1
|
Dartois V, Dick T. Toward better cures for Mycobacterium abscessus lung disease. Clin Microbiol Rev 2024; 37:e0008023. [PMID: 39360834 PMCID: PMC11629636 DOI: 10.1128/cmr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
2
|
Roberto Tavolari Jortieke C, Rocha Joaquim A, Fumagalli F. Advances in antibacterial agents for Mycobacterium fortuitum. RSC Med Chem 2024; 16:d4md00508b. [PMID: 39493226 PMCID: PMC11528911 DOI: 10.1039/d4md00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Mycobacterium fortuitum is an emerging human pathogen, characterized by an increase in prevalence and antibacterial resistance over the years, highlighting the need for the development of new drugs against this rapidly growing nontuberculous mycobacterium (NTM). To support this crusade, this review summarizes findings from the past two decades concerning compounds with antimycobacterial activity against M. fortuitum. It identifies the most promising and effective chemical frameworks to inspire the development of new therapeutic alternatives for infections caused by this microorganism. Most compounds effective against M. fortuitum are synthetic, with macozinone, featuring a 2-piperazine-benzothiazinone framework, standing out as a notable drug candidate. Among natural products, the polyphenolic polyketide clostrubin and the sansanmycin peptide analogs have shown efficacy against this NTM. Some compounds' mechanisms of action on M. fortuitum have been studied, including NITD-916, which acts as an enoyl-acyl carrier protein reductase inhibitor, and TBAJ-5307, which inhibits F-ATP synthase. Moreover, this review discusses the pathogenic molecular mechanisms and potential therapeutic targets within this mycobacterium.
Collapse
Affiliation(s)
| | - Angélica Rocha Joaquim
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| | - Fernando Fumagalli
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| |
Collapse
|
3
|
Degiacomi G, Chiarelli LR, Riabova O, Loré NI, Muñoz-Muñoz L, Recchia D, Stelitano G, Postiglione U, Saliu F, Griego A, Scoffone VC, Kazakova E, Scarpa E, Ezquerra-Aznárez JM, Stamilla A, Buroni S, Tortoli E, Rizzello L, Sassera D, Ramón-García S, Cirillo DM, Makarov V, Pasca MR. The novel drug candidate VOMG kills Mycobacterium abscessus and other pathogens by inhibiting cell division. Int J Antimicrob Agents 2024; 64:107278. [PMID: 39069229 DOI: 10.1016/j.ijantimicag.2024.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
AIMS The incidence of lung infections is increasing worldwide in individuals suffering from cystic fibrosis and chronic obstructive pulmonary disease. Mycobacterium abscessus is associated with chronic lung deterioration in these populations. The intrinsic resistance of M. abscessus to most conventional antibiotics jeopardizes treatment success rates. To date, no single drug has been developed targeting M. abscessus specifically. The objective of this study was to characterize VOMG, a pyrithione-core drug-like small molecule, as a new compound active against M. abscessus and other pathogens. METHODS A multi-disciplinary approach including microbiological, chemical, biochemical and transcriptomics procedures was used to validate VOMG as a promising anti-M. abscessus drug candidate. RESULTS To the authors' knowledge, this is the first study to report the in-vitro and in-vivo bactericidal activity of VOMG against M. abscessus and other pathogens. Besides being active against M. abscessus biofilm, the compound showed a favourable pharmacological (ADME-Tox) profile. Frequency of resistance studies were unable to isolate resistant mutants. VOMG inhibits cell division, particularly the FtsZ enzyme. CONCLUSIONS VOMG is a new drug-like molecule active against M. abscessus, inhibiting cell division with broad-spectrum activity against other microbial pathogens.
Collapse
Affiliation(s)
- Giulia Degiacomi
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Olga Riabova
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Nicola Ivan Loré
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lara Muñoz-Muñoz
- Department of Microbiology/Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Deborah Recchia
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Giovanni Stelitano
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Umberto Postiglione
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Fabio Saliu
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Griego
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Genetics, Milan, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Elena Kazakova
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Edoardo Scarpa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Genetics, Milan, Italy
| | | | - Alessandro Stamilla
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loris Rizzello
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Genetics, Milan, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Santiago Ramón-García
- Department of Microbiology/Faculty of Medicine, University of Zaragoza, Zaragoza, Spain; Research and Development Agency of Aragon Foundation, Zaragoza, Spain; Spanish Network for Research on Respiratory Diseases, Carlos III Health Institute, Madrid, Spain.
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Vadim Makarov
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
4
|
Meliefste HM, Mudde SE, Ammerman NC, de Steenwinkel JEM, Bax HI. A laboratory perspective on Mycobacterium abscessus biofilm culture, characterization and drug activity testing. Front Microbiol 2024; 15:1392606. [PMID: 38690364 PMCID: PMC11058659 DOI: 10.3389/fmicb.2024.1392606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Mycobacterium abscessus is an emerging opportunistic pathogen causing severe pulmonary infections in patients with underlying lung disease and cystic fibrosis in particular. The rising prevalence of M. abscessus infections poses an alarming threat, as the success rates of available treatment options are limited. Central to this challenge is the absence of preclinical in vitro models that accurately mimic in vivo conditions and that can reliably predict treatment outcomes in patients. M. abscessus is notorious for its association with biofilm formation within the lung. Bacteria in biofilms are more recalcitrant to antibiotic treatment compared to planktonic bacteria, which likely contributes to the lack of correlation between preclinical drug activity testing (typically performed on planktonic bacteria) and treatment outcome. In recent years, there has been a growing interest in M. abscessus biofilm research. However, the absence of standardized methods for biofilm culture, biofilm characterization and drug activity testing has led to a wide spectrum of, sometimes inconsistent, findings across various studies. Factors such as strain selection, culture medium, and incubation time hugely impact biofilm development, phenotypical characteristics and antibiotic susceptibility. Additionally, a broad range of techniques are used to study M. abscessus biofilms, including quantification of colony-forming units, crystal violet staining and fluorescence microscopy. Yet, limitations of these techniques and the selected readouts for analysis affect study outcomes. Currently, research on the activity of conventional antibiotics, such as clarithromycin and amikacin, against M. abscessus biofilms yield ambiguous results, underscoring the substantial impact of experimental conditions on drug activity assessment. Beyond traditional drug activity testing, the exploration of novel anti-biofilm compounds and the improvement of in vitro biofilm models are ongoing. In this review, we outline the laboratory models, experimental variables and techniques that are used to study M. abscessus biofilms. We elaborate on the current insights of M. abscessus biofilm characteristics and describe the present understanding of the activity of traditional antibiotics, as well as potential novel compounds, against M. abscessus biofilms. Ultimately, this work contributes to the advancement of fundamental knowledge and practical applications of accurate preclinical M. abscessus models, thereby facilitating progress towards improved therapies for M. abscessus infections.
Collapse
Affiliation(s)
| | - Saskia Emily Mudde
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nicole Christine Ammerman
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Hannelore Iris Bax
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
5
|
Lapa IR, Dos Santos Siqueira F, Cordeiro CF, de Campos MMA, Bonfilio R, de Figueiredo Diniz L, Pereira GM, Hawkes JA, Franco LL, Carvalho DT. Combining eugenol and dihydroeugenol with a piperazine moiety to create new antimicrobial agents that are effective against resistant species. Microb Pathog 2023; 184:106369. [PMID: 37778705 DOI: 10.1016/j.micpath.2023.106369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Historically, the piperazine moiety has been demonstrated to possess pharmacophoric properties, and has subsequently been incorporated in many drugs that have antitumor, antimalarial, antiviral, antibacterial and antifungal properties. Derivatives of eugenol and dihydroeugenol have also been reported as being bioactive compounds. This study reports the synthesis of a range of eugenol/dihydroeugenol - piperazine derivatives which have been tested as antimicrobial compounds against Gram positive, Gram negative and rapid-growing mycobacteria (RGM). The rationale employed in the design of the structural pattern of these new derivatives, provides useful insights into the structure-activity relationships (SAR) of the series. Antimicrobial activity tests were extremely encouraging, with the majority of the synthesised compounds being more active than eugenol and dihydroeugenol starting materials. The antimicrobial potential was most notable against the Gram-negative species K. pneumoniae and P. aeruginosa, but there was also significant performance against the Gram-positive strains S. epidermidis and S. aureus and the Rapidly Growing Mycobacteria (RGM) strains tested. Tests using the synthesised compounds against multidrug-resistance clinical (MDR) isolates also showed high activity. The biofilm inhibition tests using M. fortuitum showed that all evaluated derivatives were able to inhibit biofilm formation even at low concentrations. In terms of structural-activity relationships; the results generated by this study demonstrate that the compounds with bulky substituents on the piperazine subunit were much more active than those with less bulky groups, or no groups. Importantly, the derivatives with a sulfonamide side chain were the most potent compounds. A further observation was that those compounds with a para-substituted benzenesulfonamide ring stand out, regardless of whether this substituent is a donor or an electron-withdrawing group.
Collapse
Affiliation(s)
- Igor Rodrigues Lapa
- Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | - Fallon Dos Santos Siqueira
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, RS, 9710590, Brazil
| | - Cleydson Finotti Cordeiro
- Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | | | - Rudy Bonfilio
- Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | - Lívia de Figueiredo Diniz
- Instituto de Ciências Biomédicas, Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | - Gabriella Martiniano Pereira
- Instituto de Ciências Biomédicas, Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | - Jamie Anthony Hawkes
- Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | - Lucas Lopardi Franco
- Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | - Diogo Teixeira Carvalho
- Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
6
|
Zhu C, Zhao Y, Zhao X, Liu S, Xia X, Zhang S, Wang Y, Zhang H, Xu Y, Chen S, Jiang J, Wu Y, Wu X, Zhang G, Bai Y, Hu J, Fotina H, Wang L, Zhang X. The Antimicrobial Peptide MPX Can Kill Staphylococcus aureus, Reduce Biofilm Formation, and Effectively Treat Bacterial Skin Infections in Mice. Front Vet Sci 2022; 9:819921. [PMID: 35425831 PMCID: PMC9002018 DOI: 10.3389/fvets.2022.819921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a common pathogen that can cause pneumonia and a variety of skin diseases. Skin injuries have a high risk of colonization by S. aureus, which increases morbidity and mortality. Due to the emergence of multidrug-resistant strains, antimicrobial peptides are considered to be among the best alternatives to antibiotics due to their unique mechanism of action and other characteristics. MPX is an antibacterial peptide extracted from wasp venom that has antibacterial activity against a variety of bacteria. This study revealed that MPX has good bactericidal activity against S. aureus and that its minimum inhibitory concentration (MIC) is 0.08 μM. MPX (4×MIC) can kill 99.9% of bacteria within 1 h, and MPX has good stability. The research on the bactericidal mechanism found that MPX could destroy the membrane integrity, increase the membrane permeability, change the membrane electromotive force, and cause cellular content leakage, resulting in bactericidal activity. Results from a mouse scratch model experiment results show that MPX can inhibit colonization by S. aureus, which reduces the wound size, decreases inflammation, and promotes wound healing. This study reports the activity of MPX against S. aureus and its mechanism and reveals the ability of MPX to treat S. aureus infection in mice, laying the foundation for the development of new drugs for bacterial infections.
Collapse
Affiliation(s)
- Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yaya Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xueqin Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yimin Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shijun Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yundi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Xilong Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hanna Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
- *Correspondence: Lei Wang
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
- Xueming Zhang
| |
Collapse
|
7
|
Abstract
Rapidly growing mycobacteria (RGM) causing infections by biofilm formation. Semi-quantitative method of biofilm formation was adapted for macrotechnics. Sulphonamides complexed with metals is a promising anti-adhesion agent. Sulphonamides complexed with metal is a possible inhibitor of signaling of biofilm formation.
Rapidly growing mycobacteria (RGM) are found in non-sterile water and often associated with severe post-surgical infections and affect immunocompromised patients. In addition, RGM can prevent the host's immune response and have the ability to adhere to and form biofilms on biological and synthetic substrates, making pharmacological treatment difficult because conventional antimicrobials are ineffective against biofilms. Thus, there is an urgent need for new antimicrobial compounds that can overcome these problems. In this context, sulfonamides complexed with Au, Cd, Ag, Cu, and Hg have shown excellent activity against various microorganisms. Considering the importance of combating RGM-associated infections, this study aimed to evaluate the activity of sulfonamide metal complexes against RGM biofilm. The sulfonamides were tested individually for their ability to inhibit mycobacterial formation and destroy the preformed biofilm of standard RGM strains, such as Mycobacterium abscessus, M. fortuitum, and M. massiliense. All sulfonamides complexed with metals could reduce, at subinhibitory concentrations, the adhesion and biofilm formation of three RGM species in polystyrene tubes. It is plausible that the anti-biofilm capacity of the compounds is due to the inhibition of c-di-GMP synthesis, which is an important signal for RGM biofilm formation. Hence, the impacts and scientific contribution of this study are based on the discovery of a potential new therapeutic option against RGM-associated biofilm infections. Sulfonamides complexed with metals have proven to be a useful and promising tool to reduce microbial adhesion on inert surfaces, stimulating the improvement of methodologies to insert compounds as new antibacterial and coating agents for medical and hospital materials.
Collapse
|
8
|
Azevedo-Barbosa H, do Vale BP, Guidolin Rossi G, Dos Santos Siqueira F, Bordignon Guterres K, de Campos MMA, Dos Santos T, Anthony Hawkes J, Ferreira Dias D, Neiva Lavorato S, de Souza TB, Teixeira Carvalho D. Design, Synthesis, Antimicrobial Evaluation and in Silico Studies of Eugenol-Sulfonamide Hybrids. Chem Biodivers 2021; 18:e2100066. [PMID: 33829648 DOI: 10.1002/cbdv.202100066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/04/2021] [Indexed: 01/14/2023]
Abstract
Using molecular hybridization, specific sulfonamide derivatives of eugenol were synthesized with subtle modifications in the allylic chain of the eugenol subunit (and also in the nature of the substituent group in the sulfonamide aromatic ring) which allowed us to study the influence of structural changes on the antimicrobial potential of the hybrids. Antimicrobial test results showed that most of the synthesized hybrid compounds showed good activity with better results than the parent compounds. Molecular docking studies of the hybrids with the essential bacterial enzyme DHPS showed complexes with low binding energies, suggesting that DHPS could be a possible target for the antibacterial sulfonamide-eugenol hybrids. Furthermore, most of the final compounds presented similar docking poses to that of the crystallographic ligand sulfamethoxazole. The results obtained allow us to conclude that these are promising compounds for use as new leads in the search for new antibacterial sulfonamides.
Collapse
Affiliation(s)
- Helloana Azevedo-Barbosa
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva 700, Alfenas, 37130-001, MG, Brazil
| | - Bianca Pereira do Vale
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva 700, Alfenas, 37130-001, MG, Brazil
| | - Grazielle Guidolin Rossi
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Av. Roraima No. 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - Fallon Dos Santos Siqueira
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Av. Roraima No. 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - Kevim Bordignon Guterres
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Av. Roraima No. 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - Marli Matiko Anraku de Campos
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Av. Roraima No. 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - Thiago Dos Santos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, 14040-903, SP, Brazil
| | - Jamie Anthony Hawkes
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva 700, Alfenas, 37130-001, MG, Brazil
| | - Danielle Ferreira Dias
- Instituto de Química, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, 37130-001, MG, Brazil
| | - Stefânia Neiva Lavorato
- Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Rua Professor José Seabra de Lemos, 316, Recanto dos Pássaros, Barreiras, 47808-021, BA, Brazil
| | - Thiago Belarmino de Souza
- Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do cruzeiro, Bauxita, Ouro Preto, 35400-000 MG, Brazil
| | - Diogo Teixeira Carvalho
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva 700, Alfenas, 37130-001, MG, Brazil
| |
Collapse
|
9
|
Metal center ion effects on photoinactivating rapidly growing mycobacteria using water-soluble tetra-cationic porphyrins. Biometals 2020; 33:269-282. [PMID: 32980947 DOI: 10.1007/s10534-020-00251-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
Rapidly growing mycobacteria (RGM) are pathogens that belong to the mycobacteriaceae family and responsible for causing mycobacterioses, which are infections of opportunistic nature and with increasing incidence rates in the world population. This work evaluated the use of six water-soluble cationic porphyrins as photosensitizers for the antimicrobial photodynamic therapy (aPDT) of four RGM strains: Mycolicibacterium fortuitum, Mycolicibacterium smeagmatis, Mycobacteroides abscessus subs. Abscessus, and Mycobacteroides abscessus subsp. massiliense. Experiments were conducted with an adequate concentration of photosensitizer under white-light irradiation conditions over 90 min and the results showed that porphyrins 1 and 2 (M = 2H or ZnII ion) were the most effective and significantly reduced the concentration of viable mycobacteria. The present work shows the result is dependent on the metal-center ion coordinated in the cationic porphyrin core. Moreover, we showed by atomic force microscopy (AFM) the possible membrane photodamage caused by reactive oxygen species and analyzed the morphology and adhesive force properties. Tetra-positively charged and water-soluble metalloporphyrins may be promising antimycobacterial aPDT agents with potential applications in medical clinical cases and bioremediation.
Collapse
|
10
|
Alvarenga DJ, Matias LMF, Oliveira LM, Leão LPMDO, Hawkes JA, Raimundo BVB, Castro LDFD, Campos MMAD, Siqueira FDS, Santos TD, Carvalho DT. Exploring how structural changes to new Licarin A derivatives effects their bioactive properties against rapid growing mycobacteria and biofilm formation. Microb Pathog 2020; 144:104203. [PMID: 32304794 DOI: 10.1016/j.micpath.2020.104203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022]
Abstract
Several species of rapidly growing mycobacteria (RGM) have been associated with biofilms in areas such as biomedical devices, water distribution systems, cosmetic surgery, and catheter-related blood infections. Biofilms which exhibit antimicrobial resistance such as those formed by the genus Mycobacterium pose a significant risk to health and are of particular interest to researchers. Licarin A (a neolignan found in numerous plant species e.g. nutmeg) has been reported to show a wide range of biological actions including anti-inflammatory, antioxidant, and antibacterial properties. The aim of this study was to prepare a set of Licarin A derivatives and investigate the impact of specific structural changes on its antimycobacterial ability, and its effect on the biofilm formation of RGM species. Initially, the phenolic sub-unit and alkenyl side chain of Licarin A were modified to create derivatives with a higher partition coefficient; as the activity of a compound against mycobacteria seems to be strongly influenced by its hydrophobicity. Further, polar groups were inserted into the side chain to change the hydrophilic-lipophilic profile of the molecules. Results showed variability in the susceptibility profile of mycobacteria against the Licarin A derivatives under analysis. A number of the derivatives showed significant inhibitory activity of planktonic growth of the three strains of mycobacteria used, with even lower MIC values than those observed with reference drugs and Licarin A itself. Cytotoxicity assays showed they also have low toxicity, confirming that structural modifications to the Licarin A have made improvements to its antimycobacterial properties.
Collapse
Affiliation(s)
- Dalila Junqueira Alvarenga
- Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | - Laira Maria Faria Matias
- Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | - Lucas Martins Oliveira
- Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | | | - Jamie Anthony Hawkes
- Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | - Breno Vilas Boas Raimundo
- Instituto de Ciências Biomédicas, Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | - Lívia de Figueiredo Diniz Castro
- Instituto de Ciências Biomédicas, Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | | | - Fallon Dos Santos Siqueira
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, RS, 9710590, Brazil
| | - Thiago Dos Santos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, SP, 14040-903, Brazil
| | - Diogo Teixeira Carvalho
- Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
11
|
Guterres KB, Rossi GG, Menezes LB, Anraku de Campos MM, Iglesias BA. Preliminary evaluation of the positively and negatively charge effects of tetra-substituted porphyrins on photoinactivation of rapidly growing mycobacteria. Tuberculosis (Edinb) 2019; 117:45-51. [PMID: 31378267 DOI: 10.1016/j.tube.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/25/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022]
Abstract
This manuscript reports, at the first time, the photoinactivation evaluation of tetra-cationic and anionic porphyrins as photosensitizers (PS) for the photodynamic inactivation (PDI) of rapidly growing mycobacteria strains. Two different charged porphyrin groups were obtained commercially. PDI experiments in the strains Mycobacterium massiliense e Mycobacterium fortuitum conducted with adequate concentration (without aggregation) of photosensitizer under white light at a fluence rate of 50 mW/cm2 over 90 min showed that the most effective PS caused a 100 times reduction in the concentration of viable mycobacteria. The present results show that porphyrin with positively charge are more efficient PS than anionic porphyrin (negatively charged) against M. massiliense e M. fortuitum. It is also clear that the effectiveness of the molecule as PS for PDI studies with mycobacteria is strongly related with the porphyrin peripheral charge, and consequently their solubility in physiological media. Cationic PSs might be promising anti-mycobacteria PDI agents with potential applications in medical clinical cases and bioremediation.
Collapse
Affiliation(s)
- Kevim Bordignon Guterres
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Grazielle Guidolin Rossi
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Lucas Brandalise Menezes
- Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Av. Roraima 1000, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Marli Matiko Anraku de Campos
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Av. Roraima 1000, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int J Mol Sci 2019; 20:ijms20081838. [PMID: 31013936 PMCID: PMC6515091 DOI: 10.3390/ijms20081838] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder which leads to the secretion of a viscous mucus layer on the respiratory epithelium that facilitates colonization by various bacterial pathogens. The problem of drug resistance has been reported for all the species able to colonize the lung of CF patients, so alternative treatments are urgently needed. In this context, a valid approach is to investigate new natural and synthetic molecules for their ability to counteract alternative pathways, such as virulence regulating quorum sensing (QS). In this review we describe the pathogens most commonly associated with CF lung infections: Staphylococcus aureus, Pseudomonas aeruginosa, species of the Burkholderia cepacia complex and the emerging pathogens Stenotrophomonas maltophilia, Haemophilus influenzae and non-tuberculous Mycobacteria. For each bacterium, the QS system(s) and the molecules targeting the different components of this pathway are described. The amount of investigations published in the last five years clearly indicate the interest and the expectations on antivirulence therapy as an alternative to classical antibiotics.
Collapse
|
13
|
Siqueira FDS, Rossi GG, Machado AK, Alves CFS, Flores VC, Somavilla VD, Agertt VA, Siqueira JD, Dias RDS, Copetti PM, Sagrillo MR, Back DF, de Campos MMA. Sulfamethoxazole derivatives complexed with metals: a new alternative against biofilms of rapidly growing mycobacteria. BIOFOULING 2018; 34:893-911. [PMID: 30418037 DOI: 10.1080/08927014.2018.1514497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biofilms are considered important sources of infections on biomedical surfaces, and most infections involving biofilm formation are associated with medical device implants. Therefore, there is an urgent need for new antimicrobial compounds that can combat microbial resistance associated with biofilm formation. In this context, this work aimed to evaluate the antibiofilm action of sulfamethoxazole complexed with Au, Cd, Cu, Ni and Hg on rapidly growing mycobacteria (RGM), as well as to evaluate their safety through cytotoxic assays. The results demonstrate potentiation of the novel compounds in antibiofilm activity, mainly in the complex with Au, which was able to completely inhibit biofilm formation and had the capacity to destroy the biofilm at all the concentrations tested. All cytotoxic data suggest that the majority of sulfamethoxazole metallic derivatives are antimicrobial alternatives, as well as safe molecules, which could be used as potential therapeutic agents for bacterial and biofilm elimination.
Collapse
Affiliation(s)
- Fallon Dos Santos Siqueira
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Grazielle Guidolin Rossi
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | | | | | - Vanessa Costa Flores
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Viviane Drescher Somavilla
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Vanessa Albertina Agertt
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | | | - Renne de Sousa Dias
- c Graduate Program in Chemistry , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | | | | | - Davi Fernando Back
- c Graduate Program in Chemistry , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | | |
Collapse
|
14
|
Non-Tuberculous Mycobacteria multispecies biofilms in cystic fibrosis: development of an in vitro Mycobacterium abscessus and Pseudomonas aeruginosa dual species biofilm model. Int J Med Microbiol 2018; 308:413-423. [PMID: 29555180 DOI: 10.1016/j.ijmm.2018.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/17/2018] [Accepted: 03/05/2018] [Indexed: 11/20/2022] Open
Abstract
Lung disease in cystic fibrosis (CF) is characterized by the progressive colonization of the respiratory tract by different bacteria, which develop polymicrobial biofilms. In the past decades, there has been an increase in the number of CF patients infected with Non-Tuberculous Mycobacteria (NTM). Although Mycobacterium abscessus is the main NTM isolated globally, little is known about M. abscessus multispecies biofilm formation. In the present study we developed an in vitro model to study the phenotypic characteristics of biofilms formed by M. abscessus and Pseudomonas aeruginosa, a major pathogen in CF. For that purpose, dual species biofilms were grown on polycarbonate membranes with a fixed concentration of P. aeruginosa and different inoculums of M. abscessus. The biofilms were sampled at 24, 48, and 72 h and bacteria were quantified in specific media. The results revealed that the increasing initial concentration of M. abscessus in dual species biofilms had an effect on its population only at 24 and 48 h, whereas P. aeruginosa was not affected by the different concentrations used of M. abscessus. Time elapsed increased biofilm formation of both species, specially between 24 and 48 h. According to the results, the conditions to produce a mature dual species biofilm in which the relative species distribution remained stable were 72 h growth of the mixed microbial culture at a 1:1 ratio. A significant decrease in mycobacterial population in dual compared to single species biofilms was found, suggesting that P. aeruginosa has a negative influence on M. abscessus. Finally, in a proof of concept experiment, young and mature dual species biofilms were exposed to clarithromycin.
Collapse
|
15
|
Antibiofilm activity of nanoemulsions of Cymbopogon flexuosus against rapidly growing mycobacteria. Microb Pathog 2017; 113:335-341. [DOI: 10.1016/j.micpath.2017.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 11/23/2022]
|