1
|
Pandey VK, Srivastava S, Ashish, Dash KK, Singh R, Dar AH, Singh T, Farooqui A, Shaikh AM, Kovacs B. Bioactive properties of clove ( Syzygium aromaticum) essential oil nanoemulsion: A comprehensive review. Heliyon 2024; 10:e22437. [PMID: 38163240 PMCID: PMC10755278 DOI: 10.1016/j.heliyon.2023.e22437] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Syzygium aromaticum, commonly called clove, is a culinary spice with medical uses. Clove is utilized in cosmetics, medicine, gastronomy, and agriculture due to its abundance of bioactive components such as gallic acid, flavonoids, eugenol acetate, and eugenol. Clove essential oil has been revealed to have antibacterial, antinociceptive, antibacterial activities, antifungal, and anticancerous qualities. Anti-inflammatory chemicals, including eugenol and flavonoids, are found in clove that help decrease inflammation and alleviate pain. The anti-inflammatory and analgesic qualities of clove oil have made it a popular natural cure for toothaches and gum discomfort. Due to its therapeutic potential, it has been used as a bioactive ingredient in coating fresh fruits and vegetables. This review article outlines the potential food processing applications of clove essential oil. The chemical structures of components, bioactive properties, and medicinal potential of clove essential oil, including phytochemical importance in food, have also been thoroughly addressed.
Collapse
Affiliation(s)
- Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Shivangi Srivastava
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh, India
| | - Ashish
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, 732141, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Tripti Singh
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Ayaz Mukkaram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Bela Kovacs
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
2
|
Lepczyński A, Herosimczyk A, Bucław M, Adaszyńska-Skwirzyńska M. Antibiotics in avian care and husbandry-status and alternative antimicrobials. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2021-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
Undoubtedly, the discovery of antibiotics was one of the greatest milestones in the treatment of human and animal diseases. Due to their over-use mainly as antibiotic growth promoters (AGP) in livestock farming, antimicrobial resistance has been reported with increasing intensity, especially in the last decades. In order to reduce the scale of this phenomenon, initially in the Scandinavian countries and then throughout the entire European Union, a total ban on the use of AGP was introduced, moreover, a significant limitation in the use of these feed additives is now observed almost all over the world. The withdrawal of AGP from widespread use has prompted investigators to search for alternative strategies to maintain and stabilize the composition of the gut microbiota. These strategies include substances that are used in an attempt to stimulate the growth and activity of symbiotic bacteria living in the digestive tract of animals, as well as living microorganisms capable of colonizing the host’s gastrointestinal tract, which can positively affect the composition of the intestinal microbiota by exerting a number of pro-health effects, i.e., prebiotics and probiotics, respectively. In this review we also focused on plants/herbs derived products that are collectively known as phytobiotic.
Collapse
Affiliation(s)
- Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics , West Pomeranian University of Technology , Szczecin , Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics , West Pomeranian University of Technology , Szczecin , Poland
| | - Mateusz Bucław
- Department of Monogastric Animal Sciences , West Pomeranian University of Technology , Szczecin , Poland
| | | |
Collapse
|
3
|
Qin SQ, Gan QY, Xu W, Jiang RW. Hybrid interaction network of guanidinium-biphenyldisulfonic acid for the structure determination of liquid molecules. CrystEngComm 2022. [DOI: 10.1039/d2ce00228k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guanidinium−biphenyldisulfonic acid (GBPS) was used as a coformer for the co-crystallization of liquid compounds 1-8 [isoeugenol (1), (-)-isopulegeol (2), eugenol acetate (3), trans-anethole (4), p-anisaldehyde (5), methyl isoeugenol (6), 2,6-dimethylaniline...
Collapse
|
4
|
Clove Essential Oil ( Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021; 26:molecules26216387. [PMID: 34770801 PMCID: PMC8588428 DOI: 10.3390/molecules26216387] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 01/08/2023] Open
Abstract
Clove (Syzygium aromaticum L. Myrtaceae) is an aromatic plant widely cultivated in tropical and subtropical countries, rich in volatile compounds and antioxidants such as eugenol, β-caryophyllene, and α-humulene. Clove essential oil has received considerable interest due to its wide application in the perfume, cosmetic, health, medical, flavoring, and food industries. Clove essential oil has biological activity relevant to human health, including antimicrobial, antioxidant, and insecticidal activity. The impacts of the extraction method (hydrodistillation, steam distillation, ultrasound-assisted extraction, microwave-assisted extraction, cold pressing, and supercritical fluid extraction) on the concentration of the main volatile compounds in clove essential oil and organic clove extracts are shown. Eugenol is the major compound, accounting for at least 50%. The remaining 10-40% consists of eugenyl acetate, β-caryophyllene, and α-humulene. The main biological activities reported are summarized. Furthermore, the main applications in clove essential oil in the food industry are presented. This review presents new biological applications beneficial for human health, such as anti-inflammatory, analgesic, anesthetic, antinociceptive, and anticancer activity. This review aims to describe the effects of different methods of extracting clove essential oil on its chemical composition and food applications and the biological activities of interest to human health.
Collapse
|
5
|
Enzymatic Synthesis of Eugenyl Acetate from Essential Oil of Clove Using Lipases in Liquid Formulation as Biocatalyst. Appl Biochem Biotechnol 2021; 193:3512-3527. [PMID: 34292478 DOI: 10.1007/s12010-021-03610-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
In this research, eugenyl acetate, a compound with flavoring, antioxidant, and antimicrobial properties, was obtained from essential oil of clove (Syzygium aromaticum) via liquid lipase-mediated acetylation. Clove essential oil was extracted by drag water vapor from dry flower buds and its physic-chemical characteristics were analyzed. For the enzymatic synthesis, an extensive evaluation of reaction parameters was accomplished through employment of distinct reaction temperatures, acetic anhydride to eugenol molar ratios, enzyme loads, and three different lipases (a lyophilized enzyme produced by solid-state fermentation of sunflower seed with Penicillium sumatrense microorganism and other two commercial lipases - Lipozyme TL 100L and CALB L). The product eugenyl acetate was confirmed by 1H-NMR, 13C-NMR Distortionless Enhancement by Polarization Transfer (DEPT 135), and Heteronuclear Multiple Bond Correlation (HMBC). Through optimized conditions (55 °C, acetic anhydride to eugenol molar ratio of 1:1, 10 wt% of Lipozyme TL 100L), 91.80% of conversion after 2 h was achieved to the eugenyl acetate production. With the results obtained, it was possible to conclude that the use of lipases in liquid formulation is a promising alternative for the synthesis of essential esters largely applied on food, cosmetic, and pharmaceutical industries.
Collapse
|
6
|
Phothisuwan S, Preechatiwong W, Matan N. Enhancement of antibacterial activity of essential oil vapor released from a paper egg tray in combination with UV‐C radiation against pathogenic bacteria on chicken eggs. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saifon Phothisuwan
- Food Science and Technology School of Agricultural Technology Walailak University Nakhon Si Thammarat Thailand
- Research Center of Excellence in Innovation of Essential Oil Walailak University Nakhon Si Thammarat Thailand
| | - Wanchart Preechatiwong
- Petrochemical and Polymer, School of Engineering and Technology Walailak University Nakhon Si Thammarat Thailand
| | - Narumol Matan
- Food Science and Technology School of Agricultural Technology Walailak University Nakhon Si Thammarat Thailand
- Research Center of Excellence in Innovation of Essential Oil Walailak University Nakhon Si Thammarat Thailand
| |
Collapse
|
7
|
Yassin MT, Mostafa AAF, Al-Askar AA. In vitro anticandidal potency of Syzygium aromaticum (clove) extracts against vaginal candidiasis. BMC Complement Med Ther 2020; 20:25. [PMID: 32020877 PMCID: PMC7076834 DOI: 10.1186/s12906-020-2818-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/17/2020] [Indexed: 01/12/2023] Open
Abstract
Background Candida vaginitis is a global health hazard that increases morbidity among women of childbearing age. Recent studies have revealed a high incidence of drug-resistant Candida strains. Additionally, treating Candida vulvovaginitis during pregnancy is challenging as antifungal therapy is associated with fetal abnormalities. Hence, it is important to develop novel therapeutic strategies to treat vulvovaginal candidiasis. Methods In this study, we used the disc diffusion method to evaluate the anticandidal activity of different Syzygium aromaticum extracts (methanol, ethyl acetate, n-hexane, and diethyl ether) against C. albicans, C. glabrata, and C. tropicalis. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis of different S. aromaticum extracts was performed to determine active components exhibiting anticandidal activity. Cytotoxicity of different clove extracts against the HUH7 cell line was evaluated. Results The ethyl acetate extract exhibited the highest antifungal activity against C. albicans, C. glabrata, and C. tropicalis with inhibition zone diameters of 20.9, 14.9, and 30.7 mm, respectively. The minimum inhibitory concentration of the S. aromaticum ethyl acetate extract was 250 μg/disc against C. tropicalis, and 500 μg/disc against C. albicans and C. glabrata, while the minimum fungicidal concentration was 0.5 mg/disc against C. tropicalis and 1 mg/disc against the C. albicans and C. glabrata. GC-MS analysis of the ethyl acetate extract revealed the main bioactive compound as eugenol (58.88%), followed by eugenyl acetate (23.86%), trans-caryophyllene (14.44%), and α-humulene (1.88%). The cytotoxicity assay indicated that the diethyl ether extract demonstrated the lowest toxicological effect against the HUH7 cell line, with a relative IC50 of 62.43 μg/ml; the methanolic extract demonstrated a higher toxicity (IC50, 24.17 μg/ml). Conclusion As the S. aromaticum extract exhibited high antifungal activity at low concentrations, it can be a potential source of natural antifungal drugs.
Collapse
Affiliation(s)
- Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia.
| | - Ashraf Abdel-Fattah Mostafa
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
8
|
Andrade JT, Fantini de Figueiredo G, Cruz LF, Eliza de Morais S, Souza CDF, Pinto FCH, Ferreira JMS, Araújo MGDF. Efficacy of curcumin in the treatment of experimental vulvovaginal candidiasis. Rev Iberoam Micol 2019; 36:192-199. [DOI: 10.1016/j.riam.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/02/2018] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
|
9
|
Rodrigues AMS, Eparvier V, Odonne G, Amusant N, Stien D, Houël E. The antifungal potential of (Z)-ligustilide and the protective effect of eugenol demonstrated by a chemometric approach. Sci Rep 2019; 9:8729. [PMID: 31217530 PMCID: PMC6584663 DOI: 10.1038/s41598-019-45222-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/14/2019] [Indexed: 12/23/2022] Open
Abstract
Mankind is on the verge of a postantibiotic era. New concepts are needed in our battle to attenuate infectious diseases around the world and broad spectrum plant-inspired synergistic pharmaceutical preparations should find their place in the global fight against pathogenic microorganisms. To progress towards the discovery of potent antifungal agents against human pathologies, we embarked upon developing chemometric approach coupled with statistical design to unravel the origin of the anticandidal potential of a set of 66 essential oils (EOs). EOs were analyzed by GC-MS and tested against Candida albicans and C. parapsilosis (Minimal Inhibitory Concentration, MIC). An Orthogonal Partial Least Square (OPLS) analysis allowed us to identify six molecules presumably responsible for the anticandidal activity of the oils: (Z)-ligustilide, eugenol, eugenyl acetate, citral, thymol, and β-citronellol. These compounds were combined following a full factorial experimental design approach in order to optimize the anticandidal activity and selectivity index (SI = IC50(MRC5 cells)/MIC) through reconstituted mixtures. (Z)-Ligustilide and citral were the most active compounds, while (Z)-ligustilide and eugenol were the two main factors that most contributed to the increase of the SI. These two terpenes can, therefore, be used to construct bioinspired synergistic anticandidal mixtures.
Collapse
Affiliation(s)
- Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| | - Véronique Eparvier
- CNRS, Institut de Chimie des Substances Naturelles, UPR2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Guillaume Odonne
- Laboratoire Ecologie, Evolution, Interactions des Systèmes Amazoniens (LEEISA), CNRS, Université de Guyane, IFREMER, 97300, Cayenne, France
| | - Nadine Amusant
- CIRAD, UMR EcoFoG, AgroParisTech, CNRS, INRA, Université des Antilles, Université de Guyane, 97300, Cayenne, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-mer, France.
| | - Emeline Houël
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, 97300, Cayenne, France.
| |
Collapse
|
10
|
Continuous production of eugenol esters using enzymatic packed‐bed microreactors and an evaluation of the products as antifungal agents. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Shahina Z, El-Ganiny AM, Minion J, Whiteway M, Sultana T, Dahms TES. Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida albicans. Fungal Biol Biotechnol 2018; 5:3. [PMID: 29456868 PMCID: PMC5807769 DOI: 10.1186/s40694-018-0046-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/16/2018] [Indexed: 12/01/2022] Open
Abstract
Background Cinnamon (Cinnamomum zeylanicum) bark extract exhibits potent inhibitory activity against Candida albicans but the antifungal mechanisms of this essential oil remain largely unexplored. Results We analyzed the impact of cinnamon bark oil on C. albicans RSY150, and clinical strains isolated from patients with candidemia and candidiasis. The viability of RSY150 was significantly compromised in a dose dependent manner when exposed to cinnamon bark oil, with extensive cell surface remodelling at sub inhibitory levels (62.5 μg/mL). Atomic force microscopy revealed cell surface exfoliation, altered ultrastructure and reduced cell wall integrity for both RSY150 and clinical isolates exposed to cinnamon bark oil. Cell wall damage induced by cinnamon bark oil was confirmed by exposure to stressors and the sensitivity of cell wall mutants involved in cell wall organization, biogenesis, and morphogenesis. The essential oil triggered cell cycle arrest by disrupting beta tubulin distribution, which led to mitotic spindle defects, ultimately compromising the cell membrane and allowing leakage of cellular components. The multiple targets of cinnamon bark oil can be attributed to its components, including cinnamaldehyde (74%), and minor components (< 6%) such as linalool (3.9%), cinamyl acetate (3.8%), α-caryophyllene (5.3%) and limonene (2%). Complete inhibition of the mitotic spindle assembly was observed in C. albicans treated with cinnamaldehyde at MIC (112 μg/mL). Conclusions Since cinnamaldehyde disrupts both the cell wall and tubulin polymerization, it may serve as an effective antifungal, either by chemical modification to improve its specificity and efficacy or in combination with other antifungal drugs. Electronic supplementary material The online version of this article (10.1186/s40694-018-0046-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zinnat Shahina
- 1Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK Canada
| | - Amira M El-Ganiny
- 2Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Malcolm Whiteway
- 4Centre for Structural and Functional Genomics, Concordia University, Montreal, QC Canada
| | - Taranum Sultana
- 1Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK Canada
| | - Tanya E S Dahms
- 1Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK Canada.,3Regina Qu'Appelle Health Region, Regina, SK Canada
| |
Collapse
|