1
|
Regulation of Pulmonary Bacterial Immunity by Follistatin-Like Protein 1. Infect Immun 2020; 89:IAI.00298-20. [PMID: 33077624 DOI: 10.1128/iai.00298-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of antibiotic-resistant pneumonia. Follistatin-like protein 1 (FSTL-1) is highly expressed in the lung and is critical for lung homeostasis. The role of FSTL-1 in immunity to bacterial pneumonia is unknown. Wild-type (WT) and FSTL-1 hypomorphic (Hypo) mice were infected with Klebsiella pneumoniae to determine infectious burden, immune cell abundance, and cytokine production. FSTL-1 Hypo/TCRδ-/- and FSTL-1 Hypo/IL17ra-/- were also generated to assess the role of γδT17 cells in this model. FSTL-1 Hypo mice had reduced K. pneumoniae lung burden compared with that of WT controls. FSTL-1 Hypo mice had increased Il17a/interleukin-17A (IL-17A) and IL-17-dependent cytokine expression. FSTL-1 Hypo lungs also had increased IL-17A+ and TCRγδ+ cells. FSTL-1 Hypo/TCRδ-/- displayed a lung burden similar to that of FSTL-1 Hypo and reduced lung burden compared with the TCRδ-/- controls. However, FSTL-1 Hypo/TCRδ-/- mice had greater bacterial dissemination than FSTL-1 Hypo mice, suggesting that gamma delta T (γδT) cells are dispensable for FSTL-1 Hypo control of pulmonary infection but are required for dissemination control. Confusing these observations, FSTL-1 Hypo/TCRδ-/- lungs had an increased percentage of IL-17A-producing cells compared with that of TCRδ-/- mice. Removal of IL-17A signaling in the FSTL-1 Hypo mouse resulted in an increased lung burden. These findings identify a novel role for FSTL-1 in innate lung immunity to bacterial infection, suggesting that FSTL-1 influences type-17 pulmonary bacterial immunity.
Collapse
|
2
|
Henkel M, Partyka J, Gregory AD, Forno E, Cho MH, Eddens T, Tout AR, Salamacha N, Horne W, Rao KS, Wu Y, Alcorn JF, Kostka D, Hirsch R, Celedón JC, Shapiro SD, Kolls JK, Campfield BT. FSTL-1 Attenuation Causes Spontaneous Smoke-Resistant Pulmonary Emphysema. Am J Respir Crit Care Med 2020; 201:934-945. [PMID: 31834999 PMCID: PMC7159415 DOI: 10.1164/rccm.201905-0973oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Rationale: The role of FSTL-1 (follistatin-like 1) in lung homeostasis is unknown.Objectives: We aimed to define the impact of FSTL-1 attenuation on lung structure and function and to identify FSTL-1-regulated transcriptional pathways in the lung. Further, we aimed to analyze the association of FSTL-1 SNPs with lung disease.Methods: FSTL-1 hypomorphic (FSTL-1 Hypo) mice underwent lung morphometry, pulmonary function testing, and micro-computed tomography. Fstl1 expression was determined in wild-type lung cell populations from three independent research groups. RNA sequencing of wild-type and FSTL-1 Hypo mice identified FSTL-1-regulated gene expression, followed by validation and mechanistic in vitro examination. FSTL1 SNP analysis was performed in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) cohort.Measurements and Main Results: FSTL-1 Hypo mice developed spontaneous emphysema, independent of smoke exposure. Fstl1 is highly expressed in the lung by mesenchymal and endothelial cells but not immune cells. RNA sequencing of whole lung identified 33 FSTL-1-regulated genes, including Nr4a1, an orphan nuclear hormone receptor that negatively regulates NF-κB (nuclear factor-κB) signaling. In vitro, recombinant FSTL-1 treatment of macrophages attenuated NF-κB p65 phosphorylation in an Nr4a1-dependent manner. Within the COPDGene cohort, several SNPs in the FSTL1 region corresponded to chronic obstructive pulmonary disease and lung function.Conclusions: This work identifies a novel role for FSTL-1 protecting against emphysema development independent of smoke exposure. This FSTL-1-deficient emphysema implicates regulation of immune tolerance in lung macrophages through Nr4a1. Further study of the mechanisms involving FSTL-1 in lung homeostasis, immune regulation, and NF-κB signaling may provide additional insight into the pathophysiology of emphysema and inflammatory lung diseases.
Collapse
Affiliation(s)
- Matthew Henkel
- Division of Pediatric Infectious Diseases
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica Partyka
- Division of Pediatric Infectious Diseases
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alyssa D. Gregory
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine
- Richard K. Mellon Institute for Pediatric Research, and
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael H. Cho
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Taylor Eddens
- Division of Pediatric Infectious Diseases
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Nathan Salamacha
- Department of Developmental Biology
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - William Horne
- Richard K. Mellon Institute for Pediatric Research, and
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Yijen Wu
- Department of Developmental Biology
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - John F. Alcorn
- Division of Pediatric Pulmonary Medicine
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dennis Kostka
- Department of Developmental Biology
- Department of Computational and Systems Biology, and
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raphael Hirsch
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven D. Shapiro
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Jay K. Kolls
- Richard K. Mellon Institute for Pediatric Research, and
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian T. Campfield
- Division of Pediatric Infectious Diseases
- Richard K. Mellon Institute for Pediatric Research, and
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Li G, Ren H, Wu X, Hu Q, Hong Z, Wang G, Gu G, Ren J, Li J. Follistatin like protein-1 modulates macrophage polarization and aggravates dextran sodium sulfate-induced colitis. Int Immunopharmacol 2020; 83:106456. [PMID: 32247265 DOI: 10.1016/j.intimp.2020.106456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Abstract
Follistatin-like protein 1 (FSTL1) is a pleiotropic cytokine involved in multiple processes including organ development, carcinogenesis, metastasis and so on. Some recent studies have suggested a possible role of FSTL1 in the inflammatory diseases. We for the first time tried to unravel its effect on the colitis, and explore the possible mechanisms. Here we found that FSTL1 was upregulated in active human and murine colitis. It facilitated proinflammatory M1 polarization of macrophages and inhibited the M2 anti-inflammatory phenotype, leading to excessive production of multiple inflammatory cytokines in vitro and in vivo. Haplodeletion of FSTL1 in mice significantly reduced the clinical and histological activity of colitis. Most importantly, macrophage depletion diminished the difference between DSS-treated WT and FSTL1+/- mice. Altogether, our results suggested that FSTL1 may also serve as an important contributor in the colonic inflammation. The possible mechanism may be related to its modulation on macrophage polarization.
Collapse
Affiliation(s)
- Guanwei Li
- Department of Colorectal & Anal Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technolgy, Guangzhou, Guangdong, China.
| | - Huajian Ren
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiuwen Wu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qiongyuan Hu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zhiwu Hong
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Gefei Wang
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guosheng Gu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jianan Ren
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Jieshou Li
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Horowitz R, Freeman PR. Improvement of common variable immunodeficiency using embryonic stem cell therapy in a patient with lyme disease: a clinical case report. Clin Case Rep 2018; 6:1166-1171. [PMID: 29881587 PMCID: PMC5986024 DOI: 10.1002/ccr3.1556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
Bone marrow transplantation and stem cell therapies have been used for the treatment of common variable immunodeficiency (CVID) and other life-threatening medical disorders. This is the first known case report in the medical literature describing improvement of both Lyme disease and CVID with human embryonic stem cell therapy.
Collapse
Affiliation(s)
- Richard Horowitz
- HHS Tickborne Disease Working GroupWashingtonD.C.USA
- Hudson Valley Healing Arts Center4232 Albany Post RoadHyde ParkNew York12538
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center4232 Albany Post RoadHyde ParkNew York12538
| |
Collapse
|
5
|
Campfield BT, Eddens T, Henkel M, Majewski M, Horne W, Chaly Y, Gaffen SL, Hirsch R, Kolls JK. Follistatin-like protein 1 modulates IL-17 signaling via IL-17RC regulation in stromal cells. Immunol Cell Biol 2017; 95:656-665. [PMID: 28377613 PMCID: PMC5609702 DOI: 10.1038/icb.2017.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
Abstract
Follistatin-like protein 1 (FSTL-1) possesses several newly identified roles in mammalian biology, including IL-17 driven inflammation, though the mechanism underlying FSTL-1 influence on IL-17 mediated cytokine production is unknown. Using parallel in vitro bone marrow stromal cell models of FSTL-1 suppression we employed unbiased microarray analysis to identify FSTL-1 regulated genes and pathways that could influence IL-17 dependent production of IL-6 and G-CSF. We discovered that FSTL-1 modulates Il17rc gene expression. Specifically, FSTL-1 was necessary for Il17rc gene transcription, IL-17RC surface protein expression and IL-17-dependent cytokine production. This work identifies a mechanism by which FSTL-1 influences IL-17 driven inflammatory signalingin vitro and reveals a novel function for FSTL-1, as a modulator of gene expression. Thus, enhanced understanding of the interplay between FSTL-1 and IL-17 mediated inflammation may provide insight into potential therapeutic targets of IL-17 mediated diseases and warrants ongoing study of in vivo models and clinical scenarios of FSTL-1-influenced diseases.
Collapse
Affiliation(s)
- Brian T Campfield
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.,Richard K Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Taylor Eddens
- Richard K Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew Henkel
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Richard K Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Martin Majewski
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Richard K Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William Horne
- Richard K Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yury Chaly
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sarah L Gaffen
- Division of Rheumatology &Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Raphael Hirsch
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jay K Kolls
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.,Richard K Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
BB0744 Affects Tissue Tropism and Spatial Distribution of Borrelia burgdorferi. Infect Immun 2015; 83:3693-703. [PMID: 26150534 DOI: 10.1128/iai.00828-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 12/18/2022] Open
Abstract
Borrelia burgdorferi, the etiologic agent of Lyme disease, produces a variety of proteins that promote survival and colonization in both the Ixodes species vector and various mammalian hosts. We initially identified BB0744 (also known as p83/100) by screening for B. burgdorferi strain B31 proteins that bind to α1β1 integrin and hypothesized that, given the presence of a signal peptide, BB0744 may be a surface-exposed protein. In contrast to this expectation, localization studies suggested that BB0744 resides in the periplasm. Despite its subsurface location, we were interested in testing whether BB0744 is required for borrelial pathogenesis. To this end, a bb0744 deletion was isolated in a B. burgdorferi strain B31 infectious background, complemented, and queried for the role of BB0744 following experimental infection. A combination of bioluminescent imaging, cultivation of infected tissues, and quantitative PCR (qPCR) demonstrated that Δbb0744 mutant B. burgdorferi bacteria were attenuated in the ability to colonize heart tissue, as well as skin locations distal to the site of infection. Furthermore, qPCR indicated a significantly reduced spirochetal load in distal skin and joint tissue infected with Δbb0744 mutant B. burgdorferi. Complementation with bb0744 restored infectivity, indicating that the defect seen in Δbb0744 mutant B. burgdorferi was due to the loss of BB0744. Taken together, these results suggest that BB0744 is necessary for tissue tropism, particularly in heart tissue, alters the ability of B. burgdorferi to disseminate efficiently, or both. Additional studies are warranted to address the mechanism employed by BB0744 that alters the pathogenic potential of B. burgdorferi.
Collapse
|