-locus sequence typing analysis, demonstrated that all candidates were novel strains with new sequence types (64, 65, 66 and 67). Preliminary vaccination using formalin-killed cells (FKCs) protected Asian seabass from artificial challenges. Taken together, these results provide fundamental knowledge for vaccine development against Phdd infection in Asian seabass.
Collapse
Affiliation(s)
- Warisara Weawsawang
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Kasetsart Vaccines and Biologics Innovation Centre, Bangkok, Thailand
| | - Theeyathart Homsombat
- Coastal Aquaculture Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Saransiri Nuanmanee
- Coastal Aquaculture Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Nattakan Saleetid
- Coastal Aquaculture Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Jumroensri Thawonsuwan
- Coastal Aquaculture Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Ansaya Pumchan
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Kasetsart Vaccines and Biologics Innovation Centre, Bangkok, Thailand
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Minato-ku, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Minato-ku, Japan
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Kasetsart Vaccines and Biologics Innovation Centre, Bangkok, Thailand
| |
Collapse
|
2
|
SpPdp11 Administration in Diet Modified the Transcriptomic Response and Its Microbiota Associated in Mechanically Induced Wound Sparus aurata Skin. Animals (Basel) 2023; 13:ani13020193. [PMID: 36670734 PMCID: PMC9854838 DOI: 10.3390/ani13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Skin lesions are a frequent fact associated with intensive conditions affecting farmed fish. Knowing that the use of probiotics can improve fish skin health, SpPdp11 dietary administration has demonstrated beneficial effects for farmed fish, so its potential on the skin needs to be studied more deeply. The wounded specimens that received the diet with SpPdp11 showed a decrease in the abundance of Enterobacteriaceae, Photobacterium and Achromobacter related to bacterial biofilm formation, as well as the overexpression of genes involved in signaling mechanisms (itpr3), cell migration and differentiation (panxa, ttbk1a, smpd3, vamp5); and repression of genes related to cell proliferation (vstm4a, areg), consistent with a more efficient skin healing processes than that observed in the wounded control group. In addition, among the groups of damaged skin with different diets, Achromobacter, f_Ruminococcaceae, p_Bacteroidetes, Fluviicola and Flavobacterium genera with significant differences showed positive correlations with genes related to cell migration and negative correlations with inflammation and cell proliferation and may be the target of future studies.
Collapse
|
3
|
Host phylogeny, habitat, and diet are main drivers of the cephalopod and mollusk gut microbiome. Anim Microbiome 2022; 4:30. [PMID: 35527289 PMCID: PMC9082898 DOI: 10.1186/s42523-022-00184-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Invertebrates are a very attractive subject for studying host-microbe interactions because of their simple gut microbial community and host diversity. Studying the composition of invertebrate gut microbiota and the determining factors is essential for understanding their symbiotic mechanism. Cephalopods are invertebrates that have similar biological properties to vertebrates such as closed circulation system, an advanced nervous system, and a well-differentiated digestive system. However, it is not currently known whether their microbiomes have more in common with vertebrates or invertebrates. This study reports on the microbial composition of six cephalopod species and compares them with other mollusk and marine fish microbiomes to investigate the factors that shape the gut microbiota.
Results
Each cephalopod gut consisted of a distinct consortium of microbes, with Photobacterium and Mycoplasma identified as core taxa. The gut microbial composition of cephalopod reflected their host phylogeny, the importance of which was supported by a detailed oligotype-level analysis of operational taxonomic units assigned to Photobacterium and Mycoplasma. Photobacterium typically inhabited multiple hosts, whereas Mycoplasma tended to show host-specific colonization. Furthermore, we showed that class Cephalopoda has a distinct gut microbial community from those of other mollusk groups or marine fish. We also showed that the gut microbiota of phylum Mollusca was determined by host phylogeny, habitat, and diet.
Conclusion
We have provided the first comparative analysis of cephalopod and mollusk gut microbial communities. The gut microbial community of cephalopods is composed of distinctive microbes and is strongly associated with their phylogeny. The Photobacterium and Mycoplasma genera are core taxa within the cephalopod gut microbiota. Collectively, our findings provide evidence that cephalopod and mollusk gut microbiomes reflect host phylogeny, habitat, and diet. It is hoped that these data can contribute to future studies on invertebrate–microbe interactions.
Collapse
|
4
|
Acosta F, Montero D, Izquierdo M, Galindo-Villegas J. High-level biocidal products effectively eradicate pathogenic γ-proteobacteria biofilms from aquaculture facilities. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 532:736004. [PMID: 39175494 PMCID: PMC11338163 DOI: 10.1016/j.aquaculture.2020.736004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 10/03/2020] [Indexed: 08/24/2024]
Abstract
The use of effective biocides as disinfectants is essential in aquaculture facilities. However, while most biocides act effectively on free-living planktonic pathogens, they are seldom useful against biofilms. In this study, we evaluate the biocidal efficacy and antimicrobial specific contact time of three disinfectants, Virkon™Aquatic (VirA), peracetic acid (PerA) and hydrogen peroxide (HydP), on Vibrio anguillarum, V. harveyi, V. alginolyticus, and Photobacterium damselae subspecies piscicida against their both life phases. By using the minimum inhibitory, bactericidal, and eradication concentrations of disinfectants acting on the free-living planktonic state (MIC; MBC) and biofilms (MBIC; MBEC), we determined the in vitro susceptibility of each bacterial strain against three different individual concentrations of VirA, PerA, and HydP added at 1, 5, and 10 min intervals. PerA and VirA had the highest bactericidal efficacies against the free-living planktonic state and biofilm of all bacteria. Kinetically, PerA gave a positive result more quickly in both cases regardless of the strain in question, while the weakest HydP required longer than 10 min to act effectively. Moreover, we conducted a short in vivo safety trial by pouring the suggested MIC of each disinfectant into tanks containing juvenile Gilthead seabream (Sparus aurata). A significant mortality after 24 h was observed pointing to the potential risk a mishap of these chemicals might cause to fish. Nevertheless, collectively, our results support the inclusion of biocides within biosecurity protocols in aquaculture facilities and highlight PerA as the most effective disinfectant for fighting against biofilms produced by V. anguillarum, V. harveyi, V. alginolyticus or P. damselae subsp. piscicida.
Collapse
Affiliation(s)
- Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, 35214, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, 35214, Spain
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, 35214, Spain
| | | |
Collapse
|
5
|
Roslan NN, Ngalimat MS, Leow ATC, Oslan SN, Baharum SN, Sabri S. Genomic and phenomic analysis of a marine bacterium, Photobacterium marinum J15. Microbiol Res 2020; 233:126410. [PMID: 31945517 DOI: 10.1016/j.micres.2020.126410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/29/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022]
Abstract
Photobacterium species are widely distributed in the marine environment. The overall metabolism of this genus remains largely unknown. In order to improve our knowledge on this bacterium, the relationship between the genome and phenome of the Photobacterium isolate was analyzed. The cream colored, Gram-negative, rod-shaped and motile bacterial strain, J15, was isolated from marine water of Tanjung Pelepas, Johor, Malaysia. The 5,684,538 bp genome of strain J15 comprised 3 contigs (2 chromosomes and 1 plasmid) with G + C content of 46.39 % and contained 4924 protein-coding genes including 180 tRNAs and 40 rRNAs. The phenotypic microarray (PM) as analyzed using BIOLOG showed the utilization of; i) 93 of the 190 carbon sources tested, where 61 compounds were used efficiently; ii) 41 of the 95 nitrogen sources tested, where 22 compounds were used efficiently; and iii) 3 of the 94 phosphorous and sulphur sources tested. Furthermore, high tolerance to osmotic stress, basic pH and toxic compounds as well as resistance to antibiotics of strain J15 were determined by BIOLOG PM. The ANI and kSNP analyses revealed that strain J15 to be the same species with Photobacterium marinum AK15 with ANI value of 96.93 % and bootstrapping value of 100 in kSNP. Based on the ANI and kSNP analyses, strain J15 was identified as P. marinum J15.
Collapse
Affiliation(s)
- Noordiyanah Nadhirah Roslan
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohamad Syazwan Ngalimat
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Oliver-Guimerá A, Lourdes Abarca M, Cuvertoret-Sanz M, Domingo M. Fatal Photobacterium damselae-induced enteritis in a leatherback turtle Dermochelys coriacea. DISEASES OF AQUATIC ORGANISMS 2019; 135:151-156. [PMID: 31392967 DOI: 10.3354/dao03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stranded leatherback turtle Dermochelys coriacea complete pathology reports are rare, and the cause of mortality is difficult to determine in many cases. We conducted a complete pathological study of a stranded leatherback turtle from the western Mediterranean. The main finding was a fibrino-necrotizing enteritis with associated bacteria which were identified as Photobacterium damselae subsp. damselae according to biochemical and phenotypical characteristics. This report provides evidence of the pathogenic effect of this bacterium in wild sea turtles.
Collapse
Affiliation(s)
- Arturo Oliver-Guimerá
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
7
|
Terceti MS, Vences A, Matanza XM, Dalsgaard I, Pedersen K, Osorio CR. Molecular Epidemiology of Photobacterium damselae subsp. damselae Outbreaks in Marine Rainbow Trout Farms Reveals Extensive Horizontal Gene Transfer and High Genetic Diversity. Front Microbiol 2018; 9:2155. [PMID: 30283411 PMCID: PMC6156455 DOI: 10.3389/fmicb.2018.02155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
The marine bacterium Photobacterium damselae subsp. damselae is a pathogen for a variety of marine animals, as well as for humans, and is nowadays considered an emerging pathogen for fish of importance in marine aquaculture. Recent studies have suggested that outbreaks in fish farms are caused by multiclonal populations of this subspecies that exist in the environment. Here, we report the study of a collection of 31 strains isolated during the course of disease outbreaks in marine rainbow trout farms in Denmark in 1994, 1995, and 2006, respectively. A phylogenetic analysis based on the toxR gene sequence, and the screening of virulence-related genes uncovered a high genetic heterogeneity, even among strains isolated from the same fish farm at the same time. Moreover, comparative analysis of the whole genome sequences of four selected strains revealed a large number of differentially occurring genes, which included virulence genes, pPHDD1 plasmid, polysaccharide synthesis gene clusters, CRISPR-Cas systems and putative new mobile genetic elements. This study provides sound evidence that P. damselae subsp. damselae outbreaks in Danish rainbow trout farms were caused by multiclonal populations and that horizontal gene transfer constitutes a strong driving force in the generation of intraspecific diversity in this pathogen.
Collapse
Affiliation(s)
- Mateus S. Terceti
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Vences
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xosé M. Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inger Dalsgaard
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karl Pedersen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carlos R. Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Chromosome-Encoded Hemolysin, Phospholipase, and Collagenase in Plasmidless Isolates of Photobacterium damselae subsp. damselae Contribute to Virulence for Fish. Appl Environ Microbiol 2017; 83:AEM.00401-17. [PMID: 28341681 DOI: 10.1128/aem.00401-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/18/2017] [Indexed: 11/20/2022] Open
Abstract
Photobacterium damselae subsp. damselae is a pathogen of marine animals, including fish of importance in aquaculture. The virulence plasmid pPHDD1, characteristic of highly hemolytic isolates, encodes the hemolysins damselysin (Dly) and phobalysin (PhlyP). Strains lacking pPHDD1 constitute the vast majority of the isolates from fish outbreaks, but genetic studies to identify virulence factors in plasmidless strains are scarce. Here, we show that the chromosome I-encoded hemolysin PhlyC plays roles in virulence and cell toxicity in pPHDD1-negative isolates of this pathogen. By combining the analyses of whole genomes and of gene deletion mutants, we identified two hitherto uncharacterized chromosomal loci encoding a phospholipase (PlpV) and a collagenase (ColP). PlpV was ubiquitous in the subspecies and exerted hemolytic activity against fish erythrocytes, which was enhanced in the presence of lecithin. ColP was restricted to a fraction of the isolates and was responsible for the collagen-degrading activity in this subspecies. Consistent with the presence of signal peptides in PlpV and ColP sequences, mutants for the type II secretion system (T2SS) genes epsL and pilD exhibited impairments in phospholipase and collagenase activities. Sea bass virulence experiments and cell culture assays demonstrated major contributions of PhlyC and PlpV to virulence and toxicity.IMPORTANCE This study constitutes genetic and genomic analyses of plasmidless strains of an emerging pathogen in marine aquaculture, Photobacterium damselae subsp. damselae To date, studies on the genetic basis of virulence were restricted to the pPHDD1 plasmid-encoded toxins Dly and PhlyP. However, the vast majority of the recent isolates of this pathogen from fish farm outbreaks lack this plasmid. Here we demonstrate that the plasmidless strains produce two hitherto uncharacterized ubiquitous toxins encoded in chromosome I, namely, the hemolysin PhlyC and the phospholipase PlpV. We report the main roles of these two toxins in fish virulence and in cell toxicity. Our results constitute the basis for a better understanding of the virulence of a widespread marine pathogen.
Collapse
|
9
|
Alba P, Caprioli A, Cocumelli C, Ianzano A, Donati V, Scholl F, Sorbara L, Terracciano G, Fichi G, Di Nocera F, Franco A, Battisti A. A New Multilocus Sequence Typing Scheme and Its Application for the Characterization of Photobacterium damselae subsp. damselae Associated with Mortality in Cetaceans. Front Microbiol 2016; 7:1656. [PMID: 27818651 PMCID: PMC5073098 DOI: 10.3389/fmicb.2016.01656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022] Open
Abstract
Photobacterium damselae subsp. damselae (PDD) is a known pathogen of fish, humans and marine mammals. In this study, a Multilocus Sequence Typing (MLST) scheme based on six housekeeping genes (glp, gyrB, metG, pnt, pyrC, and toxR) was developed to better understand the PDD population structure and used to type 73 PDD isolates from cetaceans, mainly striped dolphins (Stenella coeruleoalba) involved in mortality episodes, and from a few marine chelonians. Five reference ATCC strains were also included in the study. Typing allowed the discrimination of groups of PDD strains isolated from different host species, at different times and from different geographic areas, suggesting that a clonal PDD group may have spread in the Tyrrhenian sea at the time of an Unusual Mortality Event (UME) among cetaceans, mainly striped dolphins, occurred in early 2013 along the Italian western coasts.
Collapse
Affiliation(s)
- Patricia Alba
- General Diagnostic Department, Sede Centrale, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana Rome, Italy
| | - Andrea Caprioli
- General Diagnostic Department, Sede Centrale, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana Rome, Italy
| | - Cristiano Cocumelli
- Pathology Department, Sede Centrale, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana Rome, Italy
| | - Angela Ianzano
- General Diagnostic Department, Sede Centrale, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana Rome, Italy
| | - Valentina Donati
- General Diagnostic Department, Sede Centrale, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana Rome, Italy
| | - Francesco Scholl
- Pathology Department, Sede Centrale, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana Rome, Italy
| | - Luigi Sorbara
- General Diagnostic Department, Sede Centrale, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana Rome, Italy
| | - Giuliana Terracciano
- Sezione di Pisa, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana Pisa, Italy
| | - Gianluca Fichi
- Sezione di Pisa, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana Pisa, Italy
| | - Fabio Di Nocera
- Animal Health Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno Portici, Italy
| | - Alessia Franco
- General Diagnostic Department, Sede Centrale, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana Rome, Italy
| | - Antonio Battisti
- General Diagnostic Department, Sede Centrale, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana Rome, Italy
| |
Collapse
|
10
|
Pathogenesis of Photobacterium damselae subspecies infections in sea bass and sea bream. Microb Pathog 2016; 99:41-50. [DOI: 10.1016/j.micpath.2016.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022]
|
11
|
Photobacterium damselae subsp. damselae, an Emerging Fish Pathogen in the Black Sea: Evidence of a Multiclonal Origin. Appl Environ Microbiol 2016; 82:3736-3745. [PMID: 27084008 DOI: 10.1128/aem.00781-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/08/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Photobacterium damselae subsp. damselae is considered to be an emerging pathogen of marine fish of importance in aquaculture, with a notable increase in its geographical distribution during the last several years. In this study, we carried out for the first time to our knowledge a genetic and pathobiological characterization of 14 strains isolated from sea bass (Dicentrarchus labrax) reared in the Southeastern Black Sea, where high mortalities were observed at two aquaculture farms during the summer and autumn of 2011. Heterogeneity was evidenced among strains in phenotypical traits, such as sucrose fermentation, motility, and hemolysis. Although 11 of 14 isolates were hemolytic, we found that all of the isolates lacked the pPHDD1 virulence plasmid that encodes the phospholipase-D damselysin (Dly) and the pore-forming toxin PhlyP, two hemolysins previously reported to constitute major virulence factors for turbot. Subsequent PCR and sequencing analyses demonstrated that the 11 hemolytic isolates harbored a complete hlyAch gene, a chromosome I-borne gene that encodes HlyAch hemolysin, whereas the three nonhemolytic isolates contained hlyAch pseudogenes caused by insertion sequence elements. Virulence challenges with two representative strains revealed that, albeit less virulent than the pPHDD1-harboring strain RM-71, the plasmidless hlyAch-positive and hlyAch-negative Black Sea isolates were pathogenic for sea bass. A phylogenetic analysis based on the toxR gene sequence uncovered a greater diversity in the isolates, indicating that the presence of this pathogen in the Black Sea was not caused by the introduction and spread of a single virulent clone but by the proliferation of different clones. IMPORTANCE The geographical distribution of marine bacterial pathogens is undergoing a worldwide increase. In particular, bacteria of the group vibrios are increasingly being isolated as the causative agents of disease in novel species of cultivated fish in areas where they had not been previously reported. Here we characterize for the first time to our knowledge a collection of isolates of the fish and human pathogen Photobacterium damselae subsp. damselae from diseased sea bass reared in the Black Sea. We uncovered great genetic diversity in the Black Sea isolates of this pathogen, suggesting a multiclonal origin. We also demonstrate for the first time that these isolates bear pathogenic potential for sea bass cultures by virulence challenges.
Collapse
|
12
|
Remuzgo-Martínez S, Lázaro-Díez M, Padilla D, Vega B, El Aamri F, Icardo JM, Acosta F, Ramos-Vivas J. New aspects in the biology of Photobacterium damselae subsp. piscicida: pili, motility and adherence to solid surfaces. Vet Microbiol 2014; 174:247-54. [PMID: 25263496 DOI: 10.1016/j.vetmic.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/01/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
We describe for the first time the presence of pilus-like structures on the surface of Photobacterium damselae subsp. piscicida (Phdp). The hint to this discovery was the ability of one strain to hemagglutinate human erythrocytes. Further analysis of several Phdp strains ultrastructure by electron microscopy revealed the presence of long, thin fibers, similar to pili of other Gram-negative bacteria. These appendages were also observed and photographed by scanning, transmission electron microscopy and immunofluorescence. Although this fish pathogen has been described as non-motile, all strains tested exhibit twitching motility, a flagella-independent type IV-dependent form of bacterial translocation over surfaces. As far as we are aware, the movement of Phdp bacteria on semi-solid or solid surfaces has not been described previously. Moreover, we speculate that Phdp twitching motility may be involved in biofilm formation. Microscopic examination of Phdp biofilms by microscopy revealed that Phdp biofilm architecture display extensive cellular chaining and also bacterial mortality during biofilm formation in vitro. Based on our results, standardized analyses of Phdp surface appendages, biofilms, motility and their impact on Phdp survival, ecology and pathobiology are now feasible.
Collapse
Affiliation(s)
- Sara Remuzgo-Martínez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla IDIVAL, Santander, Cantabria, Spain
| | - María Lázaro-Díez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla IDIVAL, Santander, Cantabria, Spain
| | - Daniel Padilla
- Instituto Universitario de Sanidad Animal, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | - Belinda Vega
- Instituto Universitario de Sanidad Animal, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | - Fátima El Aamri
- Instituto Universitario de Sanidad Animal, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | - José Manuel Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Félix Acosta
- Instituto Universitario de Sanidad Animal, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | - José Ramos-Vivas
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla IDIVAL, Santander, Cantabria, Spain.
| |
Collapse
|