1
|
Gamirov R, Akhmedov A, Burdyugov D, Panina Y, Bukharov M, Sokolova E, Subakaeva E, Bukarinova Y, Zelenikhin P, Shurpik D, Stoikov I. Combined antifungal nanocarriers based on self-assembled nystatin and pillar[5]arene with a terpene moiety. Org Biomol Chem 2025; 23:4421-4433. [PMID: 40206023 DOI: 10.1039/d5ob00352k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
In this study, nanocarriers based on self-assembled nystatin and pillar[5]arene were proposed. It was shown that pillar[5]arene with a terpene moiety is capable of targeted delivery of the natural antifungal drug nystatin to the cell membrane of opportunistic fungi (Candida sp.). A water-soluble pillar[5]arene containing a farnesyl moiety was synthesized for the first time. The membranotropic properties of the synthesized pillar[5]arene were demonstrated using the model lipid systems DPPC and DPPC : POPG. The formation of associates between pillar[5]arene and nystatin was confirmed by 2D DOSY, 1H-1H NOESY spectroscopy, and molecular dynamics. UV spectroscopy revealed that pillar[5]arene interacts with nystatin in a 1 : 2 stoichiometry. Dynamic light scattering and transmission electron microscopy showed that pillar[5]arene and nystatin form a stable monodisperse system with spherical-shaped associates. This study revealed that the pillar[5]arene/nystatin system exhibits more effective antifungal activity against clinical isolates of Candida sp. and Saccharomyces cerevisiae compared to free nystatin or pillar[5]arene. These findings represent a promising approach for the discovery of new membrane-targeting nanocarriers for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Rustem Gamirov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Alan Akhmedov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Dmitriy Burdyugov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Yulia Panina
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Mikhail Bukharov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Evgenia Sokolova
- Institute of Ecology, Biotechnology and Nature Management, Kazan Federal University, Kremlevskaya, 18, Kazan, 420008, Russia
| | - Evgenia Subakaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya, 18, Kazan, 420008, Russia
| | - Yulia Bukarinova
- Institute of Ecology, Biotechnology and Nature Management, Kazan Federal University, Kremlevskaya, 18, Kazan, 420008, Russia
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya, 18, Kazan, 420008, Russia
| | - Dmitriy Shurpik
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Ivan Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| |
Collapse
|
2
|
Moreira LEA, de Farias Cabral VP, Rodrigues DS, Barbosa AD, Silveira MJCB, Coutinho TDNP, Barbosa SA, Sá LGDAV, de Andrade Neto JB, da Rocha SNC, Reis CS, Cavalcanti BC, Rios MEF, de Moraes MO, Júnior HVN, da Silva CR. Antifungal activity of tannic acid against Candida spp. and its mechanism of action. Braz J Microbiol 2024; 55:3679-3690. [PMID: 39179891 PMCID: PMC11711865 DOI: 10.1007/s42770-024-01477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024] Open
Abstract
The increase in fungal resistance is a major public health concern. In this context, Candida spp. is an important genus related to invasive diseases, especially in immunosuppressed patients. The relevance of alternative approaches to increasing fungal resistance stands out, in which products of natural origin demonstrate potential antifungal activity in vitro against Candida spp. In this sense, this work aimed to evaluate the in vitro activity of tannic acid against Candida spp. Minimum inhibitory concentration (MIC) was determined for tannic acid and the antifungals, and the checkerboard assay was performed to analyze the interactions between them. Furthermore, we evaluated the tannic acid antibiofilm activity and its possible mechanism of action. Tannic acid showed MIC ranging to 0.06 to 0.5 µg/ml and showed no loss of effectiveness when combined with antifungals. Also, is safe at the concentrations it exerts its antifungal activity in pre-formed biofilms, as demonstrated by IC50 in murine fibroblasts cells and the hemolytic assay. Additionally, its mechanisms of action can be related with induction of signals that lead to apoptosis in fungal cells.
Collapse
Affiliation(s)
- Lara Elloyse Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Maria Janielly Castelo Branco Silveira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Tatiana do Nascimento Paiva Coutinho
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Sarah Alves Barbosa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, Brazil
| | | | | | | | | | | | | | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil.
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil.
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
3
|
Khodavandi P, Soogh MM, Alizadeh F, Khodavandi A, Nouripour-Sisakht S. Menthol as an effective inhibitor of quorum sensing and biofilm formation in Candida albicans and Candida glabrata by targeting the transcriptional repressor TUP1. Mol Biol Rep 2024; 51:1114. [PMID: 39485542 DOI: 10.1007/s11033-024-10054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Menthol, a natural quorum sensing molecule, is derived from the Mentha species. Combating pathogenicity by inactivating quorum sensing is an emerging approach. Therefore, our objective was to investigate anti-quorum sensing and anti-biofilm potentials of menthol in Candida albicans and Candida glabrata. METHODS The antifungal properties of menthol were evaluated using a broth microdilution assay and a time-kill assay, and its effects on quorum sensing-mediated virulence factors, cellular reactive oxygen species (ROS), and biofilm formation were tested by evaluating TUP1 expression levels in both C. albicans and C. glabrata. RESULTS Quorum sensing-mediated virulence factors and biofilm formation were inhibited by menthol in both C. albicans and C. glabrata. Furthermore, coinciding with elevated ROS levels, mRNAs of the quorum sensing-related gene TUP1 were upregulated in both C. albicans and C. glabrata. CONCLUSIONS This study highlights the anti-quorum sensing potential of menthol through the inhibition of quorum sensing-mediated virulence factors, ROS generation, and biofilm development by targeting TUP1, which could have potential in the treatment of Candida infections.
Collapse
Affiliation(s)
| | - Maryam Miri Soogh
- Department of Microbiology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Fahimeh Alizadeh
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | | |
Collapse
|
4
|
Liu C, Shao J. Therapy of traditional Chinese medicine in Candida spp. and Candida associated infections: A comprehensive review. Fitoterapia 2024; 177:106139. [PMID: 39047847 DOI: 10.1016/j.fitote.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Candida spp. are commonly a group of opportunistic dimorphic fungi, frequently causing diverse fungal infections in immunocompromised or immunosuppressant patients from mucosal disturbs (oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated infections (systemic candidiasis) with high morbidity and mortality. Importantly, several Candida species can be isolated from diseased individuals with digestive, neuropathic, respiratory, metabolic and autoimmune diseases. Due to increased resistance to conventional antifungal agents, the arsenal for antifungal purpose is in urgent need. Traditional Chinese Medicines (TCMs) are a huge treasury that can be used as promising candidates for antimycotic applications. In this review, we make a short survey of microbiological (morphology and virulence) and pathological (candidiasis and Candida related infections) features of and host immune response (innate and adaptive immunity) to Candida spp.. Based on the chemical structures and well-studied antifungal mechanisms, the monomers, extracts, decoctions, essential oils and other preparations of TCMs that are reported to have fair antifungal activities or immunomodulatory effects for anticandidal purpose are comprehensively reviewed. We also emphasize the importance of combination and drug pair of TCMs as useful anticandidal strategies, as well as network pharmacology and molecular docking as beneficial complements to current experimental approaches. This review construct a therapeutic module that can be helpful to guide in-future experimental and preclinical studies in the combat against fungal threats aroused by C. albicans and non-albicans Candida species.
Collapse
Affiliation(s)
- Chengcheng Liu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China.
| |
Collapse
|
5
|
Liu Y, Ren F, Li S, Li X, Shi D, Zhang Z. N-Butylphthalide Potentiates the Effect of Fluconazole Against Drug-Resistant Candida glabrata and Candida tropicalis. Evidence for Its Mechanism of Action. Infect Drug Resist 2024; 17:2017-2029. [PMID: 38800581 PMCID: PMC11127662 DOI: 10.2147/idr.s459378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Objective To define the antifungal activity of n-butylphthalide alone or in combination with fluconazole in Candida glabrata and Candida tropicalis. Methods The antifungal activity of n-butylphthalide alone and in combination with fluconazole was investigated by the classical broth microdilution method and the time-killing curve method. The QRT-PCR method was used to determine gene expressions changes of mitochondrial respiratory chain enzymes, drug efflux pumps and drug target enzymes in Candida glabrata and Candida tropicalis after n-butylphthalide treatment. Results The MIC values of n-butylphthalide against Candida glabrata and Candida tropicalis ranged from 16 to 64 μg·mL-1. The FICI value of the combination of n-butylphthalide and fluconazole against drug-resistant Candida glabrata and Candida tropicalis ranged from 0.5001 to 0.5315 with partial synergism. Time-killing curves showed that 256 μg·mL-1 n-butylphthalide significantly inhibited the growth of drug-resistant colonies of Candida glabrata and Candida tropicalis, and 128 μg·mL-1 n-butylphthalide combined with 1 μg·mL-1 fluconazole had an additive effect. N-butylphthalide could alter the expression of mitochondrial respiratory chain enzymes COX1, COX2, COX3, and CYTB genes in Candida glabrata and Candida tropicalis (P< 0.05) and downregulate the expression of the drug efflux pump genes CDR1 and CDR2 in drug-resistant Candida glabrata to 3.36% and 3.65%, respectively (P<0.001), but did not affect the drug target enzyme ERG11 in drug-resistant Candida tropicalis. Conclusion N-butylphthalide had antifungal activity against Candida glabrata and Candida tropicalis. N-butylphthalide improved the activity of fluconazole against drug-resistant Candida glabrata by affecting the expression of mitochondrial respiratory chain enzyme genes and reversing the high expression of drug efflux pump genes CDR1 and CDR2.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Feifei Ren
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Shan Li
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiangchen Li
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Dongyan Shi
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhiqing Zhang
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
6
|
Keymaram M, Falahati M, Farahyar S, Lotfali E, Abolghasemi S, Mahmoudi S, Sadeghi F, Khalandi H, Ghasemi R, Shamsaei S, Raiesi O. Anti-biofilm properties of eucalyptol in combination with antifungals against Candida albicans isolates in patients with hematological malignancy. Arch Microbiol 2022; 204:295. [PMID: 35508567 DOI: 10.1007/s00203-022-02911-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/17/2022]
Abstract
Oral candidiasis is a fungal infection caused mainly by Candida albicans and it is a major problem among hematologic malignancy patients. Biofilm formation is an attributable factor to both virulence and drug resistance of Candida species. The aim of the study was to evaluate the biofilm-producing ability of oral C. albicans isolates and to evaluate the inhibitory activity of eucalyptol on Candida biofilm, alone and in combination with antifungal agents. Samples were collected from the oral cavity of 106 patients with hematologic malignancy. The isolated yeasts were identified by PCR-sequencing. Then C. albicans isolates were analyzed for their biofilm-producing ability by crystal violet staining and MTT assay. The minimum biofilm inhibition concentrations (MBIC) of eucalyptol, amphotericin B, itraconazole, and nystatin and the in vitro interaction of eucalyptol with these drugs were tested according to CLSI-M-27-A3 protocol and checkerboard methods, respectively. From 106 patients, 50 (47.2%) were confirmed for oral candidiasis [mean ± SD age 39 ± 14 years; female 31 (62%) and male 19 (38%)]. C. albicans was isolated from 40 of 50 (80%) patients. From 40 C. albicans isolates, 24 (60%) and 16 (40%) were moderate and weak biofilm producer, respectively. The geometric mean MBIC of amphotericin B, itraconazole, nystatin and eucalyptol were 3.93 µg/mL, 12.55 µg/mL, 0.75 µg/mL and 798 µg/mL, respectively. Eucalyptol interacted synergistically with amphotericin B, itraconazole and nystatin against 12.5, 10, and 22.5% of isolates, respectively. Eucalyptol demonstrated promising activity against biofilm of C. albicans when tested alone or combined with antifungal drugs.
Collapse
Affiliation(s)
- Mahyar Keymaram
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Science, Tehran, Iran
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehraban Falahati
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Shirin Farahyar
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Science, Tehran, Iran
- Microbial Biotechnology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Abolghasemi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medial Sciences, Tehran, Iran
| | - Shahram Mahmoudi
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Fatemeh Sadeghi
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Halala Khalandi
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Reza Ghasemi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Shamsaei
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Raiesi
- Department of Parasitology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
7
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
8
|
Houshmandzad M, Sharifzadeh A, Khosravi A, Shokri H. Potential antifungal impact of citral and linalool administered individually or combined with fluconazole against clinical isolates of Candida krusei. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Candida krusei is recognized as a major fungal pathogen in patients with immunodeficiency disorders. The present study aimed at investigating the anticandidal activities of citral and linalool combined with fluconazole (FLZ) against FLZ-resistant C. krusei strains. Methods: Antifungal activities were evaluated by the broth microdilution (MD) method to determine the minimum inhibitory and fungicidal concentrations (namely, MICs and MFCs) according to the Clinical and Laboratory Standards Institute (CLSI) M27-A3 document. The interactions were further evaluated using fractional inhibitory concentration indices (FICIs) for combinations of citral+FLZ and linalool+FLZ, calculated from checkerboard MD assays. Results: The mean ± standard deviation (SD) MIC values of citral, linalool, and FLZ against the C. krusei isolates were 70.23 ± 17, 150 ± 38.73, and 74.66 ± 36.95 μg/mL, respectively. Some fungicidal activities were also observed for citral (2.5) and linalool (1.53) against the C. krusei isolates. The FICI values of citral+FLZ and linalool+FLZ for the C. krusei isolates ranged from 0.4 to 1.00 and 0.19 to 0.63, respectively. The additive and synergistic interactions of linalool + FLZ were further observed in 12 (57.1%) and 9 (42.9%) C. krusei isolates. However, there was an additive interaction for citral + FLZ in 17 (80.9%) isolates. They also showed a synergistic interaction in only four (19.1%) isolates. Moreover, linalool and citral plus FLZ did not have any antagonistic effect on any isolates. Conclusion: The study findings support the possible capabilities of citral and linalool, as anticandidal agents, and FLZ might be supplemented with citral and/or linalool for treating FLZ-resistant C. krusei infections.
Collapse
Affiliation(s)
- Mehdi Houshmandzad
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Aghil Sharifzadeh
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Khosravi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hojjatollah Shokri
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
9
|
Antifungal activity of menthol alone and in combination on growth inhibition and biofilm formation of Candida albicans. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Bhattacharya R, Rolta R, Dev K, Sourirajan A. Synergistic potential of essential oils with antibiotics to combat fungal pathogens: Present status and future perspectives. Phytother Res 2021; 35:6089-6100. [PMID: 34324240 DOI: 10.1002/ptr.7218] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
The steady rise in the emergence of antibiotic-resistant fungal pathogens has rendered most of the clinical antibiotics available in the market to be ineffective. Therefore, alternative strategies are required to tackle drug-resistant fungal infections. An effective solution is to combine the available antibiotics with adjuvants such as phytochemicals or essential oils to enhance the efficacy and activity of antibiotics. The present review aims to summarize the studies on synergistic combinations of essential oils and anti-fungal antibiotics. The current findings, methods used for measuring synergistic effects, possible mechanisms of synergism, and future perspectives for developing synergistic EO-antibiotic therapeutic formulations are discussed in this study. Several essential oils exhibit synergistic effect in combination with antibiotics against human fungal pathogens such as Candida albicans. The possible mechanisms of synergy exhibited by essential oil- antibiotic combinations in fungi include disruption of cell wall structure/ ergosterol biosynthesis pathway, enhanced transdermal penetration of antibiotics, alterations in membrane permeability, intracellular leakage of cellular contents, inhibition of germ tube formation or fungal biofilm formation, and competition for a primary target. Synergistic combination of essential oils and antibiotics can prove to be a valid and pragmatic alternative to develop drugs with increased drug-efficacy, and low toxicity.
Collapse
Affiliation(s)
- Riya Bhattacharya
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
11
|
Jamiu AT, Albertyn J, Sebolai OM, Pohl CH. Update on Candida krusei, a potential multidrug-resistant pathogen. Med Mycol 2021; 59:14-30. [PMID: 32400853 DOI: 10.1093/mmy/myaa031] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Although Candida albicans remains the main cause of candidiasis, in recent years a significant number of infections has been attributed to non-albicans Candida (NAC) species, including Candida krusei. This epidemiological change can be partly explained by the increased resistance of NAC species to antifungal drugs. C. krusei is a diploid, dimorphic ascomycetous yeast that inhabits the mucosal membrane of healthy individuals. However, this yeast can cause life-threatening infections in immunocompromised patients, with hematologic malignancy patients and those using prolonged azole prophylaxis being at higher risk. Fungal infections are usually treated with five major classes of antifungal agents which include azoles, echinocandins, polyenes, allylamines, and nucleoside analogues. Fluconazole, an azole, is the most commonly used antifungal drug due to its low host toxicity, high water solubility, and high bioavailability. However, C. krusei possesses intrinsic resistance to this drug while also rapidly developing acquired resistance to other antifungal drugs. The mechanisms of antifungal resistance of this yeast involve the alteration and overexpression of drug target, reduction in intracellular drug concentration and development of a bypass pathway. Antifungal resistance menace coupled with the paucity of the antifungal arsenal as well as challenges involved in antifungal drug development, partly due to the eukaryotic nature of both fungi and humans, have left researchers to exploit alternative therapies. Here we briefly review our current knowledge of the biology, pathophysiology and epidemiology of a potential multidrug-resistant fungal pathogen, C. krusei, while also discussing the mechanisms of drug resistance of Candida species and alternative therapeutic approaches.
Collapse
Affiliation(s)
- A T Jamiu
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - J Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - O M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - C H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| |
Collapse
|
12
|
Khan A, Azam M, Allemailem KS, Alrumaihi F, Almatroudi A, Alhumaydhi FA, Ahmad HI, Khan MU, Khan MA. Coadministration of Ginger Extract and Fluconazole Shows a Synergistic Effect in the Treatment of Drug-Resistant Vulvovaginal Candidiasis. Infect Drug Resist 2021; 14:1585-1599. [PMID: 33907432 PMCID: PMC8071092 DOI: 10.2147/idr.s305503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Azoles are the most common antifungal drugs used in the treatment of vulvovaginal candidiasis (VVC). The frequency of azole-resistant Candida isolates has increased dramatically in the last two decades. Here, we assessed the antifungal activity of a combination of fluconazole (FLZ) and methanolic extract of ginger (Meth-Gin) against drug-resistant vulvovaginal candidiasis (VVC) in a murine model. METHODS The in vitro activity of FLZ or a combination of FLZ and Meth-Gin was determined against Candida albicans by the agar well diffusion, macrodilution, time-kill and the biofilm eradication methods. The therapeutic efficacy of the formulations was assessed by analyzing the fungal load, pro-inflammatory cytokines, percent apoptotic cells and the histological changes in the vaginal tissues of the mice. Moreover, the renal toxicity the drug formulation was evaluated by analyzing the levels of the blood urea nitrogen (BUN) and creatinine. RESULTS The results of in vitro study demonstrated that FLZ did not show any activity against C. albicans, whereas a combination of FLZ and Meth-Gin demonstrated greater activity as shown by the data of the zone of growth inhibition, MIC and time-kill assay. FLZ or Meth-Gin treatment could not completely cure VVC, whereas a combination of FLZ and Meth-Gin was greatly effective in the treatment of VVC. The vaginal tissue from mice of the infected control group had the highest fungal load of 155370 ± 20617 CFUs. Treatment with FLZ at a dose of 40 mg/kg reduced the fungal load to 120863 ± 10723 CFUs. Interestingly, the mice treated with a combination of FLZ (40 mg/kg) and Meth-Gin (200 mg/kg) had a fungal load of 256 ± 152 CFUs. Besides, FLZ and Meth-Gin combination effectively reduced the pro-inflammatory cytokines (IL-1β, TNF-α and IL-17) and the percentage of apoptotic cells in the vaginal tissues. Likewise, the histological analysis revealed the epithelial necrosis, shedding and ulceration in the vaginal tissue, whereas treatment with FLZ and Meth-Gin combination reversed the histopathological changes in the vaginal epithelium and lamina propria. CONCLUSION The findings of the current study suggest that the co-administration of Meth-Gin and FLZ may have a potential therapeutic effect in the treatment of azole-resistant candidiasis.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohd Azam
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hafiz Iqtidar Ahmad
- Department of Tashreeh Wa Munafeul Aza, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, 202002, India
| | - Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
13
|
Abdollahi D, Jafariazar Z, Afshar M. Effect of monoterpenes on ex vivo transungual delivery of itraconazole for the management of onychomycosis. J Cosmet Dermatol 2020; 19:2745-2751. [PMID: 32043759 DOI: 10.1111/jocd.13317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Onychomycosis, a fungal nail infection, is an important problem as it may cause local pain, paresthesia, difficulties in performing activities of daily life, and impair social interactions. Systemic treatment of onychomycosis presents safety issues due to possible drug-drug interactions and severe side effects. Although topical therapy of onychomycosis is advantageous due to its localized effect, the efficacy of such therapy depends on achieving effective concentrations of antifungal agents at the infection site. An approach to reach to this end would be driving benefit from synergic activity of antifungal agents for example itraconazole and monoterpenes. However, because of low transungual penetration of itraconazole, a molecule with high molecular weight and very low water-solubility, the effect of the latter compounds on itraconazole nail delivery should be investigated, which was the aim of this study. METHODS Ex vivo permeation experiments were carried out through soaking the nail clippings of ten healthy volunteers in control and working solutions containing itraconazole (1 mg mL-1 ) and itraconazole (1 mg mL-1 ) plus 6% of each monoterpene including camphor, eucalyptol, menthol, and thymol, respectively, for 36 hours. The amount of itraconazole in nail clippings was quantified hereafter using a validated HPLC method. RESULTS Statistical analysis showed that itraconazole transungual permeation was not influenced by the studied monoterpenes (P value > .05). CONCLUSION These results provided a new perspective for designing topical dosage forms for the treatment of onychomycosis.
Collapse
Affiliation(s)
- Diba Abdollahi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Jafariazar
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Minoo Afshar
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Faria DR, Sakita KM, Capoci IRG, Arita GS, Rodrigues-Vendramini FAV, de Oliveira Junior AG, Soares Felipe MS, Bonfim de Mendonça PDS, Svidzinski TIE, Kioshima ES. Promising antifungal activity of new oxadiazole against Candida krusei. PLoS One 2020; 15:e0227876. [PMID: 31935275 PMCID: PMC6959663 DOI: 10.1371/journal.pone.0227876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
Candida krusei is one of the most common agents of invasive candidiasis and candidemia worldwide, leading to high morbidity and mortality rates. This species has become a problem due to its intrinsic resistance and reduced susceptibility to azoles and polyenes. Moreover, the number of antifungal drugs available for candidiasis treatment is limited, demonstrating the urgent need for the discovery of novel alternative therapies. In this work, the in vivo and in vitro activities of a new oxadiazole (LMM11) were evaluated against C. krusei. The minimum inhibitory concentration ranged from 32 to 64 μg/mL with a significant reduction in the colony forming unit (CFU) count (~3 log10). LMM11 showed fungicidal effect, similar to amphotericin, reducing the viable cell number (>99.9%) in the time-kill curve. Yeast cells presented morphological alterations and inactive metabolism when treated with LMM11. This compound was also effective in decreasing C. krusei replication inside and outside macrophages. A synergistic effect between fluconazole and LMM11 was observed. In vivo treatment with the new oxadiazole led to a significant reduction in CFU (0.85 log10). Furthermore, histopathological analysis of the treated group exhibited a reduction in the inflammatory area. Taken together, these results indicate that LMM11 is a promising candidate for the development of a new antifungal agent for the treatment of infections caused by resistant Candida species such as C. krusei.
Collapse
Affiliation(s)
- Daniella Renata Faria
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Karina Mayumi Sakita
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Isis Regina Grenier Capoci
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Glaucia Sayuri Arita
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Maria Sueli Soares Felipe
- Department of Cell Biology, Laboratory of Molecular Biology, University of Brasília, Brasília, Distrito Federal, Brazil
| | | | | | - Erika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
- * E-mail:
| |
Collapse
|
15
|
do AV Sá LG, da Silva CR, S Campos RD, de A Neto JB, Sampaio LS, do Nascimento FBSA, Barroso FDD, da Silva LJ, Queiroz HA, Cândido TM, Rodrigues DS, Leitão AC, de Moraes MO, Cavalcanti BC, Júnior HVN. Synergistic anticandidal activity of etomidate and azoles against clinical fluconazole-resistant Candida isolates. Future Microbiol 2019; 14:1477-1488. [DOI: 10.2217/fmb-2019-0075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: The purpose of this study was to evaluate the effect of etomidate alone and in combination with azoles on resistant strains of Candida spp. in both planktonic cells and biofilms. Materials & methods: The antifungal activity of etomidate was assessed by the broth microdilution test; flow cytometric procedures to measure fungal viability, mitochondrial transmembrane potential, free radical generation and cell death; as well detection of DNA damage using the comet assay. The interaction between etomidate and antifungal drugs (itraconazole and fluconazole) was evaluated by the checkerboard assay. Results: Etomidate showed antifungal activity against resistant strains of Candida spp. in planktonic cells and biofilms. Etomidate also presented synergism with fluconazole and itraconazole in planktonic cells and biofilms. Conclusion: Etomidate showed antifungal activity against Candida spp., indicating that it is a possible therapeutic alternative.
Collapse
Affiliation(s)
- Lívia G do AV Sá
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
| | - Cecília R da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
| | - Rosana de S Campos
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
- University Center Christus, Fortaleza, CE 60160-230, Brazil
| | - João B de A Neto
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
- University Center Christus, Fortaleza, CE 60160-230, Brazil
| | - Letícia S Sampaio
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
| | - Francisca BSA do Nascimento
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
| | - Fátima DD Barroso
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
| | - Lisandra J da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
| | - Helaine A Queiroz
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
| | - Thiago M Cândido
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
- University Center Christus, Fortaleza, CE 60160-230, Brazil
| | - Daniel S Rodrigues
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
| | - Amanda C Leitão
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
| | - Manoel O de Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
| | - Bruno C Cavalcanti
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
| | - Hélio VN Júnior
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-1160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-276, Brazil
| |
Collapse
|
16
|
Sharifzadeh A, Shokri H, Abbaszadeh S. Interaction of carvacroland voriconazole against drug – resistant Candida strains isolated from patients with candidiasis. J Mycol Med 2019; 29:44-48. [DOI: 10.1016/j.mycmed.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
|
17
|
da Costa Cordeiro BMP, de Lima Santos ND, Ferreira MRA, de Araújo LCC, Junior ARC, da Conceição Santos AD, de Oliveira AP, da Silva AG, da Silva Falcão EP, dos Santos Correia MT, da Silva Almeida JRG, da Silva LCN, Soares LAL, Napoleão TH, da Silva MV, Paiva PMG. Hexane extract from Spondias tuberosa (Anacardiaceae) leaves has antioxidant activity and is an anti-Candida agent by causing mitochondrial and lysosomal damages. Altern Ther Health Med 2018; 18:284. [PMID: 30340567 PMCID: PMC6194709 DOI: 10.1186/s12906-018-2350-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Background Spondias tuberosa is a plant that produces a fruit crop with high economic relevance at Brazilian Caatinga. Its roots and leaves are used in folk medicine. Methods Chemical composition of a hexane extract from S. tuberosa leaves was evaluated by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) and 1H nuclear magnetic resonance (NMR). Antioxidant potential was investigated by DPPH and ABTS assays. Antifungal action on Candida species was evaluated determining the minimal inhibitory concentration (MIC50) and putative mechanisms were determined by flow cytometry analysis. In addition, hemolytic activity on human erythrocytes was assessed and the concentration required to promote 50% hemolysis (EC50) was determined. Results Phytochemical analysis by TLC showed the presence of flavonoids, hydrolysable tannins, saponins and terpenes. The HPLC profile of the extract suggested the presence of gallic acid (0.28 ± 0.01 g%) and hyperoside (1.27 ± 0.01 g%). The representative 1H NMR spectrum showed saturated and unsaturated fatty acids among the main components. The extract showed weak and moderate antioxidant activity in DPPH (IC50: 234.00 μg/mL) and ABTS (IC50: 123.33 μg/mL) assays, respectively. It was able to inhibit the growth of C. albicans and C. glabrata with MIC50 of 2.0 and 0.078 mg/mL, respectively. The treatment of C. glabrata cells with the extract increased levels of mitochondrial superoxide anion, caused hyperpolarization of mitochondrial membrane, and compromised the lysosomal membrane. Weak hemolytic activity (EC50: 740.8 μg/mL) was detected. Conclusion The results demonstrate the pharmacological potential of the extract as antioxidant and antifungal agent, aggregating biotechnological value to this plant and stimulating its conservation.
Collapse
|
18
|
Sharifzadeh A, Khosravi AR, Shokri H, Shirzadi H. Potential effect of 2-isopropyl-5-methylphenol (thymol) alone and in combination with fluconazole against clinical isolates of Candida albicans, C. glabrata and C. krusei. J Mycol Med 2018; 28:294-299. [PMID: 29661606 DOI: 10.1016/j.mycmed.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/06/2023]
Abstract
Limitations of antifungals used in the treatment of candidiasis, as the development of resistant strains, are known by the scientific community. In this context, the aim of this study was to investigate the activity of 2-isopropyl-5-methylphenol (thymol) in combination with fluconazole (FLZ) against clinical Candida strains. The antifungal activity of thymol along with FLZ was evaluated by the Clinical Laboratory Standards Institute (CLSI) M27-A2 broth microdilution method. In addition, synergism was observed for clinical strains of Candida spp. with combination of thymol-FLZ evaluated by the chequerboard microdilution method. The mean of minimum inhibitory concentration (MIC) values of thymol and FLZ were 49.37 and 0.475μg/ml for C. albicans, 51.25 and 18.80μg/ml for C. glabrata and 70 and 179.20μg/ml for C. krusei strains, respectively. Thymol in combination with FLZ exhibited the synergistic effects against all species of Candida tested. FICI values for thymol plus FLZ ranged from 0.366 to 0.607 for C. albicans strains, 0.367 to 0.482 for C. glabrata strains, and 0.375 to 0.563 for C. krusei strains. No antagonistic activity was seen in the strains tested. Thymol was found to have a fungicidal effect on Candida species and a synergistic effect when combined with FLZ.
Collapse
Affiliation(s)
- A Sharifzadeh
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Azadi street, Tehran, Iran.
| | - A R Khosravi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Azadi street, Tehran, Iran
| | - H Shokri
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - H Shirzadi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Azadi street, Tehran, Iran
| |
Collapse
|
19
|
Li XY, Zhang YQ, Xu G, Li SH, Li H. miR-124/MCP-1 signaling pathway modulates the protective effect of itraconazole on acute kidney injury in a mouse model of disseminated candidiasis. Int J Mol Med 2018; 41:3468-3476. [PMID: 29568906 DOI: 10.3892/ijmm.2018.3564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/12/2018] [Indexed: 11/06/2022] Open
Abstract
Previous studies have indicated that monocyte chemoattractant protein-1 (MCP‑1), also referred to as C‑C motif chemokine ligand 2, has a significant role in the pathogenesis of sepsis, however, how microRNAs (miRs) contribute to this process remains to be fully elucidated. In the present study, using a mouse model of disseminated candidiasis, the renoprotective effect of itraconazole (ITR) and adenovirus‑delivered miR‑124 was investigated. The mice were treated with ITR (50 mg/kg) or transfected with miR‑124 mimics via tail‑vein injection 7 days prior to Candida albicans infection. The survival outcome was monitored following candidiasis‑induced sepsis with ITR or miR‑124 mimics treatment. The levels of pro‑inflammatory cytokines, including tumor necrosis factor‑α (TNF‑α), interleukin‑1β (IL‑1β) and IL‑6, were determined using enzyme‑linked immunosorbent assays. The mRNA and protein levels were assayed using reverse transcription-quantitative polymerase chain reaction and western blot analyses, respectively. The results showed that ITR and miR‑124 mimics improved the survival outcome in candidiasis‑induced septic mice. The findings also indicated a significant downregulation in the serum levels of TNF‑α, IL‑1β and IL‑6 in the septic mice treated with ITR or miR‑124 mimics. Of note, ITR treatment significantly increased the expression of miR‑124 and decreased the levels of MCP‑1 in the kidneys of the septic mice. It was also shown that the overexpression of miR‑124 reduced the expression of MCP‑1 and attenuated candidiasis‑induced acute kidney injury (AKI) in septic mice. Transfection with miR‑124 mimics was equivalent to ITR in reducing the excessive inflammatory response and renal lesions in septic mice. These results provided evidence supporting the use of miR‑124 mimics as a therapeutic approach for attenuating candidiasis-induced AKI.
Collapse
Affiliation(s)
- Xiao-Yue Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guanxi 541199, P.R. China
| | - Yu-Qi Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guanxi 541199, P.R. China
| | - Gang Xu
- Department of Geriatrics, Guangzhou First People's Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Shao-Hong Li
- Department of Emergency, TungWah Affiliated Hospital of Sun Yat‑sen University, Dongguan, Guangdong 523220, P.R. China
| | - Heng Li
- Department of Cardiovascular Medicine, TungWah Affiliated Hospital of Sun Yat‑sen University, Dongguan, Guangdong 523220, P.R. China
| |
Collapse
|