1
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
2
|
Seo Y, Kim M, Kim TJ. Enhanced Efficacy of Ciprofloxacin and Tobramycin against Staphylococcus aureus When Combined with Corydalis Tuber and Berberine through Efflux Pump Inhibition. Antibiotics (Basel) 2024; 13:469. [PMID: 38786197 PMCID: PMC11118900 DOI: 10.3390/antibiotics13050469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
One way that bacteria develop antibiotic resistance is by reducing intracellular antibiotic concentrations through efflux pumps. Therefore, enhancing the efficacy of antibiotics using efflux pump inhibitors provides a way to overcome this type of resistance. Notably, an increasing number of pathogenic Staphylococcus aureus strains have efflux pump genes. In this study, the extract from Corydalis ternata Nakai tuber (Corydalis Tuber) at 512 mg/L was demonstrated to have an antibiotic synergistic effect with ciprofloxacin at 2 mg/L and tobramycin at 1024 mg/L against methicillin-resistant S. aureus (MRSA). Berberine, an isoquinoline alkaloid identified in Corydalis Tuber, was identified as contributing to this effect. Ethidium bromide efflux pump activity assays showed that Corydalis Tuber extract and berberine inhibited efflux, suggesting that they are efflux pump inhibitors. Molecular docking simulations suggested that berberine binds to S. aureus efflux pump proteins MepA, NorA, NorB, and SdrM. Additionally, berberine and Corydalis Tuber extract inhibit biofilm formation, which can confer antibiotic resistance. This study's findings suggest that Corydalis Tuber, a traditional herbal medicine, and berberine, a medicinal supplement, act as S. aureus efflux pump inhibitors, synergistically increasing the efficacy of ciprofloxacin and tobramycin and showing promise as a treatment for antibiotic-resistant S. aureus infections, including MRSA.
Collapse
Affiliation(s)
- Yena Seo
- Department of Forest Products and Biotechnology, Kookmin University, Seoul 02707, Republic of Korea; (Y.S.); (M.K.)
- Forest Carbon Graduate School, Kookmin University, Seoul 02707, Republic of Korea
| | - Minjun Kim
- Department of Forest Products and Biotechnology, Kookmin University, Seoul 02707, Republic of Korea; (Y.S.); (M.K.)
- Forest Carbon Graduate School, Kookmin University, Seoul 02707, Republic of Korea
| | - Tae-Jong Kim
- Department of Forest Products and Biotechnology, Kookmin University, Seoul 02707, Republic of Korea; (Y.S.); (M.K.)
- Forest Carbon Graduate School, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
3
|
Song J, Xu D, Han Y, Zhu X, Liu Z, Li G, Liang H. Surface modification of Fe Ⅲ-juglone coating on nanofiltration membranes for efficient biofouling mitigation. WATER RESEARCH 2023; 247:120795. [PMID: 37931358 DOI: 10.1016/j.watres.2023.120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/24/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Nanofiltration membranes have increasingly played a vital role in the purification of surface water and the recycling of wastewater. However, the problem of membrane biofouling, which leads to shortened service life and increased energy consumption, has hindered the widespread application of nanofiltration membranes. In this study, we developed functionalized nanofiltration membranes with anti-adhesive and anti-biofouling properties by coordinating FeIII and juglone onto commercial nanofiltration membranes in a facile and viable manner. Due to the hydrophilic nature of the FeⅢ-juglone coating as well as its ultra-thin thickness and minimal impact on the membrane pores, the permeance of the optimally modified membrane even increased slightly (14 %). The outstanding anti-adhesive property of the FeⅢ-juglone coating was demonstrated by a significant reduction in the adsorption of proteins and bacteria. Furthermore, the modified membranes exhibited lower flux decline amplitude and reduced biofilm deposition during dynamic fouling experiment, further supporting the outstanding anti-biofouling performance of the nanofiltration membrane after the modification with FeⅢ-juglone coating. This study presents a novel and feasible approach for simultaneously improving the water permeance, anti-adhesive property and anti-biofouling property of commercial nanofiltration membranes.
Collapse
Affiliation(s)
- Jialin Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yonghui Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
4
|
Mone NS, Syed S, Ravichandiran P, Satpute SK, Kim AR, Yoo DJ. How Structure-Function Relationships of 1,4-Naphthoquinones Combat Antimicrobial Resistance in Multidrug-Resistant (MDR) Pathogens. ChemMedChem 2023; 18:e202200471. [PMID: 36316281 DOI: 10.1002/cmdc.202200471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial resistance (AMR) is one of the top ten health-related threats worldwide. Among several antimicrobial agents, naphthoquinones (NQs) of plant/chemical origin possess enormous structural and functional diversity and are effective against multidrug-resistant (MDR) pathogens. 1,4-NQs possess alkyl, hydroxyl, halide, and metal groups as side chains on their double-ring structure, predominantly at the C-2, C-3, C-5, and C-8 positions. Among 1,4-NQs, hydroxyl groups at either C-2 or C-5 exhibit significant antibacterial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. (ESKAPE) and MDR categories. 1,4-NQs exhibit antibacterial activities like plasmids curing, reactive oxygen species generation, efflux pumps inhibition, anti-DNA gyrase activity, membrane permeabilization, and biofilm inhibition. This review emphasizes the structure-function relationships of 1,4-NQs against ESKAPE and MDR pathogens based on a literature review of studies published in the last 15 years. Overall, 1,4-NQs have great potential for counteracting the antimicrobial resistance of MDR pathogens.
Collapse
Affiliation(s)
- Nishigandha S Mone
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Present address: Analytical, HP Green R&D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, 562114, Karnataka, India
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Ae Rhan Kim
- Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
5
|
Antibacterial and Antibiofilm Potency of Menadione Against Multidrug-Resistant S. aureus. Curr Microbiol 2022; 79:282. [PMID: 35934752 DOI: 10.1007/s00284-022-02975-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
Menadione is an analogue of 1,4-naphthoquinone (1,4-NQ) that possesses enormous pharmaceutical potential. The minimum inhibitory concentration (MIC) of menadione was determined against eighteen pathogens of the ESKAPE category, including thirteen multidrug-resistant (MDR) and five standard strains. From a total of eighteen pathogens, five strains of S. aureus (four: MDR and one: Standard strain) were considered further for detailed studies. This study included the determination of minimum bactericidal concentration (MBC), time-kill assay, scanning electron microscopic technique (SEM), and detection of reactive oxygen species (ROS). Additionally, the effect of menadione on biofilms of three strains of S. aureus was performed through crystal violet assay, SEM, and confocal laser scanning microscopy (CLSM). Menadione exerted substantial antibacterial activity against S. aureus (S8, S9, NCIM 5021) at a lower MIC (64 µg/mL). Whereas, the MIC of 256 µg/mL was displayed against J2 and J4 (MDR and biofilm-forming strains). The time-killing effect of menadione against S. aureus strains was observed after 9 h at MBCs of 64 µg/mL (NCIM 5021), 128 µg/mL (S8, S9), and 512 µg/mL (J2, J4). Enhanced levels of ROS in all five S. aureus were observed in presence of menadione (MICs and MBCs). The relation of enhanced ROS due to menadione activity invigorated us to explore its effect on S. aureus biofilms. We report menadione-mediated inhibition (> 90%) of biofilm formation (at respective MICs) and effect on preformed biofilms (> 85%) at 1024 µg/mL. Menadione possessing antibacterial and antibiofilm potentials are imperative in the era of multidrug resistance developed by bacterial pathogens.
Collapse
|
6
|
Abdel-Karim SAAM, El-Ganiny AMA, El-Sayed MA, Abbas HAA. Promising FDA-approved drugs with efflux pump inhibitory activities against clinical isolates of Staphylococcus aureus. PLoS One 2022; 17:e0272417. [PMID: 35905077 PMCID: PMC9337675 DOI: 10.1371/journal.pone.0272417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Background and objectives Staphylococcus aureus is an opportunistic pathogen that causes wide range of nosocomial and community-acquired infections which have spread worldwide leading to an urgent need for developing effective anti-staphylococcal agents. Efflux is an important resistance mechanism that bacteria used to fight the antimicrobial action. This study aimed to investigate the efflux mechanism in S. aureus and assess diclofenac, domperidone, glyceryl trinitrate and metformin as potential efflux pump inhibitors that can be used in combination with antibiotics for treating topical infections caused by S. aureus. Materials and methods Efflux was detected qualitatively by the ethidium bromide Cart-Wheel method followed by investigating the presence of efflux genes by polymerase chain reaction. Twenty-six isolates were selected for further investigation of efflux by Cart-Wheel method in absence and presence of tested compounds followed by quantitative efflux assay. Furthermore, antibiotics minimum inhibitory concentrations in absence and presence of tested compounds were determined. The effects of tested drugs on expression levels of efflux genes norA, fexA and tetK were determined by quantitative real time-polymerase chain reaction. Results Efflux was found in 65.3% of isolates, the prevalence of norA, tetK, fexA and msrA genes were 91.7%, 77.8%, 27.8% and 6.9%. Efflux assay revealed that tested drugs had potential efflux inhibitory activities, reduced the antibiotic’s MICs and significantly decreased the relative expression of efflux genes. Conclusion Diclofenac sodium, domperidone and glyceryl trinitrate showed higher efflux inhibitory activities than verapamil and metformin. To our knowledge, this is the first report that shows that diclofenac sodium, glyceryl trinitrate and domperidone have efflux pump inhibitory activities against S. aureus.
Collapse
Affiliation(s)
| | | | - Mona Abdelmonem El-Sayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
7
|
Carrillo JT, Borthakur D. Do Uncommon Plant Phenolic Compounds Have Uncommon Properties? A Mini Review on Novel Flavonoids. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [PMCID: PMC8445810 DOI: 10.1016/j.jobab.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Unique plants and their properties, once considered synonymous to medicine, remain a potent source for new compounds in modern science. Plant polyphenols and natural products continue to be investigated for effective treatments for the most persistent of human ailments. In this review, fifty novel plant phenolic compounds have been compiled and briefly described from the previous five years. Select compounds and notable plant species from genus Morinda and Sophora are further expanded on. Traditional medicine plants often contain rich and diverse mixtures of flavonoids, from which rare compounds should receive attention. The bioactivity of crude plant extracts, purified compounds and mixtures can differ greatly, requiring that these interactions and mechanisms of action be investigated in greater detail. Novel applications of uncommon natural products, namely mimosine and juglone, are explored within this review. The 2019 coronavirus pandemic has resulted in abrupt spike of related scientific publications: speculation is made regarding plant natural products and future of antiviral drug discovery.
Collapse
|
8
|
Han Q, Yan X, Zhang R, Wang G, Zhang Y. Juglone Inactivates Pseudomonas aeruginosa through Cell Membrane Damage, Biofilm Blockage, and Inhibition of Gene Expression. Molecules 2021; 26:molecules26195854. [PMID: 34641398 PMCID: PMC8510502 DOI: 10.3390/molecules26195854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the strong drug resistance of Pseudomonas aeruginosa (P. aeruginosa), the inhibition effects of conventional disinfectants and antibiotics are not obvious. Juglone extracted from discarded walnut husk, as a kind of plant-derived antimicrobial agent, has the advantages of naturalness, high efficiency, and low residue, with a potential role in the inhibition of P. aeruginosa. This study elucidated the inhibitory effect of juglone on the growth of plankton and the formation of P. aeruginosa biofilm. The results showed that juglone (35 μg/mL) had an irreversible inhibitory effect on P. aeruginosa colony formation (about 107 CFU/mL). The integrity and permeability of the cell membrane were effectively destroyed, accompanied by disorder of the membrane permeability, mass leakage of the cytoplasm, and ATP consumption. Further studies manifested that juglone could induce the abnormal accumulation of ROS in cells and block the formation of the cell membrane. In addition, RT-qPCR showed that juglone could effectively block the expression of five virulence genes and two genes involved in the production of extracellular polymers, thereby reducing the toxicity and infection of P. aeruginosa and preventing the production of extracellular polymers. This study can provide support for the innovation of antibacterial technology toward P. aeruginosa in food.
Collapse
Affiliation(s)
| | | | | | - Guoliang Wang
- Correspondence: (G.W.); (Y.Z.); Tel.: +86-138-1830-0608 (Y.Z.)
| | - Youlin Zhang
- Correspondence: (G.W.); (Y.Z.); Tel.: +86-138-1830-0608 (Y.Z.)
| |
Collapse
|
9
|
Shahmoradi A, Ranjbarghanei M, Javidparvar A, Guo L, Berdimurodov E, Ramezanzadeh B. Theoretical and surface/electrochemical investigations of walnut fruit green husk extract as effective inhibitor for mild-steel corrosion in 1M HCl electrolyte. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116550] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Naphthoquinones and Their Derivatives: Emerging Trends in Combating Microbial Pathogens. COATINGS 2021. [DOI: 10.3390/coatings11040434] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the current era, an ever-emerging threat of multidrug-resistant (MDR) pathogens pose serious health challenges to mankind. Researchers are uninterruptedly putting their efforts to design and develop alternative, innovative strategies to tackle the antibiotic resistance displayed by varied pathogens. Among several naturally derived and chemically synthesized compounds, quinones have achieved a distinct position to defeat microbial pathogens. This review unleashes the structural diversity and promising biological activities of naphthoquinones (NQs) and their derivatives documented in the past two decades. Further, realizing their functional potentialities, researchers were encouraged to approach NQs as lead molecules. We have retrieved information that is dedicated on biological applications (antibacterial, antifungal, antiparasitic) of NQs. The multiple roles of NQs offer them a promising armory to combat microbial pathogens including MDR and the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) group. In bacteria, NQs may exhibit their function in the following ways (1) plasmid curing, (2) inhibiting efflux pumps (EPs), (3) generating reactive oxygen species (ROS), (4) the inhibition of topoisomerase activity. Sparse but meticulous literature suggests the mechanistic roles of NQs. We have highlighted the possible mechanisms of NQs and how the targeted drug synthesis can be achieved via molecular docking analysis. This bioinformatics-oriented approach will explicitly lead to the development of effective and most potent drugs against targeted pathogens. The mechanistic approaches of emerging molecules like NQs might prove a milestone to defeat the battle against microbial pathogens.
Collapse
|
11
|
Amr A B, Ghada H S, Hisham A A. Sensitizing multi drug resistant Staphylococcus aureus isolated from surgical site infections to antimicrobials by efflux pump inhibitors. Afr Health Sci 2020; 20:1632-1645. [PMID: 34394224 PMCID: PMC8351819 DOI: 10.4314/ahs.v20i4.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Staphylococcus aureus is a common hospital acquired infections pathogen. Multidrug-resistant Methicillin-resistant Staphylococcus aureus represents a major problem in Egyptian hospitals. The over-expression of efflux pumps is a main cause of multidrug resistance. The discovery of efflux pump inhibitors may help fight multidrug resistance by sensitizing bacteria to antibiotics. This study aimed to investigate the role of efflux pumps in multidrug resistance. Methods Twenty multidrug resistant S. aureus isolates were selected. Efflux pumps were screened by ethidium bromide agar cartwheel method and polymerase chain reaction. The efflux pump inhibition by seven agents was tested by ethidium bromide agar cartwheel method and the effect on sensitivity to selected antimicrobials was investigated by broth microdilution method. Results Seventy percent of isolates showed strong efflux activity, while 30% showed intermediate activity. The efflux genes mdeA, norB, norC, norA and sepA were found to play the major role in efflux, while genes mepA, smr and qacA/B had a minor role. Verapamil and metformin showed significant efflux inhibition and increased the sensitivity to tested antimicrobials, while vildagliptin, atorvastatin, domperidone, mebeverine and nifuroxazide showed no effect. Conclusion Efflux pumps are involved in multidrug resistance in Staphylococcus aureus. Efflux pump inhibitors could increase the sensitivity to antimicrobials.
Collapse
|
12
|
Sharma B, Clem CM, Diaz Perez A, Striegler S. Antimicrobial Activity of Microgels with an Immobilized Copper(II) Complex Linked to Cross-Linking and Composition. ACS APPLIED BIO MATERIALS 2020; 3:7611-7619. [DOI: 10.1021/acsabm.0c00820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Babloo Sharma
- Department of Chemistry and Biochemistry, 345 North Campus Drive, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Carlie M. Clem
- Department of Chemistry and Biochemistry, 345 North Campus Drive, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Alda Diaz Perez
- Department of Chemistry and Biochemistry, 345 North Campus Drive, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Susanne Striegler
- Department of Chemistry and Biochemistry, 345 North Campus Drive, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
13
|
Vanilla modulates the activity of antibiotics and inhibits efflux pumps in drug-resistant Pseudomonas aeruginosa. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00617-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Wu G, Schuelke TA, Iriarte G, Broders K. The genome of the butternut canker pathogen, Ophiognomonia clavigignenti-juglandacearum shows an elevated number of genes associated with secondary metabolism and protection from host resistance responses. PeerJ 2020; 8:e9265. [PMID: 32655988 PMCID: PMC7331620 DOI: 10.7717/peerj.9265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/10/2020] [Indexed: 11/20/2022] Open
Abstract
Ophiognomonia clavigignenti-juglandacearum (Oc-j) is a plant pathogenic fungus that causes canker and branch dieback diseases in the hardwood tree butternut, Juglans cinerea. Oc-j is a member of the order of Diaporthales, which includes many other plant pathogenic species, several of which also infect hardwood tree species. In this study, we sequenced the genome of Oc-j and achieved a high-quality assembly and delineated its phylogeny within the Diaporthales order using a genome-wide multi-gene approach. We also further examined multiple gene families that might be involved in plant pathogenicity and degradation of complex biomass, which are relevant to a pathogenic life-style in a tree host. We found that the Oc-j genome contains a greater number of genes in these gene families compared to other species in the Diaporthales. These gene families include secreted CAZymes, kinases, cytochrome P450, efflux pumps, and secondary metabolism gene clusters. The large numbers of these genes provide Oc-j with an arsenal to cope with the specific ecological niche as a pathogen of the butternut tree.
Collapse
Affiliation(s)
- Guangxi Wu
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Taruna A Schuelke
- Ecology, Evolution and Marine Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Gloria Iriarte
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Kirk Broders
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| |
Collapse
|
15
|
Durak S, Arasoglu T, Ates SC, Derman S. Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles. NANOTECHNOLOGY 2020; 31:175705. [PMID: 31931488 DOI: 10.1088/1361-6528/ab6ab9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to the resistance to drugs, studies involving the combination and controlled release of different agents are gradually increasing. In this study, two different active ingredients, known to have antibacterial and antiparasitic activities, were encapsulated into single polymeric nanoparticles. After co-encapsulation their antibacterial and antileishmanial activity was enhanced approximately 5 and 250 times, respectively. Antibacterial and antileishmanial activities of caffeic acid phenethyl ester and juglone loaded, multifunctional nanoformulations (CJ4-CJ6-CJ8) were also evaluated for the first time in the literature comparatively with their combined free formulations. The antibacterial activity of the multifunctional nanoformulation (CJ8) were found to have a much higher activity (MIC values 6.25 and 12.5 μg ml-1 for S. aureus and E. coli, respectively) than all other formulations. Similar efficacy for CJ8 was obtained in the antiparasitic study against the Leishmania promastigotes and the IC50 was reduced to 0.1263 μg ml-1. The high activity of multifunctional nanoparticles is not only due to the synergistic effect of the active molecules but also by the encapsulation into polymeric nanoparticles. Therefore, it has been shown in the literature for the first time that the biological activity of molecules whose activity is increased by the synergistic effect can be improved with nanosystems.
Collapse
Affiliation(s)
- Saliha Durak
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey. Department of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956 Tuzla, Istanbul, Turkey
| | | | | | | |
Collapse
|
16
|
Ahmad T, Suzuki YJ. Juglone in Oxidative Stress and Cell Signaling. Antioxidants (Basel) 2019; 8:antiox8040091. [PMID: 30959841 PMCID: PMC6523217 DOI: 10.3390/antiox8040091] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Juglone (5-hydroxyl-1,4-naphthoquinone) is a phenolic compound found in walnuts. Because of the antioxidant capacities of phenolic compounds, juglone may serve to combat oxidative stress, thereby protecting against the development of various diseases and aging processes. However, being a quinone molecule, juglone could also act as a redox cycling agent and produce reactive oxygen species. Such prooxidant properties of juglone may confer health effects, such as by killing cancer cells. Further, recent studies revealed that juglone influences cell signaling. Notably, juglone is an inhibitor of Pin1 (peptidyl-prolyl cis/trans isomerase) that could regulate phosphorylation of Tau, implicating potential effects of juglone in Alzheimer’s disease. Juglone also activates mitogen-activated protein kinases that could promote cell survival, thereby protecting against conditions such as cardiac injury. This review describes recent advances in the understanding of the effects and roles of juglone in oxidative stress and cell signaling.
Collapse
Affiliation(s)
- Taseer Ahmad
- College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan.
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
17
|
Dandawate P, Padhye S, Schobert R, Biersack B. Discovery of natural products with metal-binding properties as promising antibacterial agents. Expert Opin Drug Discov 2019; 14:563-576. [PMID: 30905202 DOI: 10.1080/17460441.2019.1593367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION More than 50% of the clinically established antibiotics are either genuine natural products or derivatives thereof, featuring a mode of action decisively depending on their metal affinity and suitability as metal complex ligands. As their structural diversity and harvest from renewable sources is well-nigh inexhaustible, any future quest for affordable new antibiotics will have to concentrate on natural drugs with obvious metal ligating properties. Areas covered: The authors provide an overview of the promising developments in the field of antibiotic natural products with metal-binding properties with a specific focus on metal binders such as polyphenols, quinones, 3-acyltetramic and -tetronic acids. Works published by the authors are discussed in this manuscript as well as articles derived from PubMed and Scifinder. Expert opinion: Natural products with metal-binding properties possess a great potential for the development of drugs against various bacteria. There are many derivatives with great potential against multidrug-resistant bacteria as well. Synthetic approaches to structurally complex and/or rare natural products have added significantly to the cracking of synthetic problems. Thus, this field of scientific research appears attractive both to chemists and to clinicians.
Collapse
Affiliation(s)
- Prasad Dandawate
- a Postdoctoral Researcher, Department of Cancer Biology, School of Medicine , Kansas University Medical Center , Kansas , USA
| | - Subhash Padhye
- b University of Pune , Interdisciplinary Science and Technology Research Academy (ISTRA) , Pune , India
| | - Rainer Schobert
- c Organic Chemistry Laboratory , University of Bayreuth , Bayreuth , Germany
| | - Bernhard Biersack
- c Organic Chemistry Laboratory , University of Bayreuth , Bayreuth , Germany
| |
Collapse
|