1
|
Chuai X, Zhou Y, Feng J, Yu M, Wu Y, Han L, Zhao Y, Qiao H, Gao Z, Li J, Xie L, Zhao W, Wang C. Analysis of multidrug-resistant determinants of clinically isolated Acinetobacter baumannii CYZ via whole genome sequencing. Microbiol Immunol 2023; 67:396-403. [PMID: 37403254 DOI: 10.1111/1348-0421.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
Acinetobacter baumannii is a multidrug-resistant coccobacillus responsible for severe nosocomial infectious diseases. This study mainly focuses on investigating the antimicrobial resistance features of a clinically isolated strain (A. baumannii CYZ) using the PacBio Sequel II sequencing platform. The chromosomal size of A. baumannii CYZ is 3,960,760 bp, which contains a total of 3803 genes with a G + C content of 39.06%. Functional analysis performed using the Clusters of Orthologous Groups of Proteins (COGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, as well as the Comprehensive Antibiotic Resistance Database (CARD) revealed a complicated set of antimicrobial resistance determinants in the genome of A. baumannii CYZ, which were mainly classified into multidrug efflux pumps and transport systems, β-lactamase relative and penicillin-binding proteins, aminoglycoside modification enzymes, alternation of antibiotic target sites, lipopolysaccharide relative, and other mechanisms. A total of 35 antibiotics were tested for the antimicrobial susceptibility of A. baumannii CYZ, and the organism exhibited a stronger antimicrobial resistance ability. The phylogenetic relationship indicated that A. baumannii CYZ has high homology with A. baumannii ATCC 17978; however, the former also exhibited its specific genome characteristics. Our research results give insight into the genetic antimicrobial-resistant features of A. baumannii CYZ as well as provide a genetic basis for the further study of the phenotype.
Collapse
Affiliation(s)
- Xia Chuai
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, PR China
| | - Yaya Zhou
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, PR China
| | - Junhua Feng
- Clinical Laboratory, The Fourth Hospital, Hebei Medical University, Shijiazhuang, PR China
| | - Menghan Yu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, PR China
| | - Yan Wu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, PR China
| | - Lujuan Han
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, PR China
| | - Yan Zhao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, PR China
| | - Hongxiu Qiao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, PR China
- Department of Experimental Center of Teaching, Hebei Medical University, Shijiazhuang, PR China
| | - Zhiyun Gao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, PR China
| | - Jian Li
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, PR China
| | - Lixin Xie
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, PR China
| | - Wenting Zhao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, PR China
| | - Changle Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, PR China
| |
Collapse
|
2
|
Yang JL, Li D, Zhan XY. Concept about the Virulence Factor of Legionella. Microorganisms 2022; 11:microorganisms11010074. [PMID: 36677366 PMCID: PMC9867486 DOI: 10.3390/microorganisms11010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Pathogenic species of Legionella can infect human alveolar macrophages through Legionella-containing aerosols to cause a disease called Legionellosis, which has two forms: a flu-like Pontiac fever and severe pneumonia named Legionnaires' disease (LD). Legionella is an opportunistic pathogen that frequently presents in aquatic environments as a biofilm or protozoa parasite. Long-term interaction and extensive co-evolution with various genera of amoebae render Legionellae pathogenic to infect humans and also generate virulence differentiation and heterogeneity. Conventionally, the proteins involved in initiating replication processes and human macrophage infections have been regarded as virulence factors and linked to pathogenicity. However, because some of the virulence factors are associated with the infection of protozoa and macrophages, it would be more accurate to classify them as survival factors rather than virulence factors. Given that the molecular basis of virulence variations among non-pathogenic, pathogenic, and highly pathogenic Legionella has not yet been elaborated from the perspective of virulence factors, a comprehensive explanation of how Legionella infects its natural hosts, protozoans, and accidental hosts, humans is essential to show a novel concept regarding the virulence factor of Legionella. In this review, we overviewed the pathogenic development of Legionella from protozoa, the function of conventional virulence factors in the infections of protozoa and macrophages, the host's innate immune system, and factors involved in regulating the host immune response, before discussing a probably new definition for the virulence factors of Legionella.
Collapse
|
3
|
Head BM, Graham CI, MacMartin T, Keynan Y, Brassinga AKC. Development of a Fluorescent Tool for Studying Legionella bozemanae Intracellular Infection. Microorganisms 2021; 9:379. [PMID: 33668592 PMCID: PMC7917989 DOI: 10.3390/microorganisms9020379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/14/2023] Open
Abstract
Legionnaires' disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.
Collapse
Affiliation(s)
- Breanne M. Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Christopher I. Graham
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.I.G.); (T.M.); (A.K.C.B.)
| | - Teassa MacMartin
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.I.G.); (T.M.); (A.K.C.B.)
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Ann Karen C. Brassinga
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.I.G.); (T.M.); (A.K.C.B.)
| |
Collapse
|
4
|
Ma J, Feng J, Shan Y, Zhao Y, Qiao H, Xie L, Lin X, Wang C, Chuai X. Characteristic antimicrobial resistance of clinically isolated Stenotrophomonas maltophilia CYZ via complete genome sequence. J Glob Antimicrob Resist 2020; 23:186-193. [DOI: 10.1016/j.jgar.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023] Open
|
5
|
Gomes TS, Gjiknuri J, Magnet A, Vaccaro L, Ollero D, Izquierdo F, Fenoy S, Hurtado C, Del Águila C. The Influence of Acanthamoeba- Legionella Interaction in the Virulence of Two Different Legionella Species. Front Microbiol 2018; 9:2962. [PMID: 30568639 PMCID: PMC6290054 DOI: 10.3389/fmicb.2018.02962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022] Open
Abstract
The genus Legionella comprises more than 60 species, and about half are associated with infection. Legionella pneumophila is the most commonly associated with these infections and by far the most studied, but L. non-pneumophila species, such as L. feeleii, L. anisa, etc., may also present clinical importance. Free-living amoebae are their preferred environmental host, where these bacteria not only survive but also succeed in multiplying, and this relationship can lead to an increase in bacterial virulence. The goal of this study was to evaluate the alterations of Legionella pathogenicity due to its interaction with Acanthamoeba. For this, the expression of protein effectors SdhA, LegK2, and SidK were evaluated in L. pneumophila and L. feeleii, before and after infecting Acanthamoeba. Additionally, the host response was evaluated by measuring the production of IL-6, IL-8, and IFN-γ in infected macrophages. Regarding the virulence factors, an increase in SdhA expression was observed after these bacteria infected Acanthamoeba, with a higher increase in the macrophage cultures infected with L. feeleii. Also, an increase in the expression of LegK2 was observed after infecting Acanthamoeba, but it was more intense in the cultures infected with L. pneumophila. With regard to SidK, it was increased in L. feeleii after infecting Acanthamoeba, however the same effect was not observed for L. pneumophila. In cytokine production, the effect on IL-6 and IL-8 was similar for both cytokines, increasing their concentration, but higher production was observed in the cultures infected with L. feeleii, even though it demonstrated slightly lower production with the inoculum obtained from Acanthamoeba. Concerning IFN-γ, induction was observed in both species but higher in the infection by L. pneumophila. Nevertheless, it is not known if this induction is enough to promote an efficient immune response against either L. pneumophila or L. feeleii. Altogether, these alterations seem to increase L. feeleii virulence after infecting Acanthamoeba. However, this increase does not seem to turn L. feeleii as virulent as L. pneumophila. More studies are necessary to understand the aspects influenced in these bacteria by their interaction with Acanthamoeba and, thus, identify targets to be used in future therapeutic approaches.
Collapse
Affiliation(s)
- Thiago Santos Gomes
- Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Julia Gjiknuri
- Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Angela Magnet
- Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Lucianna Vaccaro
- Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Dolores Ollero
- Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Fernando Izquierdo
- Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Soledad Fenoy
- Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Carolina Hurtado
- Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Carmen Del Águila
- Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
6
|
Legionella feeleii: pneumonia or Pontiac fever? Bacterial virulence traits and host immune response. Med Microbiol Immunol 2018; 208:25-32. [PMID: 30386929 DOI: 10.1007/s00430-018-0571-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/27/2018] [Indexed: 12/19/2022]
Abstract
Gram-negative bacterium Legionella is able to proliferate intracellularly in mammalian host cells and amoeba, which became known in 1976 since they caused a large outbreak of pneumonia. It had been reported that different strains of Legionella pneumophila, Legionella micdadei, Legionella longbeachae, and Legionella feeleii caused human respiratory diseases, which were known as Pontiac fever or Legionnaires' disease. However, the differences of the virulence traits among the strains of the single species and the pathogenesis of the two diseases that were due to the bacterial virulence factors had not been well elucidated. L. feeleii is an important pathogenic organism in Legionellae, which attracted attention due to cause an outbreak of Pontiac fever in 1981 in Canada. In published researches, it has been found that L. feeleii serogroup 2 (ATCC 35849, LfLD) possess mono-polar flagellum, and L. feeleii serogroup 1 (ATCC 35072, WRLf) could secrete some exopolysaccharide (EPS) materials to the surrounding. Although the virulence of the L. feeleii strain was evidenced that could be promoted, the EPS might be dispensable for the bacteria that caused Pontiac fever. Based on the current knowledge, we focused on bacterial infection in human and murine host cells, intracellular growth, cytopathogenicity, stimulatory capacity of cytokines secretion, and pathogenic effects of the EPS of L. feeleii in this review.
Collapse
|
7
|
Appelt S, Heuner K. The Flagellar Regulon of Legionella-A Review. Front Cell Infect Microbiol 2017; 7:454. [PMID: 29104863 PMCID: PMC5655016 DOI: 10.3389/fcimb.2017.00454] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/06/2017] [Indexed: 12/15/2022] Open
Abstract
The Legionella genus comprises more than 60 species. In particular, Legionella pneumophila is known to cause severe illnesses in humans. Legionellaceae are ubiquitous inhabitants of aquatic environments. Some Legionellaceae are motile and their motility is important to move around in habitats. Motility can be considered as a potential virulence factor as already shown for various human pathogens. The genes of the flagellar system, regulator and structural genes, are structured in hierarchical levels described as the flagellar regulon. Their expression is modulated by various environmental factors. For L. pneumophila it was shown that the expression of genes of the flagellar regulon is modulated by the actual growth phase and temperature. Especially, flagellated Legionella are known to express genes during the transmissive phase of growth that are involved in the expression of virulence traits. It has been demonstrated that the alternative sigma-28 factor is part of the link between virulence expression and motility. In the following review, the structure of the flagellar regulon of L. pneumophila is discussed and compared to other flagellar systems of different Legionella species. Recently, it has been described that Legionella micdadei and Legionella fallonii contain a second putative partial flagellar system. Hence, the report will focus on flagellated and non-flagellated Legionella strains, phylogenetic relationships, the role and function of the alternative sigma factor (FliA) and its anti-sigma-28 factor (FlgM).
Collapse
Affiliation(s)
- Sandra Appelt
- Highly Pathogenic Microorganisms, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Klaus Heuner
- Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
8
|
Wang C, Saito M, Ogawa M, Yoshida SI. Colony types and virulence traits of Legionella feeleii determined by exopolysaccharide materials. FEMS Microbiol Lett 2016; 363:fnw098. [PMID: 27190244 DOI: 10.1093/femsle/fnw098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2016] [Indexed: 11/14/2022] Open
Abstract
Legionella feeleii is a Gram-negative pathogenic bacterium that causes Pontiac fever and pneumonia in humans. When L. feeleii serogroup 1 (ATCC 35072) was cultured on BCYE agar plates, two types of colonies were observed and exhibited differences in color, opacity and morphology. Since the two colony types are white rugose and brown translucent, they were termed as white rugose L. feeleii (WRLf) and brown translucent L. feeleii (BTLf), respectively. They exhibited different growth capacities in BYE broth in vitro, and it was found that WRLf could transform to BTLf. Under the electron microscope, it was observed that WRLf secreted materials which could be stained with ruthenium red, which was absent in BTLf. When U937 macrophages and HeLa cells were infected with the bacteria, WRLf manifested stronger internalization ability than BTLf. Intracellular growth in murine macrophages and Acanthamoeba cells was affected by the level of initial phagocytosis. WRLf was more resistant to human serum bactericidal action than BTLf. After being inoculated to guinea pigs, both organisms caused fever in the animals. These results suggest that ruthenium red-stained materials secreted in the surroundings may play a crucial role in determining L. feeleii colony morphology and virulence traits.
Collapse
Affiliation(s)
- Changle Wang
- Department of Bacteriology, Graduate school of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsumasa Saito
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Midori Ogawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Shin-Ichi Yoshida
- Department of Bacteriology, Graduate school of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Kirschner AK. Determination of viable legionellae in engineered water systems: Do we find what we are looking for? WATER RESEARCH 2016; 93:276-288. [PMID: 26928563 PMCID: PMC4913838 DOI: 10.1016/j.watres.2016.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 05/06/2023]
Abstract
In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health.
Collapse
Affiliation(s)
- Alexander K.T. Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090 Vienna, Austria
- Interuniversity Cooperation Centre for Water & Health, Austria
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene Kinderspitalgasse 16, A-1090 Vienna, Austria . URL: http://www.waterandhealth.at
| |
Collapse
|