1
|
Yang M, Yan H, Zhou J, Zhang J, Pan Y, Zhong H, Cai H, Xu Y, Wang J, Feng F, Zhao M. Physicochemical characterization, release profile, and antibacterial mechanisms of caffeic acid phenethyl ester loaded in lipid nanocapsules with lauric acid and glycerol monolaurate. Food Res Int 2025; 209:116208. [PMID: 40253176 DOI: 10.1016/j.foodres.2025.116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Numerous studies have demonstrated the biological activities of caffeic acid phenethyl ester (CAPE), including antibacterial, antioxidant, and anti-inflammatory properties. However, the application of CAPE is limited by its low bioavailability and stability. In this work, we designed a CAPE loaded nanocapsule system by using polyoxyl-15-hydroxystearate, coconut oil and lecithin (LE)/lauric acid (LA)/glycerol monolaurate (GML) to improve the release rate of CAPE. The Blank-GML-lipid nanocapsules (BK-GML) and CAPE loaded BK-GML (CAPE-GML) were mainly assembled by hydrophobic forces and electrostatic forces, exhibited a typical spherical shape with a diameter size of less than 90 nm. The encapsulation and loading efficiencies of BK-GML and CAPE-GML reached 74.27 % and 9.61 %, respectively. Lipid nanocapsules (LNCs) also demonstrated a good sustained release of CAPE during in vitro stimulated digestion, indicating LNCs enable sustained CAPE release to the colon. Additionally, they showed a strong antibacterial activity against Escherichia coli and Staphylococcus aureus through the damage of the bacterial cytoderm. Also, BK-GML and CAPE-GML could inhibit the contamination and spread of pathogenic bacteria to be further applied in foods and pharmaceuticals industries.
Collapse
Affiliation(s)
- Mengyu Yang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Heng Yan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Jie Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Ya Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haiying Cai
- School of Biological & Chemical Engineering, Zhejiang Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China; Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan, 512000, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Quintana Soares Lopes L, Fortes Guerim PH, Maldonado ME, Wagner R, Hadlich Xavier AC, Gutknecht da Silva JL, Bittencourt da Rosa Leal D, de Freitas Daudt N, Christ Vianna Santos R, Kolling Marquezan P. Chemical composition, cytotoxicity, antimicrobial, antibiofilm, and anti-quorum sensing potential of Mentha Piperita essential oil against the oral pathogen Streptococcus mutans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:824-835. [PMID: 38984907 DOI: 10.1080/15287394.2024.2375731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Dental caries is a highly prevalent oral disease affecting billions of individuals globally. The disease occurs chemically as a result of breakdown of the tooth surface attributed to metabolic activity in colonizing biofilm. Biofilms, composed of exopolysaccharides and proteins, protect bacteria like Streptococcus mutans, which is notable for its role in tooth decay due to its acid-producing abilities. While various antimicrobial agents may prevent biofilm formation, these drugs often produce side effects including enamel erosion and taste disturbances. This study aimed to examine utilization of the Mentha piperita essential oil as a potential antibiofilm activity agent against S. mutans. M. piperita oil significantly (1) reduced bacterial biofilm, (2) exhibited a synergistic effect when combined with chlorhexidine, and (3) did not induce cell toxicity. Chemical analysis identified the essential oil with 99.99% certainty, revealing menthol and menthone as the primary components, constituting approximately 42% and 26%, respectively. Further, M. piperita oil eradicated preformed biofilms and inhibited biofilm formation at sub-inhibitory concentrations. M. piperita oil also interfered with bacterial quorum sensing communication and did not produce any apparent cell toxicity in immortalized human keratinocytes (HaCaT). M. piperita represented an alternative substance for combating S. mutans and biofilm formation and a potential combination option with chlorhexidine to minimize side effects. An in-situ performance assessment requires further studies.
Collapse
Affiliation(s)
- Leonardo Quintana Soares Lopes
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Pedro Henrique Fortes Guerim
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Maria Eduarda Maldonado
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Roger Wagner
- Department of Food Science and Technology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil
| | - Ana Carolina Hadlich Xavier
- Department of Food Science and Technology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil
| | - Jean Lucas Gutknecht da Silva
- Laboratory of Experimental and Applied Immunobiology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Daniella Bittencourt da Rosa Leal
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Experimental and Applied Immunobiology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Natália de Freitas Daudt
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Roberto Christ Vianna Santos
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Patrícia Kolling Marquezan
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Arroyo-Urea EM, Lázaro-Díez M, Garmendia J, Herranz F, González-Paredes A. Lipid-based nanomedicines for the treatment of bacterial respiratory infections: current state and new perspectives. Nanomedicine (Lond) 2024; 19:325-343. [PMID: 38270350 DOI: 10.2217/nnm-2023-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The global threat posed by antimicrobial resistance demands urgent action and the development of effective drugs. Lower respiratory tract infections remain the deadliest communicable disease worldwide, often challenging to treat due to the presence of bacteria that form recalcitrant biofilms. There is consensus that novel anti-infectives with reduced resistance compared with conventional antibiotics are needed, leading to extensive research on innovative antibacterial agents. This review explores the recent progress in lipid-based nanomedicines developed to counteract bacterial respiratory infections, especially those involving biofilm growth; focuses on improved drug bioavailability and targeting and highlights novel strategies to enhance treatment efficacy while emphasizing the importance of continued research in this dynamic field.
Collapse
Affiliation(s)
- Eva María Arroyo-Urea
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - María Lázaro-Díez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas y Gobierno de Navarra (IdAB-CSIC), Av. de Pamplona, 123, 31192, Mutilva, Navarra, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas y Gobierno de Navarra (IdAB-CSIC), Av. de Pamplona, 123, 31192, Mutilva, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Fernando Herranz
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva, 3, 28006, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Ana González-Paredes
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| |
Collapse
|
4
|
Zahra T, Badiei A, Hamedi J. Effect of the Nanoclay Treated Streptomyces sp. UTMC 3136 as a Bioformulation on the Growth of Helianthus annuus. Curr Microbiol 2022; 79:299. [PMID: 36002542 DOI: 10.1007/s00284-022-02993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
Biofertilizers based on plant growth-promoting actinobacteria are used as potential alternatives to chemical fertilizers for sustainable agricultural systems. However, successful application of PGPA to agricultural land is challenging. The present study was an attempt to develop and evaluate the effect of a low-cost biofertilizer named NCTS (nanoclay-treated-Streptomyces) based on Streptomyces sp. UTMC 3136 spores amalgamated in a hybrid material of nanoclay Na-montmorillonite K10-glycerol-water substrate. In addition, the effect of NCTS on sunflower growth was investigated. In vivo tests showed a statistically significant increase in the agronomic characteristics of sunflowers treated with NCTS. Characterization of NCTS by FTIR, Raman spectroscopy, and scanning electron microscopy testified to the structural alignment and good adhesion of NCTS components. The viability of NCTS was 100% after 72 h of storage at 4 °C. Overall, the present study attempted to validate the efficacy of the formulation of Streptomyces sp. UTMC 3136 in nanoclay for growth improvement of sunflower. It was the first study to show the administration of PGPA in combination with nanomaterials as a growth enhancing biofertilization agent for sunflower.
Collapse
Affiliation(s)
- Tamkeen Zahra
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
- Microbial Technology and Products (MTP) Research Center, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- Department of Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
- Microbial Technology and Products (MTP) Research Center, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02207-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
7
|
Copolymer-nanocapsules of zinc phenyl-thio-phthalocyanine and amphotericin-B in association with antimicrobial photodynamic therapy (A-PDT) applications against Candida albicans yeasts. Photodiagnosis Photodyn Ther 2021; 34:102273. [PMID: 33798749 DOI: 10.1016/j.pdpdt.2021.102273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/26/2022]
Abstract
Antimicrobial Photodynamic Therapy (A-PDT) is a modern and non-invasive therapeutic modality. Nanostructures like the polymeric nanocapsules (NC) has proved to be a system that has enormous potential to improve current antimicrobial therapeutic practice. NC of Zinc phenyl-thio-phthalocyanine and Amphotericin B association (NC/ZnS4Pc + AMB) built with poly(lactide-co-glycolide) (PLGA) 50:50 using the preformed polymer interfacial deposition method were developed at a 0.05 mg mL- 1 theoretical concentration to improve antifungal activity with two actives association and assistance from PDTa. It showed an average particle diameter of 253.8 ± 17.3, an average polydispersity index of 0.36 ± 0.01, and a negative Zeta potential average of -31.03 ± 5.54 for 158 days. UV-vis absorption and emission spectroscopy analyses did not show changes in photophysical properties in the steady-state of NC/ZnS4Pc + AMB counterparts free ZnS4Pc. The encapsulation percentage of actives was 89.24 % and 7.40 % for ZnS4Pc and AMB, respectively. Cell viability assay using NIH/3T3 ATCC® CRL-1658 ™ cells line showed no cytotoxicity for the concentrations tested. The photodynamic activity assay using NC/ZnS4Pc + AMB diluted showed fungal toxicity against Candida albicans yeast with energetic fluences of 12 J.cm-2 and 25 J.cm-2 by a decrease in cell viability. The MFC assay demonstrated a fungistatic activity for the conditions employed in the PDTa assay. The results show that NC/ZnS4Pc + AMB is a promising nanomaterial for antimicrobial inactivation using PDT.
Collapse
|
8
|
Effects of α-glyceryl monolaurate on growth, immune function, volatile fatty acids, and gut microbiota in broiler chickens. Poult Sci 2020; 100:100875. [PMID: 33516466 PMCID: PMC7936147 DOI: 10.1016/j.psj.2020.11.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
This study was conducted to determine the effects of dietary addition of α-glyceryl monolaurate (α-GML) on growth performance, immune function, volatile fatty acids production and cecal microbiota in broiler chickens. A total of 480 1-day-old yellow-feathered broilers were randomly assigned in equal numbers to 4 dietary treatments: basal diet (NCO) or supplementations with 30 mg/kg bacitracin (ANT), 500 mg/kg α-GML, or 1,000 mg/kg α-GML (GML2). And, each treatment contained 8 replicates with 15 chickens per replicate. After supplementation with α-GML, the total BW gain and average daily weight gain of broilers increased significantly (P < 0.05) compared with the broilers on the NCO diet. Moreover, compared with the NCO group, higher levels of immune globulin M and immune globulin Y were observed in both GML groups and the ANT group. Concentrations of acetate, propionate, butyrate, valerate, and isovalerate in GML2 were significantly higher (P < 0.05) than those in the NCO group on day 28. However, acetate, propionate, valerate, and isovalerate concentrations were reduced to significantly (P < 0.05) lower than those in the NCO group on day 56. The abundance and diversity of microbiota were found to be improved in broilers that were supplemented with GML, using operational taxonomic unit and diversity analyses. Furthermore, the GML treatments increased favorable microbiota, particularly acid-producing bacteria, on day 28 and, also, reduced opportunistic pathogens, such as Alistipes tidjanibacter and Bacteroides dorei by day 56. These results suggest that α-GML supplementation modulates cecal microbiota and broiler immunity and improves volatile fatty acid levels during the early growth stages of broilers.
Collapse
|
9
|
Lemoine V, Bernard C, Leman-Loubière C, Clément-Larosière B, Girardot M, Boudesocque-Delaye L, Munnier E, Imbert C. Nanovectorized Microalgal Extracts to Fight Candida albicans and Cutibacterium acnes Biofilms: Impact of Dual-Species Conditions. Antibiotics (Basel) 2020; 9:E279. [PMID: 32466354 PMCID: PMC7344943 DOI: 10.3390/antibiotics9060279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
Biofilm-related infections are a matter of concern especially because of the poor susceptibility of microorganisms to conventional antimicrobial agents. Innovative approaches are needed. The antibiofilm activity of extracts of cyanobacteria Arthrospira platensis, rich in free fatty acids, as well as of extract-loaded copper alginate-based nanocarriers, were studied on single- and dual-species biofilms of Candida albicans and Cutibacterium acnes. Their ability to inhibit the biofilm formation and to eradicate 24 h old biofilms was investigated. Concentrations of each species were evaluated using flow cytometry. Extracts prevented the growth of C. acnes single-species biofilms (inhibition > 75% at 0.2 mg/mL) but failed to inhibit preformed biofilms. Nanovectorised extracts reduced the growth of single-species C. albicans biofilms (inhibition > 43% at 0.2 mg/mL) while free extracts were weakly or not active. Nanovectorised extracts also inhibited preformed C. albicans biofilms by 55% to 77%, whereas the corresponding free extracts were not active. In conclusion, even if the studied nanocarrier systems displayed promising activity, especially against C. albicans, their efficacy against dual-species biofilms was limited. This study highlighted that working in such polymicrobial conditions can give a more objective view of the relevance of antibiofilm strategies by taking into account interspecies interactions that can offer additional protection to microbes.
Collapse
Affiliation(s)
- Virginie Lemoine
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (V.L.); (C.B.); (M.G.)
| | - Clément Bernard
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (V.L.); (C.B.); (M.G.)
| | - Charlotte Leman-Loubière
- Laboratoire SIMBA EA 7502, Faculté de Pharmacie, Université de Tours, 31 avenue Monge, 37200 Tours, France; (C.L.-L.); (L.B.-D.)
| | | | - Marion Girardot
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (V.L.); (C.B.); (M.G.)
| | - Leslie Boudesocque-Delaye
- Laboratoire SIMBA EA 7502, Faculté de Pharmacie, Université de Tours, 31 avenue Monge, 37200 Tours, France; (C.L.-L.); (L.B.-D.)
| | - Emilie Munnier
- Laboratoire Nanomédicaments et Nanosondes EA 6295, Faculté de Pharmacie, Université de Tours, 31 avenue Monge, 37200 Tours, France;
| | - Christine Imbert
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (V.L.); (C.B.); (M.G.)
| |
Collapse
|
10
|
Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities. NANOMATERIALS 2020; 10:nano10050847. [PMID: 32354008 PMCID: PMC7711922 DOI: 10.3390/nano10050847] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Polymer-based nanocapsules have been widely studied as a potential drug delivery system in recent years. Nanocapsules-as one of kind nanoparticle-provide a unique nanostructure, consisting of a liquid/solid core with a polymeric shell. This is of increasing interest in drug delivery applications. In this review, nanocapsules delivery systems studied in last decade are reviewed, along with nanocapsule formulation, characterizations of physical/chemical/biologic properties and applications. Furthermore, the challenges and opportunities of nanocapsules applications are also proposed.
Collapse
|
11
|
Barker LA, Bakkum BW, Chapman C. The Clinical Use of Monolaurin as a Dietary Supplement: A Review of the Literature. J Chiropr Med 2019; 18:305-310. [PMID: 32952476 PMCID: PMC7486475 DOI: 10.1016/j.jcm.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The purpose of this study was to determine what the peer-reviewed literature says about the clinical applications, therapeutic dosages, bioavailability, efficacy, and safety of monolaurin as a dietary supplement. METHODS This was a narrative review using the PubMed database and the terms "monolaurin" and its chemical synonyms. Commercial websites that sell monolaurin were also searched for pertinent references. The reference sections of the newer articles were searched for any other relevant articles. Consensus was reached among the authors as to what articles had clinical relevance. RESULTS Twenty-eight articles were found that appeared to address the clinical use of monolaurin. CONCLUSION There are many articles that address the antimicrobial effects of monolaurin in vitro. Only 3 peer-reviewed papers that evidence in vivo antimicrobial effects of monolaurin in humans were located, and these were only for intravaginal and intraoral-that is, topical-use. No peer-reviewed evidence was found for the clinical use of monolaurin as a human dietary supplement other than as a nutrient.
Collapse
Affiliation(s)
- Lisa A. Barker
- Hartsburg Chiropractic Health Center, Danbury, Connecticut
| | | | | |
Collapse
|
12
|
Zhang Q, Wu W, Zhang J, Xia X. Antimicrobial lipids in nano-carriers for antibacterial delivery. J Drug Target 2019; 28:271-281. [PMID: 31613147 DOI: 10.1080/1061186x.2019.1681434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antimicrobial lipids have been recognised as broad-spectrum antibacterial agents. They can directly act on and lyse bacterial cell membrane, and inhibit bacterial growth through a range of mechanisms. Antimicrobial lipids include free fatty acids, monoglycerides, cholesteryl ester, sphingolipids and etc., with the first two being the most extensively studied. Their application is usually hindered by the low solubility of the compounds themselves, and nano-sized lipid-based carriers can endow druggability to these antimicrobial agents for they improve lipid solubility and dispersion in aqueous formulations. Nano-carriers also possess advantages in overcoming drug resistance. In this review we will discuss different kinds of antimicrobial lipids in nano-sized carriers for antibacterial delivery. CAL02 as a promising infection-controlling liposome consisted of cholesterol and sphingomyelin will also be included for it's a unique anti-infection approach, which signifies that the underlying antibacterial roles antimicrobial lipids needs to be further addressed. With the global emergence of antibiotic resistance, antimicrobial lipids formulated in nano-carriers might provide a novel alternative in combatting infectious diseases.
Collapse
Affiliation(s)
- Qianyu Zhang
- Innovative Drug Research Centre (IDRC), School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Wen Wu
- Innovative Drug Research Centre (IDRC), School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Jinqiang Zhang
- Innovative Drug Research Centre (IDRC), School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xuefeng Xia
- Innovative Drug Research Centre (IDRC), School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
13
|
Glycerol monolaurate nanocapsules for biomedical applications: in vitro toxicological studies. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1131-1140. [PMID: 31079199 DOI: 10.1007/s00210-019-01663-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/02/2019] [Indexed: 12/23/2022]
Abstract
The glycerol monolaurate (GML) is a surfactant used in the food industry and has potent antimicrobial activity against many microorganisms; however, the use of GML is not expanded due its high melting point and poor solubility in water. The aim of the study was to produce, characterize, and evaluate in vitro the cytotoxicity of GML and GML nanocapsules. The GML nanocapsules were produced and characterized by a mean diameter, zeta potential, and polydispersity index. The cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, thiobarbituric acid reactive substances (TBARS), and hemolytic activity. The genotoxicity was verified by comet assay. The physicochemical parameters showed a mean diameter of 192.5 ± 2.8 nm, a polydispersity index of 0.061 ± 0.018, and a zeta potential about - 21.9 ± 1 mV. The viability test demonstrated the protector effect of GML nanocapsule compared with the GML on peripheral blood mononuclear cells (PBMC) and VERO cells (isolated from kidney epithelial cells extracted from an African green monkey). A reduction in lipid peroxidation and lactate dehydrogenase release in GML nanocapsule-exposed cells compared with GML treated cells was observed. The damage on erythrocytes was addressed in treatment with GML, while the treatment with GML nanocapsules did not cause an effect. Moreover, the comet assay showed that the GML-caused genotoxicity and GML nanocapsules do not demonstrate damage. The study showed the reduction of toxicity of GML nanocapsules by many methods used in antimicrobial therapy.
Collapse
|
14
|
Synergistic Antifungal Effect of Amphotericin B-Loaded Poly(Lactic-Co-Glycolic Acid) Nanoparticles and Ultrasound against Candida albicans Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.02022-18. [PMID: 30670414 DOI: 10.1128/aac.02022-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/13/2019] [Indexed: 12/26/2022] Open
Abstract
Candida albicans is a human opportunistic pathogen that causes superficial and life-threatening infections. An important reason for the failure of current antifungal drugs is related to biofilm formation, mostly associated with implanted medical devices. The present study investigated the synergistic antifungal efficacy of low-frequency and low-intensity ultrasound combined with amphotericin B (AmB)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (AmB-NPs) against C. albicans biofilms. AmB-NPs were prepared by a double-emulsion method and demonstrated lower toxicity than free AmB. We then established biofilms and treated them with ultrasound and AmB-NPs separately or jointly in vitro and in vivo The results demonstrated that the activity, biomass, and proteinase and phospholipase activities of biofilms were decreased significantly after the combination treatment of AmB-NPs with 42 kHz of ultrasound irradiation at an intensity of 0.30 W/cm2 for 15 min compared with the controls, with AmB alone, or with ultrasound treatment alone (P < 0.01). The morphology of the biofilms was altered remarkably after joint treatment based on confocal laser scanning microscopy (CLSM), especially in regard to reduced thickness and loosened structure. Furthermore, the same synergistic effects were found in a subcutaneous catheter biofilm rat model. The number of CFU from the catheter exhibited a significant reduction after joint treatment with AmB-NP and ultrasound for seven continuous days, and CLSM and scanning electron microscopy (SEM) images revealed that the biofilm on the catheter surface was substantially eliminated. This method may provide a new noninvasive, safe, and effective therapy for C. albicans biofilm infection.
Collapse
|
15
|
Boutin R, Munnier E, Renaudeau N, Girardot M, Pinault M, Chevalier S, Chourpa I, Clément-Larosière B, Imbert C, Boudesocque-Delaye L. Spirulina platensis sustainable lipid extracts in alginate-based nanocarriers: An algal approach against biofilms. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
A simulation environment for polymeric nanoparticles based on multi-agent systems. J Mol Model 2018; 25:5. [PMID: 30560295 DOI: 10.1007/s00894-018-3889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
Production and characterization of polymeric nanoparticles, as colloidal dispersions, are processes that require time and technical skills to make the results accurate. Computational simulations in nanoscience have been used to help in these processes and provide agility and support to reach results: stability and quality in dispersions. Multi-Agent System for Polymeric Nanoparticles (MASPN) is an innovative and original simulation environment with features to demonstrate interactions of particles from physical-chemical parameters, ensuring Brownian motion of particles and attractive and repulsive behaviour. The MASPN environment has been designed and has been built according to the feature-driven development (FDD), as software methodology, and a multi-agent systems approach. In addition, we have used the event-driven simulation package algs4, the JASON agent building environment, all integrated by Java language. This paper aims to present the relation of the algs4 package and the JASON tool, both integrated into the MASPN environment to generate Brownian motion with elastic and inelastic collisions. The MASPN environment as a simulation tool emerges as a result, including the following features: graphical interface; integrated physical-chemical parameters; Brownian motion; JASON and algs4 integration; and distribution charts (size, zeta potential, and pH).
Collapse
|
17
|
A comparative study on the potentials of nanoliposomes and nanoethosomes for Fluconazole delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Antibiofilm activity of nanoemulsions of Cymbopogon flexuosus against rapidly growing mycobacteria. Microb Pathog 2017; 113:335-341. [DOI: 10.1016/j.micpath.2017.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 11/23/2022]
|
19
|
Dalcin AJF, Santos CG, Gündel SS, Roggia I, Raffin RP, Ourique AF, Santos RCV, Gomes P. Anti biofilm effect of dihydromyricetin-loaded nanocapsules on urinary catheter infected by Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2017; 156:282-291. [PMID: 28544960 DOI: 10.1016/j.colsurfb.2017.05.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/29/2017] [Accepted: 05/10/2017] [Indexed: 01/08/2023]
Abstract
Nosocomial infections associated with biofilm formation on urinary catheters are among the leading causes of complications due to biofilm characteristics and high antimicrobial resistance. An interesting alternative are natural products, such as Dihydromyricetin (DMY), a flavonoid which presents several pharmacological properties, including strong antimicrobial activity against various microorganisms. However, DMY, has low aqueous solubility and consequently low bioavailability. Nanoencapsulation can contribute to the improvement of characteristics of some drugs, by increasing the apparent solubility and sustained release has been reported among other advantages. The aim of this study was to evaluate, for the first time, the feasibility of DMY nanoencapsulation, and to look at its influence on nanoencapsulation of DMY as well as verify its influence on antimicrobial and antibiofilm activity on urinary catheters infected by Pseudomonas aeruginosa. The physicochemical characterization showed an average diameter less than 170nm, low polydispersity index, positive zeta potential (between +11 and +14mV), slightly acidic pH. The values of the stability study results showed that the best condition for suspension storage without losing physical and chemical characteristics was under refrigeration (4±2°C). The antibiofilm activity of the formulations resulted in the eradication of biofilms both in free DMY formulations and in nanocapsules of DMY during those periods. However, within 96h the results of the inhibition of biofilm by DMY nanocapsules were more effective compared with free DMY. Thus, the nanocapsule formulation containing DMY can potentially be used as an innovative approach to urinary catheter biofilm treatment or prevention.
Collapse
Affiliation(s)
- A J F Dalcin
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, Brazil; Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil.
| | - C G Santos
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, Brazil; Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - S S Gündel
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, Brazil
| | - I Roggia
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, Brazil; Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - R P Raffin
- Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - A F Ourique
- Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - R C V Santos
- Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil; Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - P Gomes
- Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| |
Collapse
|
20
|
Lopes LQS, Santos CG, de Almeida Vaucher R, Raffin RP, da Silva AS, Baretta D, Maccari AP, Giombelli LCDD, Volpato A, Arruda J, de Ávila Scheeren C, Baldisserotto B, Santos RCV. Ecotoxicology of Glycerol Monolaurate nanocapsules. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:73-77. [PMID: 28110048 DOI: 10.1016/j.ecoenv.2017.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Glycerol Monolaurate (GML) is a compound with known antimicrobial potential, however it is not much used due to its low solubility in water and high melting point. The nanoencapsulation of some drugs offers several advantages such as improved stability and solubility in water. The present study aimed to produce, characterize, and evaluate the ecotoxicity of GML nanocapsules. The nanocapsules were produced and presented a mean diameter of 210nm, polydispersity index of 0.044, and zeta potential of -23.4mV. The electron microscopy images showed the nanometric size and spherical shape. The assay in soil showed that GML has a high toxicity while the GML nanocapsules showed decreased toxic effects. Nanostructuration also protected the Rhamdia quelen against the toxic effects of GML. Concluding, the formulation shows positive results and is useful to predict the success of development besides not damaging the soil.
Collapse
Affiliation(s)
- Leonardo Q S Lopes
- Laboratory of Microbiology Research, Centro Universitário Franciscano, Santa Maria, Brazil; Post-Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil.
| | - Cayane G Santos
- Post-Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - Rodrigo de Almeida Vaucher
- Center of chemical, pharmaceutical and food sciences, Universidade Federal de Pelotas, Capão do Leão, Brazil
| | - Renata P Raffin
- Post-Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - Aleksandro S da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Brazil
| | - Dilmar Baretta
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Brazil
| | - Ana Paula Maccari
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Brazil
| | | | - Andreia Volpato
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Brazil
| | - Jessyka Arruda
- Departament of Fisiology and Farmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Bernardo Baldisserotto
- Departament of Fisiology and Farmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Roberto C V Santos
- Laboratory of Microbiology Research, Centro Universitário Franciscano, Santa Maria, Brazil; Post-Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil; Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|