1
|
Li Z, Yuan D. Metagenomic Analysis Reveals the Effects of Microplastics on Antibiotic Resistance Genes in Sludge Anaerobic Digestion. TOXICS 2024; 12:920. [PMID: 39771135 PMCID: PMC11728465 DOI: 10.3390/toxics12120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Sewage sludge is recognized as both a source and a reservoir for antibiotic resistance genes (ARGs). Within an anaerobic digestion (AD) system, the presence of microplastics (MPs) has been observed to potentially facilitate the proliferation of these ARGs. Understanding the influence of MPs on microbial behavior and horizontal gene transfer (HGT) within the AD system is crucial for effectively managing the dissemination of ARGs in the environment. This study utilized metagenomic approaches to analyze the dynamics of various types of ARGs and potential microbial mechanisms under exposure to MPs during the AD process. The findings indicated that MPs in the AD process can enhance the proliferation of ARGs, with the extent of this enhancement increasing with the dosage of MPs: polyethylene (PE), polyethylene terephthalate (PET), and polylactic acid (PLA) MPs increased the abundance of ARGs in the anaerobic digestion system by up to 29.90%, 18.64%, and 14.15%, respectively. Additionally, the presence of MPs increased the relative abundance of mobile genetic elements (MGEs) during the AD process. Network correlation analysis further revealed that plasmids represent the predominant category of MGEs involved in the HGT of ARGs. Propionibacterium and Alicycliphilus were identified as the primary potential hosts for these ARGs. The results of gene function annotation indicated that exposure to MPs led to an increased the relative abundance of genes related to the production of reactive oxygen species (ROS), alterations in membrane permeability, ATP synthesis, and the secretion of extracellular polymeric substances (EPS). These genes play crucial roles in influencing the HGT of ARGs.
Collapse
Affiliation(s)
| | - Donghai Yuan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
| |
Collapse
|
2
|
Abdinia FS, Javadi K, Rajabnia M, Ferdosi-Shahandashti E. A Comprehensive Study on the Distribution of Integrons and Their Gene Cassettes in Clinical Isolates. DNA Cell Biol 2024; 43:579-595. [PMID: 39419631 DOI: 10.1089/dna.2024.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Antibiotic resistance is a significant global health concern, leading to increased morbidity, mortality, and health care costs. Integrons are genetic elements that could acquire and express gene cassettes, including those that confer antibiotic resistance. This comprehensive study focused on the distribution of integrons and their gene cassettes in clinical isolates. This study explored the structure and classification of integrons with particular emphasis on Class I, II, III, and IV integrons. It also discussed the role of integrons in antibiotic resistance. The findings of this study contribute to a better understanding of the mechanisms underlying antibiotic resistance and provide valuable insights for developing strategies to combat this public health crisis.
Collapse
Affiliation(s)
- Fatemeh Sarina Abdinia
- Department of Nanotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
3
|
AL-Busaidi B, AL-Muzahmi M, AL-Shabibi Z, Rizvi M, AL-Rashdi A, AL-Jardani A, Farzand R, AL-Jabri Z. Hypervirulent Capsular Serotypes K1 and K2 Klebsiella pneumoniae Strains Demonstrate Resistance to Serum Bactericidal Activity and Galleria mellonella Lethality. Int J Mol Sci 2024; 25:1944. [PMID: 38339222 PMCID: PMC10855873 DOI: 10.3390/ijms25031944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is a variant that has been increasingly linked to severe, life-threatening infections including pyogenic liver abscess and bloodstream infections. HvKps belonging to the capsular serotypes K1 and K2 have been reported worldwide, however, very scarce studies are available on their genomics and virulence. In the current study, we report four hypermucoviscous extended-spectrum β-lactamase-producing hvKp clinical strains of capsular serotype K1 and K2 isolated from pus and urine of critically ill patients in tertiary care hospitals in Oman. These strains belong to diverse sequence types (STs), namely ST-23(K1), ST-231(K2), ST-881(K2), and ST-14(K2). To study their virulence, a Galleria mellonella model and resistance to human serum killing were used. The G. mellonella model revealed that the K1/ST-23 isolate was the most virulent, as 50% of the larvae died in the first day, followed by isolate K2/ST-231 and K2/ST-14, for which 75% and 50% of the larvae died in the second day, respectively. Resistance to human serum killing showed there was complete inhibition of bacterial growth of all four isolates by the end of the first hour and up to the third hour. Whole genome sequencing (WGS) revealed that hvKp strains display a unique genetic arrangement of k-loci. Whole-genome single-nucleotide polymorphism-based phylogenetic analysis revealed that these hvKp isolates were phylogenetically distinct, belonging to diverse clades, and belonged to different STs in comparison to global isolates. For ST-23(K1), ST-231(K2), ST-881(K2), and ST-14(K2), there was a gradual decrease in the number of colonies up to the second to third hour, which indicates neutralization of bacterial cells by the serum components. However, this was followed by a sudden increase of bacterial growth, indicating possible resistance of bacteria against human serum bactericidal activity. This is the first report from Oman detailing the WGS of hvKp clinical isolates and assessing their resistance and virulence genomics, which reinforce our understanding of their epidemiology and dissemination in clinical settings.
Collapse
Affiliation(s)
- Basaier AL-Busaidi
- Microbiology and Immunology Diagnostic Laboratory, Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat 123, Oman;
| | | | - Zahra AL-Shabibi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat 123, Oman;
| | - Meher Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Azza AL-Rashdi
- Central Public Health Laboratory, Department of Medical Microbiology, Ministry of Health, Muscat 100, Oman; (A.A.-R.); (A.A.-J.)
| | - Amina AL-Jardani
- Central Public Health Laboratory, Department of Medical Microbiology, Ministry of Health, Muscat 100, Oman; (A.A.-R.); (A.A.-J.)
| | - Robeena Farzand
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK;
| | - Zaaima AL-Jabri
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat 123, Oman;
| |
Collapse
|
4
|
AL-Muzahmi M, Rizvi M, AL-Quraini M, AL-Muharrmi Z, AL-Jabri Z. Comparative Genomic Analysis Reveals the Emergence of ST-231 and ST-395 Klebsiella pneumoniae Strains Associated with the High Transmissibility of blaKPC Plasmids. Microorganisms 2023; 11:2411. [PMID: 37894068 PMCID: PMC10608898 DOI: 10.3390/microorganisms11102411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Conjugative transposons in Gram-negative bacteria have a significant role in the dissemination of antibiotic-resistance-conferring genes between bacteria. This study aims to genomically characterize plasmids and conjugative transposons carrying integrons in clinical isolates of Klebsiella pneumoniae. The genetic composition of conjugative transposons and phenotypic assessment of 50 multidrug-resistant K. pneumoniae isolates from a tertiary-care hospital (SQUH), Muscat, Oman, were investigated. Horizontal transferability was investigated by filter mating conjugation experiments. Whole-genome sequencing (WGS) was performed to determine the sequence type (ST), acquired resistome, and plasmidome of integron-carrying strains. Class 1 integrons were detected in 96% of isolates and, among integron-positive isolates, 18 stains contained variable regions. Horizontal transferability by conjugation confirmed the successful transfer of integrons between cells and WGS confirmed their presence in conjugative plasmids. Dihydrofolate reductase (dfrA14) was the most prevalent (34.8%) gene cassette in class 1 integrons. MLST analysis detected predominantly ST-231 and ST-395. BlaOXA-232 and blaCTX-M-15 were the most frequently detected carbapenemases and beta-lactamases in the sequenced isolates. This study highlighted the high transmissibility of MDR-conferring conjugative plasmids in clinical isolates of K. pneumoniae. Therefore, the wise use of antibiotics and the adherence to effective infection control measures are necessary to limit the further dissemination of multidrug-resistant bacteria.
Collapse
Affiliation(s)
| | - Meher Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
| | - Munawr AL-Quraini
- Microbiology and Immunology Diagnostic Laboratory, Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat 123, Oman; (M.A.-Q.); (Z.A.-M.)
| | - Zakariya AL-Muharrmi
- Microbiology and Immunology Diagnostic Laboratory, Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat 123, Oman; (M.A.-Q.); (Z.A.-M.)
| | - Zaaima AL-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
| |
Collapse
|
5
|
Wang J, Dong X, Wang F, Jiang J, Zhao Y, Gu J, Xu J, Mao X, Tu B. Molecular Characteristics and Genetic Analysis of Extensively Drug-Resistant Isolates with different Tn3 Mobile Genetic Elements. Curr Microbiol 2023; 80:246. [PMID: 37335402 DOI: 10.1007/s00284-023-03340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
Extensively drug-resistant (XDR) bacteria are the main caues for causing clinical infectious diseases. Our aim was to distinguish the present molecular epidemiological situation of XDR Klebsiella pneumoniae, Acinetobacter baumannii, and Escherichia coli isolates recovered from local hospitals in Changzhou. Antibiotic susceptibility and phenotypic analysis, multilocus sequence typing and Pulsed Field Gel Electrophoresis were performed to trace these isolates. Resistant phenotype and gene analysis from 29 XDR strains demonstrated that they mainly included TEM, CTX-M-1/2, OXA-48, and KPC products. A. baumannii strains belonged to sequence type (ST) ST224, and carrying the blaCTX-M-2/TEM gene. The quinolone genes aac(6')-ib-cr and qnrB were carrying only in A. baumannii and E.coli. Three (2.3%) of these strains were found to contain the blaNDM-1 or blaNDM-5 gene. A new genotype of K. pneumoniae was found as ST2639. Epidemic characteristics of the XDR clones showed that antibiotic resistance genes distributed unevenly in different wards in Changzhou's local hospitals. With the sequencing of blaNDM carrying isolates, the plasmids often carrying a highly conservative Tn3-relavent mobile genetic element. The especially coupled insert sequence ISKox3 may be a distinctive resistance gene transfer loci. The genotypic diversity variation of XDRs suggested that tracking and isolating the sources of antibiotic resistance especially MBL-encoding genes such as blaNDM-will help manage the risk of infection by these XDRs.
Collapse
Affiliation(s)
- Jiazhen Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin Dong
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Fengming Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Jinyi Jiang
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Ying Zhao
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Jingyue Gu
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jian Xu
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Xujian Mao
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Bowen Tu
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China.
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
6
|
Wang L, Zhu M, Yan C, Zhang Y, He X, Wu L, Xu J, Lu J, Bao Q, Hu Y, Xu T, Liang J. Class 1 integrons and multiple mobile genetic elements in clinical isolates of the Klebsiella pneumoniae complex from a tertiary hospital in eastern China. Front Microbiol 2023; 14:985102. [PMID: 36950157 PMCID: PMC10026359 DOI: 10.3389/fmicb.2023.985102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Background The emergence of highly drug-resistant K. pneumoniae, has become a major public health challenge. In this work, we aim to investigate the diversity of species and sequence types (STs) of clinical Klebsiella isolates and to characterize the prevalence and structure of class 1 integrons. Methods Based on the whole genome sequencing, species identification was performed by 16S rRNA gene homology and average nucleotide identity (ANI) analysis. STs were determined in accordance with the international MLST schemes for K. pneumoniae and K. variicola. Integron characterization and comparative genomic analysis were performed using various bioinformatic tools. Results Species identification showed that the 167 isolates belonged to four species: K. pneumoniae, K. variicola subsp. variicola, K. quasipneumoniae and K. aerogenes. Thirty-six known and 5 novel STs were identified in K. pneumoniae, and 10 novel STs were identified in K. variicola subsp. variicola. Class 1 integrons were found in 57.49% (96/167) of the isolates, and a total of 169 resistance gene cassettes encoding 19 types of resistance genes, including carbapenem resistance gene (bla IPM-4) and class D β-lactamases gene (bla OXA-1 and bla OXA-10), were identified. Among the 17 complete genomes, 29 class 1 integrons from 12 groups were found, only 1 group was encoded on chromosomes. Interestingly, one plasmid (pKP167-261) carrying two copies of approximately 19-kb IS26-Int1 complex resistance region that contains an integron and a multidrug resistance gene fragment. Conclusion The results of this work demonstrated that the species and STs of the clinical Klebsiella isolates were more complex by the whole genome sequence analysis than by the traditional laboratory methods. Finding of the new structure of MGEs related to the resistance genes indicates the great importance of deeply exploring the molecular mechanisms of bacterial multidrug resistance.
Collapse
Affiliation(s)
- Lan Wang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Mei Zhu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Chunxia Yan
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Yanfang Zhang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Xuying He
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Lin Wu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Jiefeng Xu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Qiyu Bao
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yunliang Hu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
- *Correspondence: Teng Xu,
| | - Jialei Liang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Jialei Liang,
| |
Collapse
|
7
|
Shahkolahi S, Shakibnia P, Shahbazi S, Sabzi S, Badmasti F, Asadi Karam MR, Habibi M. Detection of ESBL and AmpC producing Klebsiella pneumoniae ST11 and ST147 from urinary tract infections in Iran. Acta Microbiol Immunol Hung 2022; 69:303-313. [PMID: 36112491 DOI: 10.1556/030.2022.01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
In the present study a total of 200 Klebsiella pneumoniae isolates were collected from patients with urinary tract infections (UTIs) in Tehran, Iran. Antibiotic resistance was determined by disk diffusion and broth dilution methods. Detection of extended-spectrum β-lactamases (ESBLs) and AmpCs was performed using phenotypic tests. Polymerase chain reaction (PCR) was applied to detect the ESBL, AmpC, and integron genes. Analysis of AmpC and cassette arrays of integron genes was performed using DNA sequencing. Plasmids were analyzed by PCR-based replicon typing and conjugation. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were applied to explore the genomic relatedness among the isolates. The highest levels of resistance were observed against ampicillin (100%), followed by piperacillin (57.5%), ceftazidime (46%), trimethoprim/sulfamethoxazole (44%), ciprofloxacin (32.5%), and imipenem (19%). Approximately, 66.5% of isolates harbored at least one of the beta-lactamase genes (blaTEM, blaSHV, blaCTX-M, and blaOXA-1). In addition, 22.5% of isolates carried at least one of the AmpC genes including blaDHA and blaCIT. Integron class I was the most prevalent integron among resistant isolates. According to the results of replicon typing, IncFII, IncL/M, and IncA/C were the most frequent replicons, respectively. All selected isolates were able to transfer blaCTX-M, also two isolates transferred the blaDHA-1 gene to Escherichia coli K12 through conjugation. Finally, 21 isolates were categorized into 4 pulsotypes and 11 unique clusters in PFGE. MLST identified ST147 and ST11 sequence types but ST147 was the most prevalent in the current study.
Collapse
Affiliation(s)
| | - Pegah Shakibnia
- 2Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shahla Shahbazi
- 1Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Sabzi
- 1Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- 3Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mehri Habibi
- 1Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Liao W, Liu Y, Zhang W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: A review over the last 10 years. J Glob Antimicrob Resist 2020; 23:174-180. [PMID: 32971292 DOI: 10.1016/j.jgar.2020.09.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
Sequence type 11 (ST11) carbapenem-resistant Klebsiella pneumoniae (CRKP) has become the dominant clone in China. In this review, we trace the prevalence of ST11 CRKP in the China Antimicrobial Surveillance Network (CHINET), the key antimicrobial resistance mechanisms and virulence evolution. The recent emergence of ST11 carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) strains in China due to the acquisition of a pLVPK-like virulence plasmid, which may cause severe infections in relatively healthy individuals that are difficult to treat with current antibiotics, has attracted worldwide attention. There is a very close linkage among IncF plasmids, NTEKPC and ST11 K. pneumoniae in China. Hybrid conjugative virulence plasmids are demonstrated to readily convert a ST11 CRKP strain to a CR-hvKP strain via conjugation. Understanding the molecular evolutionary mechanisms of resistance and virulence-bearing plasmids as well as the prevalence of ST11 CRKP in China allows improved tracking and control of such organisms.
Collapse
Affiliation(s)
- Wenjian Liao
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China
| | - Yang Liu
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China.
| | - Wei Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
9
|
Distribution of integrons and phylogenetic groups among highly virulent serotypes of Klebsiella pneumoniae in a Chinese tertiary hospital. J Glob Antimicrob Resist 2020; 21:278-284. [DOI: 10.1016/j.jgar.2019.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022] Open
|
10
|
Fuzi M, Rodriguez Baño J, Toth A. Global Evolution of Pathogenic Bacteria With Extensive Use of Fluoroquinolone Agents. Front Microbiol 2020; 11:271. [PMID: 32158437 PMCID: PMC7052298 DOI: 10.3389/fmicb.2020.00271] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
It is well-established that the spread of many multidrug-resistant (MDR) bacteria is predominantly clonal. Interestingly the international clones/sequence types (STs) of most pathogens emerged and disseminated during the last three decades. Strong experimental evidence from multiple laboratories indicate that diverse fitness cost associated with high-level resistance to fluoroquinolones contributed to the selection and promotion of the international clones/STs of hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA), extended-spectrum β-lactamase-(ESBL)-producing Klebsiella pneumoniae, ESBL-producing Escherichia coli and Clostridioides difficile. The overwhelming part of the literature investigating the epidemiology of the pathogens as a function of fluoroquinolone use remain in concordence with these findings. Moreover, recent in vitro data clearly show the potential of fluoroquinolone exposure to shape the clonal evolution of Salmonella Enteritidis. The success of the international clones/STs in all these species was linked to the strains' unique ability to evolve multiple energetically beneficial gyrase and topoisomerase IV mutations conferring high-level resistance to fluorquinolones and concomittantly permitting the acquisition of an extra resistance gene load without evoking appreciable fitness cost. Furthermore, by analyzing the clonality of multiple species, the review highlights, that in environments under high antibiotic exposure virulence factors play only a subsidiary role in the clonal dynamics of bacteria relative to multidrug-resistance coupled with favorable fitness (greater speed of replication). Though other groups of antibiotics should also be involved in selecting clones of bacterial pathogens the role of fluoroquinolones due to their peculiar fitness effect remains unique. It is suggested that probably no bacteria remain immune to the influence of fluoroquinolones in shaping their evolutionary dynamics. Consequently a more judicious use of fluoroquinolones, attuned to the proportion of international clone/ST isolates among local pathogens, would not only decrease resistance rates against this group of antibiotics but should also ameliorate the overall antibiotic resistance landscape.
Collapse
Affiliation(s)
- Miklos Fuzi
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Jesus Rodriguez Baño
- Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine, Department of Medicine, Hospital Universitario Virgen Macarena, University of Seville - Biomedicine Institute of Seville (IBiS), Seville, Spain
| | - Akos Toth
- Department of Bacteriology, Mycology and Parasitology, National Public Health Center, Budapest, Hungary
| |
Collapse
|
11
|
Characterization of Integrons and Antimicrobial Resistance in Escherichia coli Sequence Type 131 Isolates. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2020; 2020:3826186. [PMID: 32184909 PMCID: PMC7060437 DOI: 10.1155/2020/3826186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/05/2020] [Accepted: 01/14/2020] [Indexed: 01/17/2023]
Abstract
Background Escherichia coli sequence type 131 (ST131) is an important multidrug-resistant extraintestinal pathogen, which can cause many kinds of infections. Integrons may play a crucial role in the dissemination of antibiotic resistance genes. The purpose of this study was to characterize the prevelance of integrons among E. coli ST131 strains in China. Methods Eighty-three E. coli ST131 strains in China. E. coli ST131 strains in China. Results Overall, 26.5% (22/83) of the E. coli ST131 strains in China. dfrA17-aadA5 and aac(6')-Ib-cr-cmlA5. Only one type of Pc promoter variant was detected among 22 integron-positive isolates (PcW). In vivo transfer of integron was successful for 9 of integron-positive E. coli ST131 strains in China. E. coli ST131 strains in China. Conclusions Our study showed a low prevalence of integrons was detected in E. coli ST131. Continued surveillance of this mobile genetic element should be performed to study the evolution of antibiotic resistance among E. coli ST131.E. coli ST131 strains in China. E. coli ST131 strains in China.
Collapse
|
12
|
BlaOXA-10 and PSE-1 Genes Located on Class 1 Integrons in Gallibacterium anatis. Curr Microbiol 2019; 76:959-961. [DOI: 10.1007/s00284-018-1477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
13
|
Li J, Bi W, Dong G, Zhang Y, Wu Q, Dong T, Cao J, Zhou T. The new perspective of old antibiotic: In vitro antibacterial activity of TMP-SMZ against Klebsiella pneumoniae. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 53:757-765. [PMID: 30857922 DOI: 10.1016/j.jmii.2018.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/29/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND/PURPOSE Trimethoprim-sulfamethoxazole (TMP-SMZ) is broadly administered to treat multiple infections, and the paucity of effective treatment alternatives for infections caused by Klebsiella pneumoniae has led to a renewed interest in TMP-SMZ. The aim of this study is to evaluate the antibacterial efficacy of TMP-SMZ against K. pneumoniae. METHODS The resistance genes of K. pneumoniae clinical isolates were investigated by PCR, followed by conjugation experiments and multilocus sequence typing. RESULTS The resistance rate of K. pneumoniae to TMP-SMZ decreased over the collection period from 26.7% (88/330) to 16.9% (56/332). The high carrying rates (173/175, 98.9%) of resistance determinants (sul genes or dfr genes) were the main mechanisms of TMP-SMZ resistance isolates, with sul1 (142/175, 81.1%) and dfrA1 (119/175, 68.0%). Only class 1 integron was detected, the prevalence of which in TMP-SMZ resistant K. pneumoniae was 63.4% (111/175). CONCLUSION These results provided insights into the antimicrobial efficacy of TMP-SMZ against K. pneumoniae, also illustrating the wide distribution of SMZ and TMP resistance genes among resistant K. pneumoniae. Simultaneously, the present study highlights the significance of reasonable administration and effective continued monitoring.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenzi Bi
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guofeng Dong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yizhi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tongyu Dong
- Department of Clinical Laboratory, Haining People's Hospital, Haining, Zhejiang, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
14
|
Investigation of antibiotic resistance and the presence of integron genes among ESBL producing Klebsiella isolates. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Chainier D, Barraud O, Masson G, Couve-Deacon E, François B, Couquet CY, Ploy MC. Integron Digestive Carriage in Human and Cattle: A "One Health" Cultivation-Independent Approach. Front Microbiol 2017; 8:1891. [PMID: 29021787 PMCID: PMC5624303 DOI: 10.3389/fmicb.2017.01891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/15/2017] [Indexed: 01/14/2023] Open
Abstract
Objectives: Dissemination of antimicrobial resistance (AMR) is a global issue that requires the adoption of a "One-Health" approach promoting integration of human and animal health. Besides culture-dependent techniques frequently used for AMR surveillance, cultivation-independent methods can give additional insights into the diversity and reservoir of AMR genetic determinants. Integrons are molecular markers that can provide overall and reliable estimation of AMR dissemination. In this study, considering the "One-Health" approach, we have analyzed the integron digestive carriage from stools of humans and cattle living in a same area and exposed to different antibiotic selection pressures. Methods: Three collections of human [general population (GP) and intensive care unit patients (ICUs)] and bovine (BOV) stool samples were analyzed. The three main classes of integrons were detected using a multiplex qPCR both from total DNA extracted from stools, and from Gram-negative bacteria obtained by culture after an enrichment step. Results: With the cultivation-independent approach, integron carriage was 43.8, 52.7, and 65.6% for GP, ICU, and BOV respectively, percentages being at least twofold higher to those obtained with the cultivation-dependent approach. Class 1 integrons were the most prevalent; class 2 integrons seemed more associated to cattle than to humans; no class 3 integron was detected. The integron carriage was not significantly different between GP and ICU populations according to the antibiotic consumption, whatever the approach. Conclusion: The cultivation-independent approach constitutes a complementary exploratory method to investigate the integron digestive carriage of humans and bovines, notably within subjects under antibiotic treatment. The high frequency of carriage of integrons in the gut is of clinical significance, integrons being able to easily acquire and exchange resistant genes under antibiotic selective pressure and so leading to the dissemination of resistant bacteria.
Collapse
Affiliation(s)
| | - Olivier Barraud
- INSERM, CHU Limoges, UMR 1092, Université Limoges, Limoges, France
| | - Geoffrey Masson
- INSERM, CHU Limoges, UMR 1092, Université Limoges, Limoges, France
| | | | - Bruno François
- INSERM, CHU Limoges, UMR 1092, Université Limoges, Limoges, France.,INSERM, CIC1435, CHU Limoges, Limoges, France
| | - Claude-Yves Couquet
- Laboratoire Départemental d'Analyses et de Recherches de la Haute-Vienne, Limoges, France
| | | |
Collapse
|
16
|
Akrami F, Shahandashti EF, Yahyapour Y, Sadeghi M, Khafri S, Pournajaf A, Rajabnia R. Integron types, gene cassettes and antimicrobial resistance profile of Acinetobacter baumannii isolated from BAL samples in Babol, north of Iran. Microb Pathog 2017; 109:35-38. [PMID: 28479508 DOI: 10.1016/j.micpath.2017.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 11/24/2022]
Abstract
Multi-drug resistant isolates of Acinetobacter baumannii have created therapeutic problems worldwide. This current study was intended to determine the Integron types, gene cassettes and antimicrobial resistance profile of A. baumannii isolated from BAL samples in Babol, north of Iran. During a 15-month period, 35 A. baumannii isolates were studied. Different classes of antimicrobial agents were used to determine the resistance ratios. Multiplex-PCR was used to detect different types of integrons and associated gene cassettes. The resistance rates to GM, FEP, AK, TOB, CP, PIP, SAM, IPM, SXT, CTX, CAZ, CL, TIM, MEM, and TZP were 85.7%, 100%, 91.4%, 68.5%, 94.3%, 88.5%, 97.1%, 94.3%, 100%, 100%, 100%, 0.0%, 91.4%, 94.3% and 91.4%, respectively. The distribution analysis of int genes showed that 25.7%, 88.6% and 28.6% of isolates carried the intI, intII and intIII genes, respectively. The prevalence of aadB, dfrA1, bla-OXA30 and aadA1 genes were 94.3%, 77.1%, 40% and 5.7%, respectively. The current study showed that a high level of A. baumannii isolates harbor integrons in our therapeutic center, which may lead to distribution of multiple antimicrobial resistance. The different types of gene cassette arrays in the present study highlight the important role of geographical features in MDR isolates dissemination which could be credited to different profiles of drug consumption in different areas. The findings emphasized that the need for continuous surveillance to prevent distribution of multidrug resistance among A. baumannii strains in Iran.
Collapse
Affiliation(s)
- Fariba Akrami
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Elaheh Ferdosi Shahandashti
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Yousef Yahyapour
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Mohsen Sadeghi
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Soraya Khafri
- Department of Biostatics and Epidemiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Abazar Pournajaf
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ramazan Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.
| |
Collapse
|
17
|
Oliveira-Pinto C, Diamantino C, Oliveira PL, Reis MP, Costa PS, Paiva MC, Nardi RMD, Magalhães PP, Chartone-Souza E, Nascimento AMA. Occurrence and characterization of class 1 integrons in Escherichia coli from healthy individuals and those with urinary infection. J Med Microbiol 2017; 66:577-583. [DOI: 10.1099/jmm.0.000468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Clarisse Oliveira-Pinto
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Cristiane Diamantino
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia L Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Mariana P Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia S Costa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Magna C Paiva
- Campus Dona Lindu, Universidade Federal de São João del Rei, Divinópolis, Minas Gerais, Brazil
| | - Regina M. D Nardi
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Paula P Magalhães
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Edmar Chartone-Souza
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Andréa M. A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|