1
|
Bärland N, Rueff AS, Cebrero G, Hutter CAJ, Seeger MA, Veening JW, Perez C. Mechanistic basis of choline import involved in teichoic acids and lipopolysaccharide modification. SCIENCE ADVANCES 2022; 8:eabm1122. [PMID: 35235350 PMCID: PMC8890701 DOI: 10.1126/sciadv.abm1122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Phosphocholine molecules decorating bacterial cell wall teichoic acids and outer-membrane lipopolysaccharide have fundamental roles in adhesion to host cells, immune evasion, and persistence. Bacteria carrying the operon that performs phosphocholine decoration synthesize phosphocholine after uptake of the choline precursor by LicB, a conserved transporter among divergent species. Streptococcus pneumoniae is a prominent pathogen where phosphocholine decoration plays a fundamental role in virulence. Here, we present cryo-electron microscopy and crystal structures of S. pneumoniae LicB, revealing distinct conformational states and describing architectural and mechanistic elements essential to choline import. Together with in vitro and in vivo functional characterization, we found that LicB displays proton-coupled import activity and promiscuous selectivity involved in adaptation to choline deprivation conditions, and describe LicB inhibition by synthetic nanobodies (sybodies). Our results provide previously unknown insights into the molecular mechanism of a key transporter involved in bacterial pathogenesis and establish a basis for inhibition of the phosphocholine modification pathway across bacterial phyla.
Collapse
Affiliation(s)
| | - Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Cedric A. J. Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Markus A. Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | - Camilo Perez
- Biozentrum, University of Basel, Basel 4056, Switzerland
| |
Collapse
|
2
|
Neves AT, Stenner R, Race PR, Curnow P. Expression, purification and preliminary characterisation of the choline transporter LicB from opportunistic bacterial pathogens. Protein Expr Purif 2021; 190:106011. [PMID: 34737041 DOI: 10.1016/j.pep.2021.106011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 11/28/2022]
Abstract
Many opportunistic bacteria that infect the upper respiratory tract decorate their cell surface with phosphorylcholine to support colonisation and outgrowth. These surface modifications require the active import of choline from the host environment, a process thought to be mediated by a family of dedicated integral membrane proteins that act as choline permeases. Here, we present the expression and purification of the archetype of these choline transporters, LicB from Haemophilus influenzae. We show that LicB can be recombinantly produced in Escherichia coli and purified to homogeneity in a stable, folded state using the detergent n-dodecyl-β-d-maltopyranoside. Equilibrium binding studies with the fluorescent ligand dansylcholine suggest that LicB is selective towards choline, with reduced affinity for acetylcholine and no apparent activity towards other small molecules including glycine, carnitine and betaine. We also identify a conserved sequence motif within the LicB family and show that mutations within this motif compromise protein structure and function. Our results are consistent with previous observations that LicB is a specific high-affinity choline transporter, and provide an experimental platform for further studies of this permease family.
Collapse
Affiliation(s)
| | | | - Paul R Race
- School of Biochemistry, University of Bristol, UK
| | - Paul Curnow
- School of Biochemistry, University of Bristol, UK.
| |
Collapse
|
3
|
Cardoso B, Fontana H, Esposito F, Cerdeira L, Santos SR, Yoshioka CRM, da Silveira IR, Cassettari V, Lincopan N. Genomic insights of international clones of Haemophilus influenzae causing invasive infections in vaccinated and unvaccinated infants. Microb Pathog 2020; 150:104644. [PMID: 33259886 DOI: 10.1016/j.micpath.2020.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
The emergence of invasive Haemophilus influenzae infections in vaccinated patient is a public health concern. We have investigated the genomic basis of invasiveness and possible vaccine failure in H. influenzae causing invasive disease in vaccinated and unvaccinated children in Brazil. Three H. influenzae strains isolated from blood cultures of pediatric patients were sequenced. Serotype, MLST, resistome and virulome were predicted using bioinformatic tools, whereas single nucleotide polymorphisms (SNPs) analysis of cap loci and the presence of the putative virulence-enhancing IS1016-bexA partial deletion were predicted in silico. Infections were caused by H. influenzae type a (Hia), type b (Hib) and nontypeable (NTHi), belonging to international high-risk clones of sequence types ST23, ST6 and ST368, respectively, which have been identified in North American, European and Asian countries. Convergence of ampicillin resistance and virulence in Hib-ST6 was supported by blaTEM-1B and deletion in the bexA gene, whereas presence of SNPs in the cap-b locus was associated with antigenic modifications of the capsule structure. Hia-ST23 and NTHi-ST368 strains carried galU, lpsA, opsX, rfaF, iga1, lgtC and lic1/lic2 virulence genes, associated with colonization, adaptation and damage to the lung, or invasiveness. In summary, deletion in the bexA gene and presence of SNPs in the cap locus of Hib could be contributing to invasive disease and possible vaccine failure in pediatric patients, whereas serotype replacement of Hib with type "a" and NTHi strains denotes the ability of non-vaccine serotypes to re-colonize vaccinated patients. Finally, the dissemination of international high-risk clones of H. influenzae emphasizes the importance of monitoring changes in the molecular epidemiology of invasive H. influenzae disease.
Collapse
Affiliation(s)
- Brenda Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| | - Herrison Fontana
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Louise Cerdeira
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Silvia R Santos
- University Hospital, Infection Control Committee, University of São Paulo, Brazil
| | | | - Isa R da Silveira
- University Hospital, Infection Control Committee, University of São Paulo, Brazil
| | - Valéria Cassettari
- University Hospital, Infection Control Committee, University of São Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Klonoski JM, Watson T, Bickett TE, Svendsen JM, Gau TJ, Britt A, Nelson JT, Schlenker EH, Chaussee MS, Rynda-Apple A, Huber VC. Contributions of Influenza Virus Hemagglutinin and Host Immune Responses Toward the Severity of Influenza Virus: Streptococcus pyogenes Superinfections. Viral Immunol 2018; 31:457-469. [PMID: 29870311 PMCID: PMC6043403 DOI: 10.1089/vim.2017.0193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections can be complicated by bacterial superinfections, which are medically relevant because of a complex interaction between the host, the virus, and the bacteria. Studies to date have implicated several influenza virus genes, varied host immune responses, and bacterial virulence factors, however, the host-pathogen interactions that predict survival versus lethal outcomes remain undefined. Previous work by our group showed that certain influenza viruses could yield a survival phenotype (A/swine/Texas/4199-2/98-H3N2, TX98), whereas others were associated with a lethal phenotype (A/Puerto Rico/8/34-H1N1, PR8). Based on this observation, we developed the hypothesis that individual influenza virus genes could contribute to a superinfection, and that the host response after influenza virus infection could influence superinfection severity. The present study analyzes individual influenza virus gene contributions to superinfection severity using reassortant viruses created using TX98 and PR8 viral genes. Host and pathogen interactions, relevant to survival and lethal phenotypes, were studied with a focus on pathogen clearance, host cellular infiltrates, and cytokine levels after infection. Specifically, we found that the hemagglutinin gene expressed by an influenza virus can contribute to the severity of a secondary bacterial infection, likely through modulation of host proinflammatory responses. Altogether, these results advance our understanding of molecular mechanisms underlying influenza virus-bacteria superinfections and identify viral and corresponding host factors that may contribute to morbidity and mortality.
Collapse
Affiliation(s)
- Joshua M. Klonoski
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Trevor Watson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Thomas E. Bickett
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Joshua M. Svendsen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Tonia J. Gau
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Alexandra Britt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Jeff T. Nelson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Evelyn H. Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Michael S. Chaussee
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|