1
|
Montúfar-Romero M, Valenzuela-Miranda D, Valenzuela-Muñoz V, Morales-Rivera MF, Gallardo-Escárate C. Microbiota Dysbiosis in Mytilus chilensis Is Induced by Hypoxia, Leading to Molecular and Functional Consequences. Microorganisms 2025; 13:825. [PMID: 40284661 PMCID: PMC12029581 DOI: 10.3390/microorganisms13040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Bivalve microbiota play a vital role in host health, supporting nutrient processing, immunity, and disease resistance. However, the increasing hypoxia in Chilean coastal waters, caused by climate change and eutrophication, threatens to disrupt this microbial balance, potentially promoting pathogens and impairing essential functions. Mytilus chilensis is vulnerable to hypoxia-reoxygenation cycles, yet the effects on its microbiota remain poorly understood. This study investigates the impact of hypoxia on the structure and functional potential of the microbial communities residing in the gills and digestive glands of M. chilensis. Employing full-length 16S rRNA gene sequencing, we explored hypoxia's effects on microbial diversity and functional capacity. Our results revealed significant alterations in the microbial composition, with a shift towards facultative anaerobes thriving in low oxygen environments. Notably, there was a decrease in dominant bacterial taxa such as Rhodobacterales, while opportunistic pathogens such as Vibrio and Aeromonas exhibited increased abundance. Functional analysis indicated a decline in critical microbial functions associated with nutrient metabolism and immune support, potentially jeopardizing the health and survival of the host. This study sheds light on the intricate interactions between host-associated microbiota and environmental stressors, underlining the importance of managing the microbiota in the face of climate change and aquaculture practices.
Collapse
Affiliation(s)
- Milton Montúfar-Romero
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
- Instituto Público de Investigación de Acuicultura y Pesca (IPIAP), Guayaquil 090314, Ecuador
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
- Centro de Biotecnología, Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción 4070409, Chile
| | - María F. Morales-Rivera
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción 4070409, Chile
| |
Collapse
|
2
|
Feng C, Chen Z, Guan S, Li J, Qu M, Geng H. Formation mechanism of injured bacteria after disinfection with epigallocatechin gallate (EGCG) as a disinfectant. JOURNAL OF WATER AND HEALTH 2025; 23:288-300. [PMID: 40156208 DOI: 10.2166/wh.2024.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/14/2024] [Indexed: 04/01/2025]
Abstract
This study explored the effects of epigallocatechin gallate (EGCG), the main antibacterial component of tea polyphenols, on Escherichia coli in terms of disinfection damage and the underlying mechanisms. The researchers assessed inactivation and injury rates, cell morphology, and antioxidant indicators of E. coli when subjected to different concentrations of EGCG. The results showed that varying EGCG concentrations produced damaged bacteria, with the extent of damage depending on EGCG dosage and treatment duration. The disinfection process involving EGCG resulted in oxidative damage in E. coli, evoking alterations in the antioxidant system of the affected bacteria. During disinfection-induced bacterial injury, E. coli showed the active regulation of metabolism and redox activities in response to EGCG-induced environmental stimuli. Transcriptomic analysis was conducted to investigate the damage mechanism at the gene level. The damaged E. coli countered oxidative stress by adjusting gene expression related to peroxidase and glutathione metabolism processes. In this way, E. coli adjusts its gene expression to alleviate the detrimental effects of EGCG-induced oxidative stress and maintain cellular homeostasis. These findings contribute to our understanding of tea polyphenols' disinfection effects and provide insights into EGCG's mechanisms of damaging bacteria such as E. coli.
Collapse
Affiliation(s)
- Cuimin Feng
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China E-mail:
| | - Zexin Chen
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Sairui Guan
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jing Li
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mengchao Qu
- Beijing Waterworks Group Co., Ltd, Beijing 100031, China
| | - Haochen Geng
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
3
|
Tian Z, Xiang F, Peng K, Qin Z, Feng Y, Huang B, Ouyang P, Huang X, Chen D, Lai W, Geng Y. The cAMP Receptor Protein (CRP) of Vibrio mimicus Regulates Its Bacterial Growth, Type II Secretion System, Flagellum Formation, Adhesion Genes, and Virulence. Animals (Basel) 2024; 14:437. [PMID: 38338079 PMCID: PMC10854923 DOI: 10.3390/ani14030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Vibrio mimicus is a serious pathogen in aquatic animals, resulting in significant economic losses. The cAMP receptor protein (CRP) often acts as a central regulator in highly pathogenic pathogens. V. mimicus SCCF01 is a highly pathogenic strain isolated from yellow catfish; the crp gene deletion strain (Δcrp) was constructed by natural transformation to determine whether this deletion affects the virulence phenotypes. Their potential molecular connections were revealed by qRT-PCR analysis. Our results showed that the absence of the crp gene resulted in bacterial and colony morphological changes alongside decreases in bacterial growth, hemolytic activity, biofilm formation, enzymatic activity, motility, and cell adhesion. A cell cytotoxicity assay and animal experiments confirmed that crp contributes to V. mimicus pathogenicity, as the LD50 of the Δcrp strain was 73.1-fold lower compared to the WT strain. Moreover, qRT-PCR analysis revealed the inhibition of type II secretion system genes, flagellum genes, adhesion genes, and metalloproteinase genes in the deletion strain. This resulted in the virulence phenotype differences described above. Together, these data demonstrate that the crp gene plays a core regulatory role in V. mimicus virulence and pathogenicity.
Collapse
Affiliation(s)
- Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Fei Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
- Agricultural and Rural Bureau of Zhongjiang County, Deyang 618100, China
| | - Kun Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Zhenyang Qin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Bowen Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.C.)
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.C.)
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| |
Collapse
|
4
|
Zhang M, Yu B, Fang Q, Liu J, Xia Q, Ye K, Zhang D, Qiang Z, Pan X. Microbiome recognition of virulence-factor-governed interfacial mechanisms in antibiotic resistance and pathogenicity removal by functionalized microbubbles. WATER RESEARCH 2023; 242:120224. [PMID: 37352673 DOI: 10.1016/j.watres.2023.120224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
The frequent occurrence of epidemics around the world gives rise to increasing concerns of the pollution of pathogens and antibiotic resistant bacteria in water. This study investigated the impacts of virulence factors (VFs) on the removal of antibiotic resistant and pathogenic bacteria from municipal wastewater by ozone-free or ozone-encapsulated Fe(III)-coagulant-modified colloidal microbubbles (O3_free-CCMBs or O3-CCMBs). The highly interface-dependent process was initiated with cell-capture on the microbubble surface where the as-collected cells could be further inactivated with the bubble-released ozone and oxidative species if O3-CCMBs were used. The microbiome sequencing analyses denote that the O3_free-CCMB performance of antibiotic resistant and pathogenic bacteria removal was dependent on the virulence phenotypes related to cell-surface properties or structures. The adhesion-related VFs facilitated the effective attachment between cells and the coagulant-modified bubble-surface, which further enhanced cell inactivation by bubble-released ozone. On the contrary, the motility-related VFs might help cells to escape from the bubble capture by locomotion; however, this could be overcome by O3-CCMB-induced oxidative demolition of the movement structures. Besides, the microbubble performance was also impacted with the cell-membrane structure related to antibiotic resistance (i.e., efflux pumps) and the dissolved organic matter through promoting the surface-capture and decreasing the oxidation efficacy. The ozone-encapsulated microbubbles with surface functionalization are robust and promising tools in hampering antibiotic resistance and pathogenicity dissemination from wastewater to surface water environment; and awareness should be raised for the influence of virulence signatures on its performance.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Beilei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qunkai Fang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiayuan Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiaoyun Xia
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kun Ye
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Feng Y, Yu Z, Zhao R, Qin Z, Geng Y, Chen D, Huang X, Ouyang P, Zuo Z, Guo H, Deng H, Huang C, Lai W. Unraveling extracellular protein signatures to enhance live attenuated vaccine development through type II secretion system disruption in Vibriomimicus. Microb Pathog 2023; 181:106215. [PMID: 37380063 DOI: 10.1016/j.micpath.2023.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Type II secretion systems (T2SS) are important molecular machines used by bacteria to transport a wide range of proteins across the outer membrane from the periplasm. Vibrio mimicus is an epidemic pathogen threats to both aquatic animals and human health. Our previous study demonstrates that T2SS deletion reduced virulence by 307.26 times in yellow catfish. However, the specific effects of T2SS-mediated extracellular protein secretion in V. mimicus, including its potential role in exotoxin secretion or other mechanisms, require further investigation. Through proteomics and phenotypic analyses, this study observed that the ΔT2SS strain exhibited significant self-aggregation and dynamic deficiency, with a notable negative correlation with subsequent biofilm formation. The proteomics analysis revealed 239 different abundances of extracellular proteins after T2SS deletion, including 19 proteins with higher abundance and 220 proteins with lower and even absent in the ΔT2SS strain. These extracellular proteins are involved in various pathways, such as metabolism, virulence factors expression, and enzymes. Among them, purine, pyruvate, and pyrimidine metabolism, and the Citrate cycle, were the primary pathways affected by T2SS. Our phenotypic analysis is consistent with these findings, suggesting that the decreased virulence of ΔT2SS strains is due to the effect of T2SS on these proteins, which negatively impacts growth, biofilm formation, auto-aggregation, and motility of V. mimicus. These results provide valuable insights for designing deletion targets for attenuated vaccines development against V. mimicus and expand our understanding of the biological functions of T2SS.
Collapse
Affiliation(s)
- Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zehui Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Laboratory Animal Center, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Ruoxuan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhengyang Qin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
6
|
Nilavan E, Vaiyapuri M, Sadanandan Sheela G, Nadella RK, Thandapani M, Kumar A, Mothadaka MP. Prevalence of Vibrio mimicus in Fish, Fishery Products, and Environment of South West Coast of Kerala, India. J AOAC Int 2021; 104:790-794. [PMID: 33484252 DOI: 10.1093/jaoacint/qsab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND Vibrio mimicus is a seafood-borne bacterium involved in incidences of human infections following consumption of raw or undercooked seafood. Regular monitoring of seafood for V.mimicus is necessary for risk assessment and to establish mitigation measures. METHOD During the period 2017-2020, a total of 250 samples comprising finfish, shellfish, water, ice, and sediment samples were collected from fish markets, fish landing centers, and fish farms in the Ernakulum district on the Southwest coast of Kerala, India. V. mimicus was isolated using enrichment in alkaline peptone water for 18 h followed by plating on thiosulfate citrate bile salts sucrose agar and then incubated at 37°C for 18-24 h. The presumptive V. mimicus isolates were confirmed by biochemical characterization and molecularly with vmh gene-specific for V. mimicus. RESULTS The study revealed that the prevalence of V. mimicus is 5.6% in the total of samples screened. The highest occurrence was observed in brackish water fish (19%) followed by freshwater fish (18%) and marine fish (2%) samples. The study points out the risk of brackish water fishes as potential carriers of this pathogen. This requires preventive measures to mitigate health hazards associated with V. mimicus entering into the seafood production chain.
Collapse
Affiliation(s)
- Ezhil Nilavan
- ICAR-Central Institute of Fisheries Technology, Matsyapuri Post, Willingdon Island, Cochin, Kerala, India
| | - Murugadas Vaiyapuri
- ICAR-Central Institute of Fisheries Technology, Matsyapuri Post, Willingdon Island, Cochin, Kerala, India
| | - Greeshma Sadanandan Sheela
- ICAR-Central Institute of Fisheries Technology, Matsyapuri Post, Willingdon Island, Cochin, Kerala, India
| | - Ranjit Kumar Nadella
- ICAR-Central Institute of Fisheries Technology, Matsyapuri Post, Willingdon Island, Cochin, Kerala, India
| | - Muthulakshmi Thandapani
- ICAR-Central Institute of Fisheries Technology, Matsyapuri Post, Willingdon Island, Cochin, Kerala, India
| | - Abhay Kumar
- Mumbai Research Centre of ICAR-Central Institute of Fisheries Technology, Navi Mumbai, Maharashtra, India
| | - Mukteswar Prasad Mothadaka
- ICAR-Central Institute of Fisheries Technology, Matsyapuri Post, Willingdon Island, Cochin, Kerala, India
| |
Collapse
|
7
|
Guardiola-Avila I, Sánchez-Busó L, Acedo-Félix E, Gomez-Gil B, Zúñiga-Cabrera M, González-Candelas F, Noriega-Orozco L. Core and Accessory Genome Analysis of Vibrio mimicus. Microorganisms 2021; 9:microorganisms9010191. [PMID: 33477474 PMCID: PMC7831076 DOI: 10.3390/microorganisms9010191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 01/21/2023] Open
Abstract
Vibrio mimicus is an emerging pathogen, mainly associated with contaminated seafood consumption. However, little is known about its evolution, biodiversity, and pathogenic potential. This study analyzes the pan-, core, and accessory genomes of nine V. mimicus strains. The core genome yielded 2424 genes in chromosome I (ChI) and 822 genes in chromosome II (ChII), with an accessory genome comprising an average of 10.9% of the whole genome for ChI and 29% for ChII. Core genome phylogenetic trees were obtained, and V. mimicus ATCC-33654 strain was the closest to the outgroup in both chromosomes. Additionally, a phylogenetic study of eight conserved genes (ftsZ, gapA, gyrB, topA, rpoA, recA, mreB, and pyrH), including Vibrio cholerae, Vibrio parilis, Vibrio metoecus, and Vibrio caribbenthicus, clearly showed clade differentiation. The main virulence genes found in ChI corresponded with type I secretion proteins, extracellular components, flagellar proteins, and potential regulators, while, in ChII, the main categories were type-I secretion proteins, chemotaxis proteins, and antibiotic resistance proteins. The accessory genome was characterized by the presence of mobile elements and toxin encoding genes in both chromosomes. Based on the genome atlas, it was possible to characterize differential regions between strains. The pan-genome of V. mimicus encompassed 3539 genes for ChI and 2355 genes for ChII. These results give us an insight into the virulence and gene content of V. mimicus, as well as constitute the first approach to its diversity.
Collapse
Affiliation(s)
- Iliana Guardiola-Avila
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico; (I.G.-A.); (E.A.-F.)
| | - Leonor Sánchez-Busó
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), 46020 Valencia, Spain;
| | - Evelia Acedo-Félix
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico; (I.G.-A.); (E.A.-F.)
| | - Bruno Gomez-Gil
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) Mazatlán, Unit for Aquaculture and Environmental Management, Mazatlan, Sinaloa 82112, Mexico;
| | - Manuel Zúñiga-Cabrera
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSSIC), 46980 Paterna, Spain;
| | - Fernando González-Candelas
- Joint Research Unit Infección y Salud Pública, FISABIO-Universitat de Valencia, I2SysBio, CIBERESP, 46980 Valencia, Spain;
| | - Lorena Noriega-Orozco
- Guaymas Unit, Centro de Investigación en Alimentación y Desarrollo (CIAD), Guaymas, Sonora 85480, Mexico
- Correspondence: ; Tel.: +52-662-289-2400
| |
Collapse
|
8
|
Fu Y, Zhang YA, Shen J, Tu J. Immunogenicity study of OmpU subunit vaccine against Vibrio mimicus in yellow catfish, Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2021; 108:80-85. [PMID: 33285164 DOI: 10.1016/j.fsi.2020.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The outer membrane protein U (OmpU) is a conserved outer membrane protein in a variety of pathogenic Vibrio species and has been considered as a vital protective antigen for vaccine development. Vibrio mimicus (V. mimicus) is the pathogen causing ascites disease in aquatic animals. In this study, the prokaryotically expressed and purified His-tagged OmpU of V. mimicus (His-OmpU) was used as a subunit vaccine. The formalin inactivated V. mimicus, purified His tag (His-tag), and PBS were used as controls. The vaccinated yellow catfish were challenged with V. mimicus at 28 days post-vaccination, and the results showed that the His-OmpU and inactivated V. mimicus groups exhibited much higher survival rates than the His-tag and PBS groups. To fully understand the underlying mechanism, we detected the expression levels of several immune-related genes in the spleen of fish at 28 days post-vaccination and 24 h post-challenge. The results showed that most of the detected immune-related genes were significantly upregulated in His-OmpU and inactivated V. mimicus groups. In addition, we performed the serum bactericidal activity assay, and the results showed that the serum from His-OmpU and inactivated V. mimicus groups exhibited much stronger bactericidal activity against V. mimicus than those of His-tag and PBS groups. Finally, the serum agglutination antibody was detected, and the antibody could be detected in His-OmpU and inactivated V. mimicus groups with the antibody titers increasing along with the time post-vaccination, but not in His-tag or PBS group. Our data reveal that the recombinant OmpU elicits potent protective immune response and is an effective vaccine candidate against V. mimicus in yellow catfish.
Collapse
Affiliation(s)
- Yu Fu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei, China
| | - Jinyu Shen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China.
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Yu Z, Wang E, Geng Y, Wang K, Chen D, Huang X, Ouyang P, Zuo Z, Huang C, Fang J, Yin L, Guo H, Zhong Z. Complete genome analysis of Vibrio mimicus strain SCCF01, a highly virulent isolate from the freshwater catfish. Virulence 2020; 11:23-31. [PMID: 31826705 PMCID: PMC6961728 DOI: 10.1080/21505594.2019.1702797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 12/02/2022] Open
Abstract
Vibrio mimicus is a foodborne pathogen, which is widely distributed in the aquatic environment. Moreover, it is often involved in aquatic animal diseases. In recent years, V. mimicus is an emerging pathogen in some species of Siluriformes. The strain SCCF01 was isolated from yellow catfish (Pelteobagrus fulvidraco). In this study, we aimed to perform genomic analysis of V. mimicus strain SCCF01 to identify genetic features and evolutionary relationships. Information on gene function and classification was obtained by functional annotation, and circular graph of strain SCCF01 genome, which was created by Circos v0.64. Information on virulence genes (adhesion, flagellum system, exotoxin, and secretory system, etc.) was obtained by virulence genes annotation. Genome element prediction showed that most of the mobile elements were distributed in chromosome I. Therefore, chromosome I of SCCF01 genome has more plasticity than chromosome II and might be larger in size. Genomic linear relationship between the strain of V. mimicus and strain SCCF01 was analyzed by linear pairwise comparison but was unable to determine the relationship. Gene family analysis predicted that the evolutionary direction of strain SCCF01 was: clinical strain → environmental strain → SCCF01 strain. Phylogenetic analysis showed that the strain SCCF01 was more closely related to environmental strains. According to gene family analysis and phylogenetic analysis, we speculated that strain SCCF01 has probably diverged from environmental strains.
Collapse
Affiliation(s)
- Zehui Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Laboratory Animal Center, Southwest Medical University, LuZhou, Sichuan, P. R. China
| | - Erlong Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Kaiyu Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
10
|
|
11
|
Guardiola‐Avila I, Martínez‐Vázquez V, Juárez‐Rendón K, Alvarez‐Ainza M, Paz‐González A, Rivera G. Prevalence and virulence of
Vibrio
species isolated from raw shrimp from retail markets in Reynosa, Mexico. Lett Appl Microbiol 2020; 71:280-286. [DOI: 10.1111/lam.13315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023]
Affiliation(s)
- I. Guardiola‐Avila
- CONACyT Research Fellow ‐ Centro de Biotecnología GenómicaInstituto Politécnico Nacional Reynosa México
| | - V. Martínez‐Vázquez
- Centro de Biotecnología GenómicaInstituto Politécnico Nacional Reynosa México
| | | | - M. Alvarez‐Ainza
- Departamento de Ciencias Químico BiológicasUniversidad de Sonora Hermosillo México
| | - A. Paz‐González
- Centro de Biotecnología GenómicaInstituto Politécnico Nacional Reynosa México
| | - G. Rivera
- Centro de Biotecnología GenómicaInstituto Politécnico Nacional Reynosa México
| |
Collapse
|
12
|
Ashrafudoulla M, Mizan MFR, Park SH, Ha SD. Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review. Crit Rev Food Sci Nutr 2020; 61:1827-1851. [PMID: 32436440 DOI: 10.1080/10408398.2020.1767031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The contamination of seafood with Vibrio species can have severe repercussions in the seafood industry. Vibrio species can form mature biofilms and persist on the surface of several seafoods such as crabs, oysters, mussels, and shrimp, for extended duration. Several conventional approaches have been employed to inhibit the growth of planktonic cells and prevent the formation of Vibrio biofilms. Since Vibrio biofilms are mostly resistant to these control measures, novel alternative methods need to be urgently developed. In this review, we propose environmentally friendly approaches to suppress Vibrio biofilm formation using a hypothesized mechanism of action.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| |
Collapse
|
13
|
Yu Z, Wang E, Geng Y, Wang K, Chen D, Huang X, Ouyang P, Zuo Z, He C, Tang L, Yang Z, Lai W. Multiplex genome editing by natural transformation in Vibrio mimicus with potential application in attenuated vaccine development. FISH & SHELLFISH IMMUNOLOGY 2019; 92:377-383. [PMID: 31202969 DOI: 10.1016/j.fsi.2019.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Vibrio mimicus (V. mimicus) is a significant pathogen in freshwater catfish, though knowledge of virulence determinants and effective vaccine is lacking. Multiplex genome editing by natural transformation (MuGENT) is an easy knockout method, which has successfully used in various bacteria except for V. mimicus. Here, we found V. mimicus strain SCCF01 can uptake exogenous DNA and insert it into genome by natural transformation assay. Subsequently, we exploited this property to make five mutants (△Hem, △TS1, △TS2, △TS1△TS2, and △II), and removed the antibiotic resistance marker by Flp-recombination. Finally, all of the mutants were identified by PCR and RT-PCR. The results showed that combination of natural transformation and FLP-recombination can be applied successfully to generate targeted gene disruptions without the antibiotic resistance marker in V. mimicus. In addition, the five mutants showed mutant could be inherited after several subcultures and a 668-fold decrease in the virulence to yellow catfish (Pelteobagrus fulvidraco). This study provides a convenient method for the genetic manipulation of V. mimicus. It will facilitate the identification and characterization of V. mimicus virulence factors and eventually contribute to a better understanding of V. mimicus pathogenicity and development of attenuated vaccine.
Collapse
Affiliation(s)
- Zehui Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Erlong Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| | - Kaiyu Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Li Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
14
|
Guardiola-Avila I, Martínez-Vázquez V, Requena-Castro R, Juárez-Rendón K, Aguilera-Arreola M, Rivera G, Bocanegra-García V. Isolation and identification ofVibriospecies in the Rio Bravo/Grande and water bodies from Reynosa, Tamaulipas. Lett Appl Microbiol 2018; 67:190-196. [DOI: 10.1111/lam.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 02/02/2023]
Affiliation(s)
- I. Guardiola-Avila
- CONACyT Research Fellow; Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - V. Martínez-Vázquez
- Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - R. Requena-Castro
- Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - K. Juárez-Rendón
- CONACyT Research Fellow; Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - M.G. Aguilera-Arreola
- Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional; Ciudad de México; Mexico City México
| | - G. Rivera
- Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - V. Bocanegra-García
- Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| |
Collapse
|
15
|
Capsular Polysaccharides of Lactobacillus spp.: Theoretical and Practical Aspects of Simple Visualization Methods. Probiotics Antimicrob Proteins 2017. [PMID: 28643226 DOI: 10.1007/s12602-017-9295-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lactobacillus strains can synthesize capsular polysaccharides (CPS), which are important substances in the dairy industry-they exhibit many important technological as well as health-promoting properties. Technological advancements have made it possible to detect bacterial capsules using costly and labor-intensive methods, such as serological reactions, molecular genetic techniques, and electron microscopy. Light microscopy, which is the method of interest in this paper, is one of the most widely accessible and cheapest techniques. CPS may be observed under a light microscope after staining bacterial cells and the background with a basic die and an acidic die, respectively (negative-positive staining), with the capsules remaining transparent. The literature offers many polysaccharide staining methods, but due to the considerable structural diversity of CPS and possible dye-capsule interactions, a suitable staining technique should be carefully selected for each strain. The current study showed that not all methods adequately reveal Lactobacillus CPS, with the most effective ones being those proposed by Hiss and Maneval.
Collapse
|
16
|
Foulon V, Le Roux F, Lambert C, Huvet A, Soudant P, Paul-Pont I. Colonization of Polystyrene Microparticles by Vibrio crassostreae: Light and Electron Microscopic Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10988-10996. [PMID: 27640445 DOI: 10.1021/acs.est.6b02720] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microplastics collected at sea harbor a high diversity of microorganisms, including some Vibrio genus members, raising questions about the role of microplastics as a novel ecological niche for potentially pathogenic microorganisms. In the present study, we investigated the adhesion dynamics of Vibrio crassostreae on polystyrene microparticles (micro-PS) using electronic and fluorescence microscopy techniques. Micro-PS were incubated with bacteria in different media (Zobell culture medium and artificial seawater) with or without natural marine aggregates. The highest percentage of colonized particles (38-100%) was observed in Zobell culture medium, which may be related to nutrient availability for production of pili and exopolysaccharide adhesion structures. A longer bacterial attachment (6 days) was observed on irregular micro-PS compared to smooth particles (<10 h), but complete decolonization of all particles eventually occurred. The presence of natural marine agreggates around micro-PS led to substantial and perennial colonization featuring monospecific biofilms at the surface of the aggregates. These exploratory results suggest that V. crassostreae may be a secondary colonizer of micro-PS, requiring a multispecies community to form a durable adhesion phenotype. Temporal assessment of microbial colonization on microplastics at sea using imaging and omics approaches are further indicated to better understand the microplastics colonization dynamics and species assemblages.
Collapse
Affiliation(s)
- Valentin Foulon
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD Ifremer, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise , Rue Dumont d'Urville, 29280 Plouzané, France
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins , ZI de la Pointe du Diable, CS 10070, F-29280 Plouzané, France
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models , Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Christophe Lambert
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD Ifremer, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise , Rue Dumont d'Urville, 29280 Plouzané, France
| | - Arnaud Huvet
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer), Centre Bretagne , ZI de la Pointe du Diable, CS 10070, 29280 Plouzané, France
| | - Philippe Soudant
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD Ifremer, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise , Rue Dumont d'Urville, 29280 Plouzané, France
| | - Ika Paul-Pont
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD Ifremer, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise , Rue Dumont d'Urville, 29280 Plouzané, France
| |
Collapse
|
17
|
Carabarin-Lima A, León-Izurieta L, Rocha-Gracia RDC, Castañeda-Lucio M, Torres C, Gutiérrez-Cazarez Z, González-Posos S, Martínez de la Peña CF, Martinez-Laguna Y, Lozano-Zarain P. First evidence of polar flagella in Klebsiella pneumoniae isolated from a patient with neonatal sepsis. J Med Microbiol 2016; 65:729-737. [PMID: 27283194 DOI: 10.1099/jmm.0.000291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genus Klebsiella belongs to the family Enterobacteriaceae, and is currently considered to be non-motile and non-flagellated. In the present work, 25 Klebsiella strains isolated from nosocomial infections were assessed for motility under different growth conditions. One Klebsiella isolate, KpBUAP021, demonstrated a swim-like motility phenotype. The K. pneumoniae genotype was confirmed by 16S rRNA and rpoB gene sequence analysis. Multilocus sequence typing analysis also revealed that the KpBUAP021 strain places it in the ST345 sequence type, and belongs to the phylogenetic Kpl group. Transmission electron microscopy and the Ryu staining technique revealed that KpBUAP021 expresses polar flagella. Finally, the presence of fliC, fliA and flgH genes in this K. pneumoniae strain was confirmed. This report presents the first evidence for flagella-mediated motility in a K. pneumoniae clinical isolate, and represents an important finding related to its evolution and pathogenic potential.
Collapse
Affiliation(s)
- Alejandro Carabarin-Lima
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, Mexico
| | - Libia León-Izurieta
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, Mexico
| | - Rosa Del Carmen Rocha-Gracia
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, Mexico
| | - Miguel Castañeda-Lucio
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, Mexico
| | - Carmen Torres
- Área Bioquímica y Biología Molecular, Universidad de la Rioja, Logroño, Spain
| | - Zita Gutiérrez-Cazarez
- Laboratorio Clínico. Área de Microbiología. Hospital para el Niño Poblano. Blvd. del Niño Poblano No. 5307, Col. Concepción la Cruz, 72197 San Andrés, Cholula, Puebla, Mexico
| | | | - Claudia F Martínez de la Peña
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, Mexico
| | - Ygnacio Martinez-Laguna
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, Mexico
| | - Patricia Lozano-Zarain
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, Mexico
| |
Collapse
|
18
|
Abdel-Sattar ES, Miyoshi SI, Elgaml A. Regulation ofVibrio mimicusmetalloprotease (VMP) production by the quorum-sensing master regulatory protein, LuxR. J Basic Microbiol 2016; 56:1051-1058. [DOI: 10.1002/jobm.201600002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/19/2016] [Indexed: 11/09/2022]
Affiliation(s)
- El-Shaymaa Abdel-Sattar
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama University; 1-1-1, Tsushima-Naka, Kita-Ku Okayama Japan
- Chemical Industries Development Company; Assiut Egypt
| | - Shin-ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama University; 1-1-1, Tsushima-Naka, Kita-Ku Okayama Japan
| | - Abdelaziz Elgaml
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama University; 1-1-1, Tsushima-Naka, Kita-Ku Okayama Japan
- Faculty of Pharmacy, Department of Microbiology and Immunology; Mansoura University; Elgomhouria Street Mansoura Egypt
| |
Collapse
|
19
|
Guardiola-Avila I, Acedo-Felix E, Sifuentes-Romero I, Yepiz-Plascencia G, Gomez-Gil B, Noriega-Orozco L. Molecular and Genomic Characterization of Vibrio mimicus Isolated from a Frozen Shrimp Processing Facility in Mexico. PLoS One 2016; 11:e0144885. [PMID: 26730584 PMCID: PMC4701432 DOI: 10.1371/journal.pone.0144885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/24/2015] [Indexed: 11/21/2022] Open
Abstract
Vibrio mimicus is a gram-negative bacterium responsible for diseases in humans. Three strains of V. mimicus identified as V. mimicus 87, V. mimicus 92 and V. mimicus 93 were isolated from a shrimp processing facility in Guaymas, Sonora, Mexico. The strains were analyzed using several molecular techniques and according to the cluster analysis they were different, their similarities ranged between 51.3% and 71.6%. ERIC-PCR and RAPD (vmh390R) were the most discriminatory molecular techniques for the differentiation of these strains. The complete genomes of two strains (V. mimicus 87, renamed as CAIM 1882, and V. mimicus 92, renamed as CAIM 1883) were sequenced. The sizes of the genomes were 3.9 Mb in both strains, with 2.8 Mb in ChI and 1.1 Mb in ChII. A 12.7% difference was found in the proteome content (BLAST matrix). Several virulence genes were detected (e.g. capsular polysaccharide, an accessory colonization factor and genes involved in quorum-sensing) which were classified in 16 categories. Variations in the gene content between these genomes were observed, mainly in proteins and virulence genes (e.g., hemagglutinin, mobile elements and membrane proteins). According to these results, both strains were different, even when they came from the same source, giving an insight of the diversity of V. mimicus. The identification of various virulence genes, including a not previously reported V. mimicus gene (acfD) in ChI in all sequenced strains, supports the pathogenic potential of this species. Further analysis will help to fully understand their potential virulence, environmental impact and evolution.
Collapse
Affiliation(s)
| | - Evelia Acedo-Felix
- Centro de Investigación en Alimentación y Desarrollo, A.C Hermosillo, Sonora, México
| | - Itzel Sifuentes-Romero
- Mazatlán Unit for Aquaculture and Environmental Management. Centro de Investigación en Alimentación y Desarrollo, A.C. Mazatlán, Sinaloa, México
| | | | - Bruno Gomez-Gil
- Mazatlán Unit for Aquaculture and Environmental Management. Centro de Investigación en Alimentación y Desarrollo, A.C. Mazatlán, Sinaloa, México
| | - Lorena Noriega-Orozco
- Guaymas Unit: Quality Assurance and Management of Natural Resources. Centro de Investigación en Alimentación y Desarrollo, A.C. Guaymas, Sonora, México
| |
Collapse
|