1
|
Gairola K, Singh G, Bahuguna A, Pujari R, Kesharwani RK, Dubey SK. Computational simulation guided prediction of the inhibitory effect of curcumin, diallyl sulfide and its conjugates on ALDH1A1 to target breast cancer stem cells (BCSCs). J Biomol Struct Dyn 2025:1-14. [PMID: 40418669 DOI: 10.1080/07391102.2025.2506720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/26/2024] [Indexed: 05/28/2025]
Abstract
. Despite the significant advancements in clinical and laboratory research, breast cancer remains a formidable challenge due to its high incidence, recurrence and mortality rate. The emerging paradigm emphasizes the pivotal role of cancer stem cells in compelling cancer initiation and recurrence attributed to the resistance against conventional radio and chemotherapy, thereby leading to poor prognosis and disease relapse post-treatment. Aldehyde dehydrogenase (ALDH1A1) is the putative stemness biomarker in breast cancer stem cells. It has been attributed to drug resistance in chemotherapy, especially against the drugs derived from aldehydic intermediate in action mechanism, cell differentiation and oxidative stress response. Since time immemorial, natural products have been employed in traditional medicine systems for their therapeutic and chemopreventive properties. Curcumin, an active polyphenol present in turmeric, plays a significant role in impeding the growth of BCSCs. However, the clinical efficacy of curcumin is restrained due to its poor bioavailability, limited absorption, rapid metabolism, and systemic elimination. To address this challenge, efforts have been directed towards synthesizing curcumin conjugates with diallyl sulfide to enhance its bioavailability. Computational tools such as molecular docking, molecular dynamics simulations and end-state MMGBSA binding free-energy calculations were employed to predict the optimal binding of curcumin conjugates with ALDH1A1 and provide valuable insights into their potential binding affinity and therapeutic efficacy. The enhanced bioavailability of curcumin may be attributed to the enhanced therapeutic activity against the BCSCs. Furthermore, synthesizing curcumin conjugates holds promise in cancer Chemoprevention. .
Collapse
Affiliation(s)
- Kanchan Gairola
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Ananya Bahuguna
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Rohit Pujari
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Rajesh Kumar Kesharwani
- Department of Computer Application, Nehru Gram Bharati (Deemed to be University), Prayagraj, India
| | - Shiv Kumar Dubey
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
2
|
Bhardwaj S, Nagarajan K, Mustafa Elagib H, Anwar S, Zeeshan Najm M, Bhardwaj T, Kausar MA. Molecular simulation-based investigation of thiazole derivatives as potential LasR inhibitors of Pseudomonas aeruginosa. PLoS One 2025; 20:e0320841. [PMID: 40261876 PMCID: PMC12061423 DOI: 10.1371/journal.pone.0320841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/25/2025] [Indexed: 04/24/2025] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a very resilient pathogen, demonstrates a diverse array of virulence factors, the expression of which is closely linked to the quorum sensing(QS) mechanism, which facilitates cell-cell interaction. Quorum sensing (QS) inhibition is a promising strategy for combating bacterial infections. LasR, a transcriptional factor that controls the mechanism of QS in P. aeruginosa, is a promising target for therapeutic development, because a lot of research has been done on its structure. It has already been established that thiazoles and their compounds have anti-QS potential against P aeruginosa. The study aims to identify new LasR quorum sensing inhibitors (QSIs) derived from novel thiazoles utilizing a structure-based virtual screening technique using the ZINC database. A complete set of 800 molecules (a novel thiazole derivative library) were docked inside the active region of the LasR receptor before being screened using pharmacokinetic and toxicology studies. Among the derivatives that were examined, compounds D_152, D_153, and L_331 were selected as potential inhibitors of LasR in P. aeruginosa and further studied to obtain a crucial understanding of the binding interactions that take place between inhibitor ligands and LasR. The findings indicated that the pharmacophoric characteristics of the derivative D_152 were comparable to those of the reference thiazole molecule (TC). Moreover, the molecular docking investigations showed that derivative D_152 and reference compound TC both fit the LasR protein's active area well. Furthermore, TC and D_152's amino acid interaction graphs with LasR and CviR are nearly identical. Furthermore, compound D_152's ability to engage with the LasR binding site through the dissolution of the protein's dimer was demonstrated by molecular dynamics modeling tests conducted over a 50 ns time span, demonstrating its function as a LasR antagonist. Additionally, Density Functional Theory (DFT) study was conducted on compound D_152 in order to determine the electron density of a molecule. According to the research findings, the recently produced thiazole derivative (D_152) has the potential to be used as a QSI against the LasR receptor, which would speed up the fight against the pathogenicity of P. aeruginosa that is resistant to multiple drugs.
Collapse
Affiliation(s)
- Snigdha Bhardwaj
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Kandasamy Nagarajan
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Halima Mustafa Elagib
- Department of Pharmacology, College of Medicine, University of Ha’il, Hail, Saudi Arabia
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha’il, Hail, Saudi Arabia
| | | | - Tulika Bhardwaj
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha’il, Hail, Saudi Arabia
| |
Collapse
|
3
|
Jayaraman M, Gosu V, Kumar R, Jeyaraman J, Lee HK, Shin D. Exploring Marine natural products as potential Quorum sensing inhibitors by targeting the PqsR in Pseudomonas aeruginosa: Virtual screening assisted structural dynamics study. PLoS One 2025; 20:e0319352. [PMID: 40153475 PMCID: PMC11952224 DOI: 10.1371/journal.pone.0319352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/30/2025] [Indexed: 03/30/2025] Open
Abstract
Antibiotic resistance is a critical global health issue, and Pseudomonas aeruginosa is a particularly challenging pathogen. This gram-negative bacterium is notorious for its high virulence and resistance to antimicrobial agents, making it a leading cause of nosocomial infections, significantly impacting public health. The adaptability and multidrug resistance of P. aeruginosa exacerbate treatment difficulties, resulting in increased morbidity and mortality rates worldwide. Consequently, targeting bacterial quorum sensing (QS) systems is a promising strategy for the development of novel antimicrobial compounds against this resilient pathogen. In this study, a structure-based virtual screening (SBVS) approach was employed to identify marine natural products (MNPs) as potential lead molecules targeting the biofilm-forming PqsR protein of P. aeruginosa. A total of ~37,000 MNPs were initially evaluated and ranked based on docking scores using high-throughput virtual screening (HTVS), Standard Precision (SP), and Extra Precision (XP) methods. Ten lead molecules (five from the CMNPD database and five from the MNPD database) were shortlisted based on their docking scores (<-10.0 kcal/mol) and binding free energy values (MM-GBSA ΔG <-40 kcal/mol). Their drug-likeness profiles were assessed using stringent criteria in the QikProp module of Schrödinger, and their chemical reactivity was evaluated through density functional theory (DFT) calculations. The structural and energetic interactions between the identified MNPs and the PqsR-binding pocket were validated through molecular dynamics simulations (MDS) and binding free energy (BFE) calculations. Structural dynamic analyses revealed that the MNP-bound PqsR complexes demonstrated stable interactions within the binding pocket, with hydrophobic residues such as L208, I236, and I263 playing a crucial role in maintaining stability. Among the identified MNPs, CMNPD14329, CMNPD23880, MNPD13399, and MNPD13725 emerged as promising lead molecules for further research. These candidates can serve as foundations for developing structural analogs with enhanced binding affinities for PqsR and other biofilm-forming proteins. Further experimental validation is essential to confirm the therapeutic potential of these identified MNPs.
Collapse
Affiliation(s)
- Manikandan Jayaraman
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Rajalakshmi Kumar
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pillayarkuppam, Puducherry, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Hak-kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Kaur H, Taneja N. Identification of Inhibitors for Flagellar Assembly Protein FliN of Uropathogenic Escherichia coli using Virtual Screening and Molecular Dynamics Simulation Study. Indian J Microbiol 2024; 64:683-693. [PMID: 39011002 PMCID: PMC11246409 DOI: 10.1007/s12088-024-01252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 07/17/2024] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacterial pathogen that poses a significant clinical and epidemiologic challenge. The selection pressure brought by the insufficient use of antibiotics has resulted in the emergence of multi-drug-resistant E. coli in the past ten years. Computational and bioinformatics methods for screening inhibitors have significantly contributed to discovering novel antibacterial agents. One possible target for novel anti-virulence drugs is motility. Motility inhibitors are generally effective at concentrations lower than those required for the antibacterial properties of traditional antibiotics, and they are likely to exert less selective pressure than current medicines. Motility may be essential for bacteria to survive, find nutrients, and escape unfavorable environments and biofilm formation. The FliN is a protein forming the bulk of the C ring of the flagella and is present in multiple copies (more than 100) in bacteria. Its absence in mammals makes it an attractive drug target for drug discovery. Two-thousand seven hundred seventy-eight natural compounds from the ZINC library were screened against FliN (PDB ID: 4YXB) using PyRx AutoDock Vina, and the top compounds were selected for secondary screening after sorting the results based on their binding energy. Based on interactional analysis, binding energy (- 7.78 kcal/mol), and inhibition constant (1.98 µM), ZINC000000619481 was the best inhibitor. This compound binds exactly as per the defined active site residues of the receptor protein. Also, molecular dynamics was performed. The eigenvalue of the selected complex was 1.241657e-05. There were no ADME properties outside of the specified range for the identified hit; it fitted exactly to the binding site of the FliN receptor well and was found to be stable in MD simulation studies. Further in vitro and in vivo studies are needed to confirm its anti-bacterial activity and use as a potential antimicrobial drug against urinary tract infections caused by E. coli.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012 India
| | - Neelam Taneja
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012 India
| |
Collapse
|
5
|
Filipić B, Ušjak D, Rambaher MH, Oljacic S, Milenković MT. Evaluation of novel compounds as anti-bacterial or anti-virulence agents. Front Cell Infect Microbiol 2024; 14:1370062. [PMID: 38510964 PMCID: PMC10951914 DOI: 10.3389/fcimb.2024.1370062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Antimicrobial resistance is a global threat, leading to an alarming increase in the prevalence of bacterial infections that can no longer be treated with available antibiotics. The World Health Organization estimates that by 2050 up to 10 million deaths per year could be associated with antimicrobial resistance, which would equal the annual number of cancer deaths worldwide. To overcome this emerging crisis, novel anti-bacterial compounds are urgently needed. There are two possible approaches in the fight against bacterial infections: a) targeting structures within bacterial cells, similar to existing antibiotics; and/or b) targeting virulence factors rather than bacterial growth. Here, for the first time, we provide a comprehensive overview of the key steps in the evaluation of potential new anti-bacterial and/or anti-virulence compounds. The methods described in this review include: a) in silico methods for the evaluation of novel compounds; b) anti-bacterial assays (MIC, MBC, Time-kill); b) anti-virulence assays (anti-biofilm, anti-quorum sensing, anti-adhesion); and c) evaluation of safety aspects (cytotoxicity assay and Ames test). Overall, we provide a detailed description of the methods that are an essential tool for chemists, computational chemists, microbiologists, and toxicologists in the evaluation of potential novel antimicrobial compounds. These methods are cost-effective and have high predictive value. They are widely used in preclinical studies to identify new molecular candidates, for further investigation in animal and human trials.
Collapse
Affiliation(s)
- Brankica Filipić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dušan Ušjak
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Martina Hrast Rambaher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Marina T. Milenković
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Koh CMM, Ping LSY, Xuan CHH, Theng LB, San HS, Palombo EA, Wezen XC. A data-driven machine learning approach for discovering potent LasR inhibitors. Bioengineered 2023; 14:2243416. [PMID: 37552115 PMCID: PMC10411317 DOI: 10.1080/21655979.2023.2243416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The rampant spread of multidrug-resistant Pseudomonas aeruginosa strains severely threatens global health. This severity is compounded against the backdrop of a stagnating antibiotics development pipeline. Moreover, with many promising therapeutics falling short of expectations in clinical trials, targeting the las quorum sensing (QS) system remains an attractive therapeutic strategy to combat P. aeruginosa infection. Thus, our primary goal was to develop a drug prediction algorithm using machine learning to identify potent LasR inhibitors. In this work, we demonstrated using a Multilayer Perceptron (MLP) algorithm boosted with AdaBoostM1 to discriminate between active and inactive LasR inhibitors. The optimal model performance was evaluated using 5-fold cross-validation and test sets. Our best model achieved a 90.7% accuracy in distinguishing active from inactive LasR inhibitors, an area under the Receiver Operating Characteristic Curve value of 0.95, and a Matthews correlation coefficient value of 0.81 when evaluated using test sets. Subsequently, we deployed the model against the Enamine database. The top-ranked compounds were further evaluated for their target engagement activity using molecular docking studies, Molecular Dynamics simulations, MM-GBSA analysis, and Free Energy Landscape analysis. Our data indicate that several of our chosen top hits showed better ligand-binding affinities than naringenin, a competitive LasR inhibitor. Among the six top hits, five of these compounds were predicted to be LasR inhibitors that could be used to treat P. aeruginosa-associated infections. To our knowledge, this study provides the first assessment of using an MLP-based QSAR model for discovering potent LasR inhibitors to attenuate P. aeruginosa infections.
Collapse
Affiliation(s)
- Christabel Ming Ming Koh
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Lilian Siaw Yung Ping
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Christopher Ha Heng Xuan
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Lau Bee Theng
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Hwang Siaw San
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Xavier Chee Wezen
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| |
Collapse
|
7
|
Lu L, Wang J, Qin T, Chen K, Xie J, Xi B. Carvacrol Inhibits Quorum Sensing in Opportunistic Bacterium Aeromonas hydrophila. Microorganisms 2023; 11:2027. [PMID: 37630587 PMCID: PMC10459158 DOI: 10.3390/microorganisms11082027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial quorum sensing (QS) plays a crucial role in chemical communication between bacteria involving autoinducers and receptors and controls the production of virulence factors in bacteria. Therefore, reducing the concentration of signaling molecules in QS is an effective strategy for mitigating the virulence of pathogenic bacteria. In this study, we demonstrated that carvacrol at 15.625 μg/mL (1/4 MIC), a natural compound found in plants, exhibits potent inhibitory activity against QS in Chromobacterium violaceum, as evidenced by a significant reduction (62.46%) in violacein production. Based on its impressive performance, carvacrol was employed as a natural QS inhibitor to suppress the pathogenicity of Aeromonas hydrophila NJ-35. This study revealed a significant reduction (36.01%) in the concentration of N-acyl-homoserine lactones (AHLs), a QS signal molecular secreted by A. hydrophila NJ-35, after 1/4 MIC carvacrol treatment. Moreover, carvacrol was found to down-regulate the expression of ahyR/I, two key genes in the QS system, which further inhibited the QS system of A. hydrophila NJ-35. Finally, based on the above results and molecular docking, we proposed that carvacrol alleviate the pathogenicity of A. hydrophila NJ-35 through QS inhibition. These results suggest that carvacrol could serve as a potential strategy for reducing the virulence of pathogenic bacteria and minimizing the reliance on antibiotics in aquaculture.
Collapse
Affiliation(s)
- Liushen Lu
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
| | - Junwei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China;
| | - Ting Qin
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
| | - Kai Chen
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
| | - Jun Xie
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
| | - Bingwen Xi
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China;
| |
Collapse
|
8
|
Behera SK, Panda AK, Mishra R, Mahanty A, Bisht SS. Structure based virtual screening and molecular dynamics of natural anti-biofilm compounds against SagS response regulator/sensor kinase in Pseudomonas aeruginosa. J Biomol Struct Dyn 2023; 41:6011-6026. [PMID: 35869653 DOI: 10.1080/07391102.2022.2100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022]
Abstract
SagS sensor regulator plays a vital role in biofilm development of Pseudomonas aeruginosa which subsequently makes the cells more tolerant to various antimicrobials. The multidrug resistance (MDR) issue has risen substantially in recent years and is considered a global threat. Therefore, alternative compounds should be unearthed immediately to address the issues related to P. aeruginosa drug resistance for which SagS could be a candidate. The present study is an attempt to screen natural anti-biofilm compounds as the potent inhibitors of SagS. Twenty natural anti-biofilm/quorum sensing inhibiting compounds were retrieved from various literatures with significant inhibitory effects against P. aeruginosa biofilm from in-vitro experiments which were screened using various pharmacokinetic parameters. The screened and three standard drugs were docked against SagS-HisKA using AutoDock 4.2 tool, which were further analysed by MD simulations to understand the binding mode of compounds and dynamic behaviour of the complexes. Two potential anti-biofilm natural compounds, pinocembrin with binding affinity (-7.19 kcal/mol), vestitol (-7.18 kcal/mol) and the standard drug ceftazidime (-8.89 kcal/mol) were selected based on filtered parameters and better binding affinity. The trajectory analysis of MD simulations reflected Pinocembrin in stabilizing the system compared to ceftazidime. The existing reports state that the natural products represent promising source of therapy with least or almost nil adverse effect compared to synthetic drugs which is well collated with our in-silico findings. This investigation can save both time and cost required for in-vitro and in-vivo analysis for designing of a novel anti-biofilm agent against P. aeruginosa biofilm-associated infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Rojita Mishra
- Department of Botany, Polasara Science College, Ganjam, India
| | - Arabinda Mahanty
- Crop Protection Division, National Rice Research Institute, Cuttack, India
| | | |
Collapse
|
9
|
Al-Shuaeeb RAA, Abd El-Mageed HR, Ahmed SA, Mohamed HS, Hamza ZS, Rafi MO, Rahman MS. Identification of potent COVID-19 main protease inhibitors by loading of favipiravir on Mg 12O 12 and Zn 12O 12 nanoclusters: an in silico strategy for COVID-19 treatment. J Biomol Struct Dyn 2023; 41:11437-11449. [PMID: 36591698 DOI: 10.1080/07391102.2022.2162967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023]
Abstract
Pandemic new severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus has increased throughout the world. There is no effective treatment against this virus until now. Since its appearance in Wuhan, China in December 2019, SARS-CoV-2 becomes the largest challenge the world is opposite today, including the discovery of an antiviral drug for this virus. Several viral proteins have been prioritized as SARS-CoV-2 antiviral drug targets, among them the papain-like protease (PLpro) and the main protease (Mpro). Inhibition of these proteases would target viral replication, viral maturation and suppression of host innate immune responses. Potential candidates have been identified to show inhibitory effects against Mpro, both in biochemical assays and viral replication in cells. There are different molecules such as lopinavir and favipiravir considerably inhibit the activity of Mpro in vitro. Different studies have shown that structurally improved favipiravir and other similar compounds can inhibit SARS-CoV-2 main protease. In this work, we study the interactions between favipiravir with Mg12O12 and Zn12O12 nanoclusters by density functional theory (DFT) and quantum mechanics atoms in molecules (QMAIM) methods to summarize the ability to load favipiravir onto Mg12O12 and Zn12O12 nanoclusters. Favipiravir-Mg12O12 and favipiravir-Zn12O12 lowest structures complexes were chosen to dock inside the SARS-CoV-2 main protease by molecular docking study. The molecular docking analysis revealed that the binding affinity of Mg12O12 and Zn12O12 nanoclusters inside the Mpro receptor is larger than that of favipiravir. Also, the loading of favipiravir on the surface of Mg12O12 and Zn12O12 nanoclusters increased the binding affinity against the Mpro receptor. Subsequently, 100 ns molecular dynamics simulation of the favipiravir-Mg12O12, and favipiravir-Zn12O12 docked inside the Mpro complexes established that favipiravir-Mg12O12, forms the most stable complex with the Mpro. Further molecular mechanics Poisson Boltzmann surface area (MMPBSA) analyses using the MD trajectories also demonstrated the higher binding affinity of favipiravir-Mg12O12 inside the Mpro. In summary, this study demonstrates a new way to characterize leads for novel anti-viral drugs against SARS-CoV-2, by improving the drug ability of favipiravir via loading it on Mg12O12 and Zn12O12 nanoclusters.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - H R Abd El-Mageed
- Micro-analysis and Environmental Research and Community Services Center, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Shimaa A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hussein S Mohamed
- Chemistry of Medicinal and Aromatic Plants Department, Research institute of medicinal and aromatic plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
| | - Zeinab S Hamza
- Chemistry of Medicinal and Aromatic Plants Department, Research institute of medicinal and aromatic plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
| | - Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jessore Sadar Upazila, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jessore Sadar Upazila, Bangladesh
| |
Collapse
|
10
|
Du W, Wang T, Wang F, Li Z, Huang W, Tai J, Fang S, Cheng X, Cao J, Su Y, Luo J. Para-chloro-meta-xylenol reshaped the fates of antibiotic resistance genes during sludge fermentation: Insights of cell membrane permeability, bacterial structure and biological pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158083. [PMID: 35985604 DOI: 10.1016/j.scitotenv.2022.158083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of para-chloro-meta-xylenol (PCMX, as largely consumed antimicrobial chemicals) in waste activated sludge (WAS) would pose environmental risks for WAS utilization. This study revealed that PCMX principally prompted the abundances and diversity of antibiotic resistance genes (ARGs), particularly for the multidrug- genes (i.e., acrB and mexW), and reshaped the resistance mechanism categories during WAS fermentation process. The genotype and phenotype results indicated that PCMX upregulated abundances of transposase and increased cell permeability via disrupting WAS structure, which further facilitated the horizontal transfer of ARGs. The network and correlation analysis among ARGs, mobile genetic elements (MGEs) and genera (i.e., Sphingopyxis and Pseudoxanthomonas) verified that PCMX enriched the potential ARGs hosts associated with multidrug resistance mechanism. Also, PCMX upregulated the genes involved in ARGs-associated metabolic pathways, such as two-component (i.e., phoP and vcaM) and quorum sensing systems (i.e., lasR and cciR), which determined the ARGs proliferation via multidrug efflux pump and outer membrane proteins, and facilitated the recognition between ARGs hosts. Variance partitioning analysis (VPA) implied that the shift of microbial community contributed predominantly to the dissemination of ARGs. These findings unveiled the environmental behaviors and risks of exogenous pollutants in WAS with insightful understanding, which could guide the WAS utilization for resource recovery.
Collapse
Affiliation(s)
- Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Tao Wang
- Rizhao Chengtou Group Company Limited, 779 Qingdao Road, Rizhao 276826, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenzhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yinglong Su
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
11
|
Folate-Targeted Curcumin-Loaded Niosomes for Site-Specific Delivery in Breast Cancer Treatment: In Silico and In Vitro Study. Molecules 2022; 27:molecules27144634. [PMID: 35889513 PMCID: PMC9322601 DOI: 10.3390/molecules27144634] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
As the most common cancer in women, efforts have been made to develop novel nanomedicine-based therapeutics for breast cancer. In the present study, the in silico curcumin (Cur) properties were investigated, and we found some important drawbacks of Cur. To enhance cancer therapeutics of Cur, three different nonionic surfactants (span 20, 60, and 80) were used to prepare various Cur-loaded niosomes (Nio-Cur). Then, fabricated Nio-Cur were decorated with folic acid (FA) and polyethylene glycol (PEG) for breast cancer suppression. For PEG-FA@Nio-Cur, the gene expression levels of Bax and p53 were higher compared to free drug and Nio-Cur. With PEG-FA-decorated Nio-Cur, levels of Bcl2 were lower than the free drug and Nio-Cur. When MCF7 and 4T1 cell uptake tests of PEG-FA@Nio-Cur and Nio-Cur were investigated, the results showed that the PEG-FA-modified niosomes exhibited the most preponderant endocytosis. In vitro experiments demonstrate that PEG-FA@Nio-Cur is a promising strategy for the delivery of Cur in breast cancer therapy. Breast cancer cells absorbed the prepared nanoformulations and exhibited sustained drug release characteristics.
Collapse
|
12
|
Vetrivel A, Ramasamy J, Natchimuthu S, Senthil K, Ramasamy M, Murugesan R. Combined machine learning and pharmacophore based virtual screening approaches to screen for antibiofilm inhibitors targeting LasR of Pseudomonas aeruginosa. J Biomol Struct Dyn 2022; 41:4124-4142. [PMID: 35451916 DOI: 10.1080/07391102.2022.2064331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pseudomonas aeruginosa, a virulent pathogen affects patients with cystic fibrosis and nosocomial infections. Quorum sensing (QS) mechanism plays a crucial role in causing these ailments by mediating biofilm formation and expressing virulent genes. A novel approach to circumvent this bacterial infection is by hindering its QS network. Targeting LasR of las system serves beneficial as it holds the top position in QS system cascade. Here, we have integrated machine learning, pharmacophore based virtual screening, molecular docking and simulation studies to look for new leads as inhibitors for LasR. Support vector machine (SVM) learning algorithm was used to generate QSAR models from 66 antagonist dataset. The top three models resulted in correlation coefficient (R2) values of 0.67, 0.86, and 0.91, respectively. The correlation coefficient (R2test) values on external test set were found to be 0.62, 0.57, and 0.55, respectively. A four-point pharmacophore model was developed. The pharmacophore hypothesis AAAD_1 was used to screen for potential leads against MolPort database in ZincPharmer. The leads which showed predicted pIC50 value of >8.00 by SVM models were subjected to docking analysis that reranked the compounds based on docking scores. Four top leads namely ZINC3851967 N-[3,5-bis(trifluoromethyl)phenyl]-5-tert-butyl-6-chloropyrazine-2-carboxamide, ZINC4024175 4-Amino-1-[(2R,3S,4S,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-oxopyrimidine-5-carbonitrile, ZINC2125703 N-[(5-Methoxy-4,7-dimethyl-2-oxo-2H-chromen-3-yl)acetyl]-beta-alanine, and ZINC3851966 N-[3,5-Bis(trifluoromethyl)phenyl]5-tert-butylpyrazine-2-carboxamide were selected. These compounds were checked for its stability by performing a molecular dynamics simulation for a period of 100 ns. The ADME properties of the leads were also determined. Hence, the compounds identified in this study can be used as possible leads for developing a novel inhibitor for LasR.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aishwarya Vetrivel
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Janani Ramasamy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Santhi Natchimuthu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Kalaiselvi Senthil
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Monica Ramasamy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| |
Collapse
|
13
|
Baammi S, Daoud R, El Allali A. Assessing the effect of a series of mutations on the dynamic behavior of phosphite dehydrogenase using molecular docking, molecular dynamics and quantum mechanics/molecular mechanics simulations. J Biomol Struct Dyn 2022; 41:4154-4166. [PMID: 35442169 DOI: 10.1080/07391102.2022.2064912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Discovered in Pseudomonas stutzeri, phosphite dehydrogenase (PTDH) is an enzyme that catalyzes the oxidation of phosphite to phosphate while simultaneously reducing NAD+ to NADH. Despite several investigations into the mechanism of reaction and cofactor regeneration, only a few studies have focused on improving the activity and stability of PTDH. In this study, we combine molecular docking, molecular dynamics (MD) simulation, and Quantum Mechanics/Molecular Mechanics (QM/MM) to identify the impact of 30 mutations on the activity and stability of PTDH. Molecular docking results suggest that E266Q, K76A, K76M, K76R, K76C, and R237K can act on the NAD+ binding site through relatively weak bond development due to their high free binding energy. Moreover, Mulliken population analysis and potential energy barrier indicate that T101A, E175A, E175A/A176R, A176R, and E266Q act on phosphite oxidation. The mutants M53N, M53A, K76R, D79N, D79A, T101A, W134A, W134F Y139F, A146S, E175A, F198I, F198M, E266Q, H292K, S295A, R301K, and R301A were found to act on the structural dynamic of PTDH. The remaining mutants cause the loss of the nitrogen atom of R237 and H292, respectively, inactivating the enzyme. This study provides specific explanations of how mutations affect weak interactions of PTDH. The results should allow researchers to conduct experimental studies to improve PTDH activity and stability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Rachid Daoud
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Achraf El Allali
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| |
Collapse
|
14
|
Ibrahim MS, Abd El-Mageed HR, Azmy AF, El-Deeb MM, Kamal EHM, Abd El-Salam HM. Synthesis, characterization, and molecular docking analysis of Chitosan-gr-Polysulphanilic acid as antimicrobial water-soluble polymers. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2006656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohamed S. Ibrahim
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, Beni Suef, Egypt
| | - H. R. Abd El-Mageed
- Faculty of Science, Micro-Analysis and Environmental Research and Community Services Center, Beni-Suef University, Beni Suef, Egypt
| | - Ahmed F. Azmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - M. M. El-Deeb
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, Beni Suef, Egypt
| | - Emad H. M. Kamal
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, Beni Suef, Egypt
| | - H. M. Abd El-Salam
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
15
|
Vetrivel A, Natchimuthu S, Subramanian V, Murugesan R. High-Throughput Virtual Screening for a New Class of Antagonist Targeting LasR of Pseudomonas aeruginosa. ACS OMEGA 2021; 6:18314-18324. [PMID: 34308062 PMCID: PMC8296597 DOI: 10.1021/acsomega.1c02191] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/16/2021] [Indexed: 05/28/2023]
Abstract
Pseudomonas aeruginosa, an opportunistic human pathogen, causes fatal effects in patients with cystic fibrosis and immunocompromised individuals and leads to around 1000 deaths annually. The quorum sensing mechanism of P. aeruginosa plays a major role in promoting biofilm formation and expression of virulent genes. Hence, quorum sensing inhibition is a promising novel approach to treat these bacterial infections as these organisms show a wide range of antibiotic resistance. Among the interconnected quorum sensing network of P. aeruginosa, targeting the las system is of increased interest as its principal receptor protein LasR is the earliest activated gene. It is also shown to be involved in the regulation of other virulence-associated genes. In this study, we have applied high-throughput virtual screening, an in silico computational method to identify a new class of LasR inhibitors that could serve as potent antagonists to treat P. aeruginosa-associated infections. Three-tire structure-based virtual screening was performed on the Schrödinger small molecule database, which resulted in 12 top hit compounds with docking scores lesser than -11.0 kcal/mol. Three of these best-scored compounds CACPD2011a-0001928786 (C1), CACPD2011a-0001927437 (C2), and CACPD2011a-0000896051 (C3) were further analyzed. The binding free energies of these compounds in complex with the target protein LasR (3IX4) were evaluated, and the pharmacokinetic properties were determined. The stability of the docked complexes was assessed by running a molecular dynamics simulation for 100 ns. Molecular dynamics simulation analysis revealed that all three compounds were found to be in stable contact with the protein over the entire simulation period. The antagonistic effect of these compounds was validated using the LasR reporter gene assay in the presence of acyl homoserine lactone. Significant reduction in the β-galactosidase enzyme activity was achieved at 100 nM concentration for all three compounds pursued. Hence, the present study provides strong evidence that these three compounds could serve as quorum sensing inhibitors of P. aeruginosa LasR protein and can be a probable candidate to treat Pseudomonas-associated infections.
Collapse
Affiliation(s)
- Aishwarya Vetrivel
- Department
of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore 641043, Tamil Nadu, India
| | - Santhi Natchimuthu
- Department
of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore 641043, Tamil Nadu, India
| | | | - Rajeswari Murugesan
- Department
of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore 641043, Tamil Nadu, India
| |
Collapse
|
16
|
An AY, Choi KYG, Baghela AS, Hancock REW. An Overview of Biological and Computational Methods for Designing Mechanism-Informed Anti-biofilm Agents. Front Microbiol 2021; 12:640787. [PMID: 33927701 PMCID: PMC8076610 DOI: 10.3389/fmicb.2021.640787] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial biofilms are complex and highly antibiotic-resistant aggregates of microbes that form on surfaces in the environment and body including medical devices. They are key contributors to the growing antibiotic resistance crisis and account for two-thirds of all infections. Thus, there is a critical need to develop anti-biofilm specific therapeutics. Here we discuss mechanisms of biofilm formation, current anti-biofilm agents, and strategies for developing, discovering, and testing new anti-biofilm agents. Biofilm formation involves many factors and is broadly regulated by the stringent response, quorum sensing, and c-di-GMP signaling, processes that have been targeted by anti-biofilm agents. Developing new anti-biofilm agents requires a comprehensive systems-level understanding of these mechanisms, as well as the discovery of new mechanisms. This can be accomplished through omics approaches such as transcriptomics, metabolomics, and proteomics, which can also be integrated to better understand biofilm biology. Guided by mechanistic understanding, in silico techniques such as virtual screening and machine learning can discover small molecules that can inhibit key biofilm regulators. To increase the likelihood that these candidate agents selected from in silico approaches are efficacious in humans, they must be tested in biologically relevant biofilm models. We discuss the benefits and drawbacks of in vitro and in vivo biofilm models and highlight organoids as a new biofilm model. This review offers a comprehensive guide of current and future biological and computational approaches of anti-biofilm therapeutic discovery for investigators to utilize to combat the antibiotic resistance crisis.
Collapse
Affiliation(s)
| | | | | | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Lu L, Li M, Yi G, Liao L, Cheng Q, Zhu J, Zhang B, Wang Y, Chen Y, Zeng M. Screening strategies for quorum sensing inhibitors in combating bacterial infections. J Pharm Anal 2021; 12:1-14. [PMID: 35573879 PMCID: PMC9073242 DOI: 10.1016/j.jpha.2021.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 01/20/2023] Open
Abstract
Interference with quorum sensing (QS) represents an antivirulence strategy with a significant promise for the treatment of bacterial infections and a new approach to restoring antibiotic tolerance. Over the past two decades, a novel series of studies have reported that quorum quenching approaches and the discovery of quorum sensing inhibitors (QSIs) have a strong impact on the discovery of anti-infective drugs against various types of bacteria. The discovery of QSI was demonstrated to be an appropriate strategy to expand the anti-infective therapeutic approaches to complement classical antibiotics and antimicrobial agents. For the discovery of QSIs, diverse approaches exist and develop in-step with the scale of screening as well as specific QS systems. This review highlights the latest findings in strategies and methodologies for QSI screening, involving activity-based screening with bioassays, chemical methods to seek bacterial QS pathways for QSI discovery, virtual screening for QSI screening, and other potential tools for interpreting QS signaling, which are innovative routes for future efforts to discover additional QSIs to combat bacterial infections. Interference with QSrepresents a promising antivirulence strategy for the treatment of bacterial infections. The discovery ofQSIs was demonstrated as an appropriate strategy to expand the anti-infective therapeutic arsenal to complement classical antibiotics and antimicrobial agents. For the discovery of QSIs, diverse approaches exist and develop in-step with the scale of screening and targeted QS systems. Few previous reviews have summarized the strategies and approaches of QSI screening, whereas this review highlights the recent findings in QSI screening strategies and methodologies.
Collapse
Affiliation(s)
- Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
- Corresponding author.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guojuan Yi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Li Liao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Qiang Cheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Jie Zhu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Bin Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yingying Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yong Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Ming Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
18
|
Nain Z, Mansur FJ, Syed SB, Islam MA, Azakami H, Islam MR, Karim MM. Inhibition of biofilm formation, quorum sensing and other virulence factors in Pseudomonas aeruginosa by polyphenols of Gynura procumbens leaves. J Biomol Struct Dyn 2021; 40:5357-5371. [PMID: 33403919 DOI: 10.1080/07391102.2020.1870563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quorum sensing (QS) enables virulence factors in bacteria for biofilm formation and pathogenic invasion. Therefore, quorum quenching (QQ), disruption of QS circuit, becomes an alternative antimicrobial therapy. In this study, leaf extract of Gynura procumbens (GP) was used to inhibit biofilm and virulent factors in Pseudomonas aeruginosa. The extract inhibited the biofilm production (p ≤ 0.05) in P. aeruginosa strains MZ2F and MZ4A. The minimum biofilm eradication concentration (MBEC) was recorded at 250 and 500 μg/ml while total activity was found at 288 and 144 ml/g, respectively. Moreover, a significant reduction of virulence factors (p ≤ 0.05) at sub-MBEC without affecting the growth implies the QQ action of the extract. The bioactive fractions were rich in polyphenols and tentatively identified as quercetin and myricetin (Rf=0.53-0.60). Furthermore, we employed computational methods to validate our findings and their interactions with QS receptors (LasR and RhlR). Interestingly, docking studies have also shown that quercetin and myricetin are the promising anti-QS agents out of 31 GP compounds. Notably, their binding affinity ranged between -9.77 and -10.52 kcal/mol for both QS receptors, with controls ranging from -5.40 to -8.97 kcal/mol. Besides, ΔG of quercetin and myricetin with LasR was -71.56 and -74.88 kcal/mol, respectively. Moreover, compounds were suitable drug candidates with stable binding interactions. Therefore, the anti-QS activity of GP leaves and the identified polyphenols can be used in developing QQ-based therapeutics. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Fariha Jasin Mansur
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Shifath Bin Syed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Ariful Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Hiroyuki Azakami
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Md Rezuanul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mohammad Minnatul Karim
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| |
Collapse
|
19
|
Rafi MO, Al-Khafaji K, Tok TT, Rahman MS. Computer-based identification of potential compounds from Salviae miltiorrhizae against Neirisaral adhesion A regulatory protein. J Biomol Struct Dyn 2020; 40:4301-4313. [PMID: 33289608 DOI: 10.1080/07391102.2020.1856189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In silico studies are attracting considerable interest due to their ability to understand protein-ligand interactions at the atomic level. The main principal tools of this in silico analyses are molecular docking and molecular dynamic (MD) simulation. This paper examines how can natural compounds that are derived from Salviae miltiorrhizae to block Neisseria adhesion A Regulatory protein (NadR). In molecular docking analysis, only four compounds were found in higher binding affinity with NadR among 10 candidates (tanshinol B, tanshinol A, lithospermic acid and tournefolal were -7.61, -7.56, -8.22 and -7.81 kcal/mol, respectively, compared to -7.23 kcal/mol of native ligand). Absorption, distribution, metabolism, excretion (ADME) and toxicity properties, medicinal chemistry profile, and physicochemical features were displayed that tournefolal contains good properties to work as a safe and good anti-adhesive drug. Therefore, the complexes of these four ligands with NadR protein were subjected to 100 ns of MD simulation. RMSD, RMSF, RG and hydrogen bonding exhibited that tournefolal showed stable binding affinity and molecular interaction with NadR protein. In light of these results, there is now a need to conduct much more in vitro and in vivo studies about the efficacy of tournefolal.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Khattab Al-Khafaji
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey
| | - Tugba Taskin Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey.,Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
20
|
Rafi MO, Bhattacharje G, Al-Khafaji K, Taskin-Tok T, Alfasane MA, Das AK, Parvez MAK, Rahman MS. Combination of QSAR, molecular docking, molecular dynamic simulation and MM-PBSA: analogues of lopinavir and favipiravir as potential drug candidates against COVID-19. J Biomol Struct Dyn 2020; 40:3711-3730. [PMID: 33251975 PMCID: PMC7754938 DOI: 10.1080/07391102.2020.1850355] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pandemic COVID-19 infections have spread throughout the world. There is no effective treatment against this disease. Viral RNA-dependent RNA polymerase (RdRp) catalyzes the replication of RNA from RNA and the main protease (Mpro) has a role in the processing of polyproteins that are translated from the RNA of SARS-CoV-2, and thus these two enzymes are strong candidates for targeting by anti-viral drugs. Small molecules such as lopinavir and favipiravir significantly inhibit the activity of Mpro and RdRp in vitro. Studies have shown that structurally modified lopinavir, favipiravir, and other similar compounds can inhibit COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). In this study, lopinavir and its structurally similar compounds were chosen to bind the main protease, and favipiravir was chosen to target RNA-dependent RNA polymerase. Molecular docking and the quantitative structure-activity relationships (QSAR) study revealed that the selected candidates have favorable binding affinity but less druggable properties. To improve the druggability, four structural analogues of lopinavir and one structural analogue of favipiravir was designed by structural modification. Molecular interaction analyses have displayed that lopinavir and favipiravir analogues interact with the active site residues of Mpro and RdRp, respectively. Absorption, distribution, metabolism, excretion and toxicity (ADMET) properties, medicinal chemistry profile, and physicochemical features were shown that all structurally modified analogues are less toxic and contain high druggable properties than the selected candidates. Subsequently, 50 ns molecular dynamics simulation of the top four docked complexes demonstrated that CID44271905, a lopinavir analogue, forms the most stable complex with the Mpro. Further MMPBSA analyses using the MD trajectories also confirmed the higher binding affinity of CID44271905 towards Mpro. In summary, this study demonstrates a new way to identify leads for novel anti-viral drugs against COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology-Kharagpur, Kharagpur, India
| | - Khattab Al-Khafaji
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Turkey
| | - Tugba Taskin-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Turkey.,Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | | | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology-Kharagpur, Kharagpur, India
| | - Md Anowar Khasru Parvez
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh.,Treasurer Office, Pabna University of Science and Technology, Pabna, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
21
|
Wu S, Liu C, Feng J, Yang A, Guo F, Qiao J. QSIdb: quorum sensing interference molecules. Brief Bioinform 2020; 22:5916938. [PMID: 33003203 DOI: 10.1093/bib/bbaa218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Quorum sensing interference (QSI), the disruption and manipulation of quorum sensing (QS) in the dynamic control of bacteria populations could be widely applied in synthetic biology to realize dynamic metabolic control and develop potential clinical therapies. Conventionally, limited QSI molecules (QSIMs) were developed based on molecular structures or for specific QS receptors, which are in short supply for various interferences and manipulations of QS systems. In this study, we developed QSIdb (http://qsidb.lbci.net/), a specialized repository of 633 reported QSIMs and 73 073 expanded QSIMs including both QS agonists and antagonists. We have collected all reported QSIMs in literatures focused on the modifications of N-acyl homoserine lactones, natural QSIMs and synthetic QS analogues. Moreover, we developed a pipeline with SMILES-based similarity assessment algorithms and docking-based validations to mine potential QSIMs from existing 138 805 608 compounds in the PubChem database. In addition, we proposed a new measure, pocketedit, for assessing the similarities of active protein pockets or QSIMs crosstalk, and obtained 273 possible potential broad-spectrum QSIMs. We provided user-friendly browsing and searching facilities for easy data retrieval and comparison. QSIdb could assist the scientific community in understanding QS-related therapeutics, manipulating QS-based genetic circuits in metabolic engineering, developing potential broad-spectrum QSIMs and expanding new ligands for other receptors.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chunjiang Liu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, China
| | - Jie Feng
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University) and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
22
|
Sun H, Pulakat L, Anderson DW. Challenges and New Therapeutic Approaches in the Management of Chronic Wounds. Curr Drug Targets 2020; 21:1264-1275. [PMID: 32576127 DOI: 10.2174/1389450121666200623131200] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Chronic non-healing wounds are estimated to cost the US healthcare $28-$31 billion per year. Diabetic ulcers, arterial and venous ulcers, and pressure ulcers are some of the most common types of chronic wounds. The burden of chronic wounds continues to rise due to the current epidemic of obesity and diabetes and the increase in elderly adults in the population who are more vulnerable to chronic wounds than younger individuals. This patient population is also highly vulnerable to debilitating infections caused by opportunistic and multi-drug resistant pathogens. Reduced microcirculation, decreased availability of cytokines and growth factors that promote wound closure and healing, and infections by multi-drug resistant and biofilm forming microbes are some of the critical factors that contribute to the development of chronic non-healing wounds. This review discusses novel approaches to understand chronic wound pathology and methods to improve chronic wound care, particularly when chronic wounds are infected by multi-drug resistant, biofilm forming microbes.
Collapse
Affiliation(s)
- Hongmin Sun
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri 65212, United States
| | - Lakshmi Pulakat
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri 65212, United States
| | | |
Collapse
|
23
|
Virtual Screening of FDA-Approved Drugs against LasR of Pseudomonas aeruginosa for Antibiofilm Potential. Molecules 2020; 25:molecules25163723. [PMID: 32824118 PMCID: PMC7466078 DOI: 10.3390/molecules25163723] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative pathogenic bacterium that is present commonly in soil and water and is responsible for causing septic shock, pneumonia, urinary tract and gastrointestinal infections, etc. The multi-drug resistance (MDR) phenomenon has increased dramatically in past years and is now considered a major threat globally, so there is an urgent need to develop new strategies to overcome drug resistance by P. aeruginosa. In P. aeruginosa, a major factor of drug resistance is associated to the formation of biofilms by the LasR enzyme, which regulates quorum sensing and has been reported as a new therapeutic target for designing novel antibacterial molecules. In this study, virtual screening and molecular docking were performed against the ligand binding domain (LBD) of LasR by employing a pharmacophore hypothesis for the screening of 2373 FDA-approved compounds to filter top-scoring hit compounds. Six inhibitors out of 2373 compounds were found to have binding affinities close to that of known LasR inhibitors. The binding modes of these compounds to the binding site in LasR-LBD were analyzed to identify the key interactions that contribute to the inhibition of LasR activity. Then, 50 ns simulations of top hit compounds were performed to elucidate the stability of their binding conformations with the LasR-LBD. This study, thus concluded that sulfamerazine showed the highest binding affinity for the LasR-LBD binding pocket exhibiting strong inhibitory binding interactions during molecular dynamics (MD) simulation.
Collapse
|
24
|
Khan F, Lee JW, Javaid A, Park SK, Kim YM. Inhibition of biofilm and virulence properties of Pseudomonas aeruginosa by sub-inhibitory concentrations of aminoglycosides. Microb Pathog 2020; 146:104249. [PMID: 32418905 DOI: 10.1016/j.micpath.2020.104249] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Aminoglycosides are a commonly used class of antibiotics; however, their application has been discontinued due to the emergence of multi-drug resistance bacterial strains. In the present study, the subinhibitory concentrations (sub-MIC) of several aminoglycosides were determined and tested as an antibiofilm and for their anti-virulence properties against Pseudomonas aeruginosa PAO1, which is an opportunistic foodborne pathogen. P. aeruginosa PAO1 exhibits multiple mechanisms of resistance, including the formation of biofilm and production of several virulence factors, against aminoglycoside antibiotics. The sub-MIC of these antibiotics exhibited biofilm inhibition of P. aeruginosa in alkaline TSB (pH 7.9). Moreover, various concentrations of these aminoglycosides also eradicate the mature biofilm of P. aeruginosa. In the presence of sub-MIC of aminoglycosides, the morphological changes of P. aeruginosa were found to change from rod-shaped to the filamentous, elongated, and streptococcal forms. Similar growth conditions and sub-MIC of aminoglycosides were also found to attenuate several virulence properties of P. aeruginosa PAO1. Molecular docking studies demonstrate that these aminoglycosides possess strong binding properties with the LasR protein, which is a well-characterized quorum-sensing receptor of P. aeruginosa. The present study suggests a new approach to revitalize aminoglycosides as antibiofilm and antivirulence drugs to treat infections caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea
| | - Jang-Won Lee
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea
| | - Aqib Javaid
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201306, UP, India
| | - Seul-Ki Park
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
25
|
Hernando-Amado S, Alcalde-Rico M, Gil-Gil T, Valverde JR, Martínez JL. Naringenin Inhibition of the Pseudomonas aeruginosa Quorum Sensing Response Is Based on Its Time-Dependent Competition With N-(3-Oxo-dodecanoyl)-L-homoserine Lactone for LasR Binding. Front Mol Biosci 2020; 7:25. [PMID: 32181260 PMCID: PMC7059128 DOI: 10.3389/fmolb.2020.00025] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/07/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterial quorum sensing (QS) is a cell-to-cell communication system that governs the expression of a large set of genes involved in bacterial-host interactions, including the production of virulence factors. Conversely, the hosts can produce anti-QS compounds to impair virulence of bacterial pathogens. One of these inhibitors is the plant flavonoid naringenin, which impairs the production of QS-regulated Pseudomonas aeruginosa virulence factors. In the present work, we analyze the molecular basis for such inhibition. Our data indicate that naringenin produces its effect by directly binding the QS regulator LasR, hence competing with its physiological activator, N-(3-oxo-dodecanoyl)-L-homoserine lactone (3OC12-HSL). The in vitro analysis of LasR binding to its cognate target DNA showed that the capacity of naringenin to outcompete 3OC12-HSL, when the latter is previously bound to LasR, is low. By using an E. coli LasR-based biosensor strain, which does not produce 3OC12-HSL, we determined that the inhibition of LasR is more efficient when naringenin binds to nascent LasR than when this regulator is already activated through 3OC12-HSL binding. According to these findings, at early exponential growth phase, when the amount of 3OC12-HSL is low, naringenin should proficiently inhibit the P. aeruginosa QS response, whereas at later stages of growth, once 3OC12-HSL concentration reaches a threshold enough for binding LasR, naringenin would not efficiently inhibit the QS response. To test this hypothesis, we analyze the potential effect of naringenin over the QS response by adding naringenin to P. aeruginosa cultures at either time zero (early inhibition) or at stationary growth phase (late inhibition). In early inhibitory conditions, naringenin inhibited the expression of QS-regulated genes, as well as the production of the QS-regulated virulence factors, pyocyanin and elastase. Nevertheless, in late inhibitory conditions, the P. aeruginosa QS response was not inhibited by naringenin. Therefore, this time-dependent inhibition may compromise the efficiency of this flavonoid, which will be effective just when used against bacterial populations presenting low cellular densities, and highlight the importance of searching for QS inhibitors whose mechanism of action does not depend on the QS status of the population.
Collapse
Affiliation(s)
- Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Nucleus for Collaborative Research on Bacterial Resistance, Valparaíso, Chile
| | - Teresa Gil-Gil
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José R. Valverde
- Servicio de Computación Científica, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José L. Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
26
|
Nain Z, Sayed SB, Karim MM, Islam MA, Adhikari UK. Energy-optimized pharmacophore coupled virtual screening in the discovery of quorum sensing inhibitors of LasR protein of Pseudomonas aeruginosa. J Biomol Struct Dyn 2019; 38:5374-5388. [DOI: 10.1080/07391102.2019.1700168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Sifat Bin Sayed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mohammad Minnatul Karim
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Ariful Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | | |
Collapse
|
27
|
Mellini M, Di Muzio E, D’Angelo F, Baldelli V, Ferrillo S, Visca P, Leoni L, Polticelli F, Rampioni G. In silico Selection and Experimental Validation of FDA-Approved Drugs as Anti-quorum Sensing Agents. Front Microbiol 2019; 10:2355. [PMID: 31649658 PMCID: PMC6796623 DOI: 10.3389/fmicb.2019.02355] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic resistant bacterial pathogens is increasing at an unprecedented pace, calling for the development of new therapeutic options. Small molecules interfering with virulence processes rather than growth hold promise as an alternative to conventional antibiotics. Anti-virulence agents are expected to decrease bacterial virulence and to pose reduced selective pressure for the emergence of resistance. In the opportunistic pathogen Pseudomonas aeruginosa the expression of key virulence traits is controlled by quorum sensing (QS), an intercellular communication process that coordinates gene expression at the population level. Hence, QS inhibitors represent promising anti-virulence agents against P. aeruginosa. Virtual screenings allow fast and cost-effective selection of target ligands among vast libraries of molecules, thus accelerating the time and limiting the cost of conventional drug-discovery processes, while the drug-repurposing approach is based on the identification of off-target activity of FDA-approved drugs, likely endowed with low cytotoxicity and favorable pharmacological properties. This study aims at combining the advantages of virtual screening and drug-repurposing approaches to identify new QS inhibitors targeting the pqs QS system of P. aeruginosa. An in silico library of 1,467 FDA-approved drugs has been screened by molecular docking, and 5 hits showing the highest predicted binding affinity for the pqs QS receptor PqsR (also known as MvfR) have been selected. In vitro experiments have been performed by engineering ad hoc biosensor strains, which were used to verify the ability of hit compounds to decrease PqsR activity in P. aeruginosa. Phenotypic analyses confirmed the impact of the most promising hit, the antipsychotic drug pimozide, on the expression of P. aeruginosa PqsR-controlled virulence traits. Overall, this study highlights the potential of virtual screening campaigns of FDA-approved drugs to rapidly select new inhibitors of important bacterial functions.
Collapse
Affiliation(s)
- Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | | | | | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Fabio Polticelli
- Department of Science, University Roma Tre, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy
| | | |
Collapse
|
28
|
Cao H, Wu Y, Zhou X, Zheng X, Jiang G. In Silico Prediction and Validation of Oxygen-Regulated Protein N-myc Downstream Regulated Gene 3 and Virtual Screening of Competitive Inhibitors of L-Lactate as Therapeutics. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180816130621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
N-myc downstream regulated gene 3 (NDRG3) is a newly discovered
oxygen-regulated protein which will bind with L-Lactate in hypoxia and further activate Raf (rapidly
accelerated fibrosarcoma)-ERK (extracellular regulated protein kinases) pathway, promoting
cell growth and angiogenesis.
Methods:
Competitive inhibition on the binding of NDRG3 and L-Lactate may be potentially a
useful strategy for the repression of hypoxic response mediated by NDRG3. The threedimensional
(3D) structure of NDRG3 was built by using homology modeling for its crystal structure
was not available. Then, L-Lactate was docked into NDRG3, from which we knew it bound
with amino acid residues Gln69, His183, Asn189, Ala72 and Pro66 of NDRG3 in the most possible
active sites. Approximately 3000 compounds have been virtually screened and the 6 topranked
compounds were selected as reference molecules to analyze their interaction relationships,
which illustrated that some of them might form electrostatic interaction with Glu70 and Asp187,
π-&π stack with Phe75 and Tyr180, hydrogen bonds with Gly71 and Asn189, hydrophobic effect
with Ala72 and Ile184.
Results:
Novel molecules were designed through structural optimization of the 6 top-ranked compounds
and subsequently their ADMET properties were predicted.
Conclusion:
These molecules may be potential drug candidates for the suppression of hypoxic response
mediated by NDRG3 and targeted therapy for hypoxia-induced diseases.
Collapse
Affiliation(s)
- Hongyu Cao
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Yanhua Wu
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Xingzhi Zhou
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Xuefang Zheng
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Ge Jiang
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| |
Collapse
|
29
|
Mohanvel SK, Ravichandran V, Kamalanathan C, Satish AS, Ramesh S, Lee J, Rajasekharan SK. Molecular docking and biological evaluation of novel urea-tailed mannich base against Pseudomonas aeruginosa. Microb Pathog 2019; 130:104-111. [DOI: 10.1016/j.micpath.2019.02.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
|
30
|
Lou Z, Letsididi KS, Yu F, Pei Z, Wang H, Letsididi R. Inhibitive Effect of Eugenol and Its Nanoemulsion on Quorum Sensing-Mediated Virulence Factors and Biofilm Formation by Pseudomonas aeruginosa. J Food Prot 2019; 82:379-389. [PMID: 30785306 DOI: 10.4315/0362-028x.jfp-18-196] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to evaluate the quorum sensing (QS) inhibition potential of eugenol and eugenol nanoemulsion against QS-dependent virulence factor production and gene expression, as well as biofilm formation in Pseudomonas aeruginosa. In the current study, eugenol nanoemulsion at a sub-MIC of 0.2 mg/mL specifically inhibited about 50% of the QS-mediated violacein production in Chromobacterium violaceum, as well as the production of N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and C4-HSL N-acyl homoserine lactone signal molecules, pyocyanin, and swarming motility in P. aeruginosa. The inhibitive effect of eugenol and its nanoemulsion on the expression of the QS synthase genes was concentration dependent, displaying 65 and 52% expression level for lasI, respectively, and 61 and 45% expression level for rhlI, respectively, at a concentration of 0.2 mg/mL. In addition, the inhibitive effect of eugenol and its nanoemulsion on the expression of the rhlA gene responsible for the production of rhamnolipid was also concentration dependent, displaying 65 and 51% expression level for the rhlA gene, respectively, at a concentration of 0.2 mg/mL. Eugenol and its nanoemulsion also displayed 36 and 63% respective inhibition of biofilm formation by P. aeruginosa at the 0.2 mg/mL concentration. Therefore, the nanoemulsion could be used as a novel QS-based antibacterial and antibiofilm agent for the control of harmful bacteria.
Collapse
Affiliation(s)
- Zaixiang Lou
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Kekgabile S Letsididi
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Fuhao Yu
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Zejun Pei
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Hongxin Wang
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Rebaone Letsididi
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
31
|
Espinosa-Valdés MP, Borbolla-Alvarez S, Delgado-Espinosa AE, Sánchez-Tejeda JF, Cerón-Nava A, Quintana-Romero OJ, Ariza-Castolo A, García-Del Río DF, Loza-Mejía MA. Synthesis, In Silico, and In Vitro Evaluation of Long Chain Alkyl Amides from 2-Amino-4-Quinolone Derivatives as Biofilm Inhibitors. Molecules 2019; 24:molecules24020327. [PMID: 30658415 PMCID: PMC6359591 DOI: 10.3390/molecules24020327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 01/29/2023] Open
Abstract
Infection from multidrug resistant bacteria has become a growing health concern worldwide, increasing the need for developing new antibacterial agents. Among the strategies that have been studied, biofilm inhibitors have acquired relevance as a potential source of drugs that could act as a complement for current and new antibacterial therapies. Based on the structure of 2-alkyl-3-hydroxy-4-quinolone and N-acylhomoserine lactone, molecules that act as mediators of quorum sensing and biofilm formation in Pseudomonas aeruginosa, we designed, prepared, and evaluated the biofilm inhibition properties of long chain amide derivatives of 2-amino-4-quinolone in Staphylococcus aureus and P. aeruginosa. All compounds had higher biofilm inhibition activity in P. aeruginosa than in S. aureus. Particularly, compounds with an alkyl chain of 12 carbons exhibited the highest inhibition of biofilm formation. Docking scores and molecular dynamics simulations of the complexes of the tested compounds within the active sites of proteins related to quorum sensing had good correlation with the experimental results, suggesting the diminution of biofilm formation induced by these compounds could be related to the inhibition of these proteins.
Collapse
Affiliation(s)
- Mariana Paola Espinosa-Valdés
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| | - Sara Borbolla-Alvarez
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| | - Ana Elena Delgado-Espinosa
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| | - Juan Francisco Sánchez-Tejeda
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| | - Anabelle Cerón-Nava
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| | - Osvaldo Javier Quintana-Romero
- Departamento de Química Orgánica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico.
| | - Armando Ariza-Castolo
- Departamento de Química Orgánica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico.
| | - Diego Fernando García-Del Río
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| | - Marco A Loza-Mejía
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| |
Collapse
|
32
|
The role of LasR active site amino acids in the interaction with the Acyl Homoserine Lactones (AHLs) analogues: A computational study. J Mol Graph Model 2018; 86:113-124. [PMID: 30352386 DOI: 10.1016/j.jmgm.2018.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/14/2018] [Accepted: 10/13/2018] [Indexed: 01/29/2023]
Abstract
The present work combines molecular docking calculations, 3D-QSAR, molecular dynamics simulations and free binding energy calculations (MM/PBSA and MM/GBSA) in a set of 28 structural analogues of acyl homoserine lactones with Quorum Sensing antagonist activity. The aim of this work is to understand how ligand binds and is affected by the molecular microenvironment in the active site of the LasR receptor for pseudomonas aeruginosa. We also study the stability of the interaction to find key structural characteristics that explain the antagonist activities of this set of ligands. This information is relevant for the rational modification or design of molecules and their identification as powerful LasR modulators. The analysis of molecular docking simulations shows that the 28 analogues have a similar binding mode compared to the native ligand. The carbonyl groups belonging to the lactone ring and the amide group of the acyl chain are oriented towards the amino acids forming hydrogen bond like interactions. The difference in antagonist activity is due to location and orientation of the LasR side chains within the hydrophobic pocket in its binding site. Additionally, we carried out molecular dynamics simulations to understand the conformational changes in the ligand-receptor interaction and the stability of each complex. Results show a direct relationship among the interaction energies of the ligands and the activities as an antagonist of the LasR receptor.
Collapse
|