1
|
Zhao R, Nawrocki A, Møller-Jensen J, Liu G, Olsen JE, Thomsen LE. Mechanistic divergence between SOS response activation and antibiotic-induced plasmid conjugation in Escherichia coli. Microbiol Spectr 2025:e0009025. [PMID: 40434128 DOI: 10.1128/spectrum.00090-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
The SOS response is a critical DNA damage repair mechanism in bacteria, designed to counteract genotoxic stress and ensure survival. This system can be activated by different classes of antimicrobial agents, each inducing the SOS response through different mechanisms. Moreover, it has been observed that certain antibiotics can enhance conjugative plasmid transfer frequencies. However, while previous studies have suggested that the SOS response contributes to horizontal transfer of certain genes, its role in plasmid conjugation remains unclear. In this study, we investigated the relationship between the SOS response and conjugation of IncI1 and IncFII plasmids harboring various blaCTX-M resistance genes. Results showed that cefotaxime and mitomycin C induced both the SOS response and conjugation, while ciprofloxacin induced the SOS response without affecting conjugation frequencies. Further analysis of SOS mutants, ranging from constitutively inactive to hyper-induced states, revealed no correlation between SOS levels and conjugation frequencies, despite upregulation of tra gene expression in a SOS hyper-induced strain. Proteomic analysis revealed that cefotaxime-induced conjugation was associated with increased transfer and pilus protein expression. In contrast, the SOS hyper-induced strain displayed limited upregulation of plasmid-encoded proteins, suggesting post-transcriptional regulation. Additionally, putative LexA binding sites on the IncI1 plasmid revealed potential SOS-mediated regulation of plasmid genes, highlighting the interaction between the SOS response and plasmid, although it did not significantly affect conjugation.IMPORTANCEPlasmids play a critical role in the dissemination of antibiotic resistance through conjugation. Recent research suggests that the use of antibiotics not only selects for already resistant variants but further increases the rate of plasmid-encoded conjugative transmission by increasing expression of the conjugative system. At the same time, these antibiotics are known to induce the stress-related SOS response in bacteria. To be able to counteract an antibiotic-induced increase in conjugative transfer of resistance plasmid, there is a need for a fundamental understanding of the regulation of transmission, including whether this happens through activation of the SOS response. In this research, we show that antibiotic-induced conjugation and induction of the SOS response happen through different mechanisms, and thus that future strategies to control the spread of antibiotics cannot interfere with the SOS response as its target.
Collapse
Affiliation(s)
- Ruoxuan Zhao
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Capital Region of Denmark, Denmark
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Region Syddanmark, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Region Syddanmark, Denmark
| | - Gang Liu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Capital Region of Denmark, Denmark
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Capital Region of Denmark, Denmark
| | - Line Elnif Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Capital Region of Denmark, Denmark
| |
Collapse
|
2
|
Dehon E, Vrchovecká S, Mathieu A, Favre-Bonté S, Wacławek S, Droit A, Vogel TM, Sanchez-Cid C. Impact of fluoroquinolone and heavy metal pollution on antibiotic resistance maintenance in aquatic ecosystems. ENVIRONMENTAL MICROBIOME 2025; 20:58. [PMID: 40426239 PMCID: PMC12117791 DOI: 10.1186/s40793-025-00722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Freshwater pollution with compounds used during anthropogenic activities could be a major driver of antibiotic resistance emergence and dissemination in environmental settings. Fluoroquinolones and heavy metals are two widely used aquatic pollutants that show a high stability in the environment and have well-known effects on antibiotic resistance selection. However, the impact of these compounds on antibiotic resistance maintenance in aquatic ecosystems remains unknown. In this study, we used a microcosm approach to determine the persistence of two fluoroquinolones (ciprofloxacin, ofloxacin) and two heavy metals (copper and zinc) in the Rhône river over 27 days. In addition, we established links between antibiotic and metal pollution, alone and in combination, and the composition of freshwater bacterial communities, the selection of specific members and the selection and maintenance of antibiotic and metal resistance genes (ARGs and MRGs) using a metagenomics approach. RESULTS Whereas ofloxacin was detected at higher levels in freshwater after 27 days, copper had the strongest influence on bacterial communities and antibiotic and metal resistance gene selection. In addition, heavy metal exposure selected for some ARG-harboring bacteria that contained MRGs. Our research shows a heavy metal-driven transient co-selection for fluoroquinolone resistance in an aquatic ecosystem that could be largely explained by the short-term selection of Pseudomonas subpopulations harboring both fluoroquinolone efflux pumps and copper resistance genes. CONCLUSION This research highlights the complexity and compound-specificity of dose-response relationships in freshwater ecosystems and provides new insights into the medium-term community structure modifications induced by overall sub-inhibitory levels of antibiotic and heavy metal pollution that may lead to the selection and maintenance of antibiotic resistance in low-impacted ecosystems exposed to multiple pollutants.
Collapse
Affiliation(s)
- Emilie Dehon
- Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, F-7 69622, France
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Québec City, Québec, Canada
| | - Stanislava Vrchovecká
- Department of Environmental Chemistry, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Alban Mathieu
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Québec City, Québec, Canada
| | - Sabine Favre-Bonté
- Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, F-7 69622, France
| | - Stanisław Wacławek
- Department of Environmental Chemistry, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Arnaud Droit
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Québec City, Québec, Canada
| | - Timothy M Vogel
- Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, F-7 69622, France
| | - Concepcion Sanchez-Cid
- Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, F-7 69622, France.
| |
Collapse
|
3
|
Liu K, Liu J, Su Y, Wang M, Long T, Fang L, Zhou Y, Sun J, Liao X. IncI2 plasmid transfer and changes of intestinal microbiota in mice under β-lactam antibiotic pressure. BMC Vet Res 2025; 21:343. [PMID: 40375072 DOI: 10.1186/s12917-025-04808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND β-lactam antibiotics represent the most widely utilized class of antimicrobial agents in livestock and poultry breeding. However, the effects of β-lactam antibiotics on conjugation transfer of IncI2 plasmids and the homeostasis of the mouse intestinal microbiota have not been thoroughly investigated. RESULTS The results revealed that the transfer of IncI2 plasmid was the highest for intra-specific E. coli and inter-specific transfer to Salmonella and K. pneumoniae occurred at much lower levels in the absence of β-lactam antibiotic selective pressure. Furthermore, inter-species and intra-species transfer of IncI2 plasmid was enhanced in the presence of sub-MIC levels of amoxicillin/clavulanate and cephalexin whereas ampicillin promoted only inter-species transfer. These results were consistent with in vivo observations where amoxicillin/clavulanate and cephalexin but not ampicillin promoted conjugation. Meanwhile, the intestinal microbiota was also disturbed following antibiotic treatment and Proteobacteria abundance increased while Bacteroides decreased. The gut microbiota could also be partially restored to initial levels after antibiotic cessation for 14 days. CONCLUSIONS These findings highlight the potential risk of β-lactam antibiotics in promoting the spread of resistance plasmids and causing disruption to the intestinal microbiota.
Collapse
Affiliation(s)
- Kaidi Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
| | - Junqi Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
| | - Yuting Su
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
| | - Minge Wang
- School of Agricultural Science and Engineering, Liaocheng University, No.1 Hunan Road, Liaocheng, Shandong, 252000, China
| | - Tengfei Long
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Liangxing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Yufeng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, P. R. China
| | - Xiaoping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China.
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R. China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, P. R. China.
| |
Collapse
|
4
|
Wang S, Li H, Huang Y, Zhuo W, Li T, Jiang T, Huang Q, Zhou R. Porcine β-Defensin 2 Expressed in Pichia pastoris Alleviates Enterotoxigenic Escherichia coli-Induced Intestinal Injury and Inflammatory Response in Mice. Animals (Basel) 2025; 15:1389. [PMID: 40427267 PMCID: PMC12108179 DOI: 10.3390/ani15101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC), a common intestinal pathogen, can colonize the intestines and induce diarrhea in piglets, which brings great economic losses to the swine industry. Antibiotics are recommended to the treatment for diarrhea caused by ETEC in weaned piglets. However, with the emergence and spread of multidrug-resistant ETEC, there is an urgent need to develop alternatives to antibiotics. Due to the unique antibacterial mechanism of targeting bacterial membranes, antimicrobial peptides (AMPs) are promising candidates. In this study, the activity of crude recombinant porcine β-defensin 2 (rPBD2) expressed in Pichia pastoris (P. pastoris) was measured in vitro. Mice infected with ETEC were orally administered 16, 8, and 4 AU crude rPBD2 for 7 consecutive days to evaluate its anti-infective activity in vivo. The results showed that in addition to broad antibacterial activity against Gram-positive and -negative bacteria, crude rPBD2 displayed high tolerance to temperatures ranging from 20 to 60 °C, a broad range of pH, trypsin, pepsin, and physiological concentrations of salts. In an ETEC-induced mouse model, the oral administration of crude rPBD2 decreased diarrhea scores and the intestinal/carcass ratio and alleviated body weight loss. Additionally, crude rPBD2 decreased bacterial loads in stools and the colon (HP group), and the levels of serum pro-inflammatory cytokines IL-6 (HP group) and TNF-α (HP and MP groups), and increased the villus height and the ratio of villus height to crypt depth (VH/CD) in the ileum (HP and MP groups). Our study provides a cost-effective way for PBD2 production and identifies it as a promising candidate to combat ETEC-induced infection.
Collapse
Affiliation(s)
- Shuaiyang Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (H.L.); (Y.H.); (W.Z.); (T.L.); (T.J.); (Q.H.)
| | - Huaixia Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (H.L.); (Y.H.); (W.Z.); (T.L.); (T.J.); (Q.H.)
| | - Yaxue Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (H.L.); (Y.H.); (W.Z.); (T.L.); (T.J.); (Q.H.)
| | - Wenxiao Zhuo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (H.L.); (Y.H.); (W.Z.); (T.L.); (T.J.); (Q.H.)
| | - Tingting Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (H.L.); (Y.H.); (W.Z.); (T.L.); (T.J.); (Q.H.)
| | - Tingting Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (H.L.); (Y.H.); (W.Z.); (T.L.); (T.J.); (Q.H.)
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (H.L.); (Y.H.); (W.Z.); (T.L.); (T.J.); (Q.H.)
- International Research Center for Animal Disease, Ministry of Science & Technology of China, Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (H.L.); (Y.H.); (W.Z.); (T.L.); (T.J.); (Q.H.)
- International Research Center for Animal Disease, Ministry of Science & Technology of China, Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
5
|
Swain PP, Sahoo RK. Blocking horizontal transfer of antibiotic resistance genes: an effective strategy in combating antibiotic resistance. Crit Rev Microbiol 2025:1-20. [PMID: 40207493 DOI: 10.1080/1040841x.2025.2489463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/15/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance (AMR) poses a significant public health threat, with emerging and novel forms of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) potentially crossing international borders and challenging the global health systems. The rate of development of antibiotic resistance surpasses the development of new antibiotics. Consequently, there is a growing threat of bacteria acquiring resistance even to newer antibiotics further complicating the treatment of bacterial infections. Horizontal gene transfer (HGT) is the key mechanism for the spread of antibiotic resistance in bacteria through the processes of conjugation, transformation, and transduction. Several compounds, other than antibiotics, have also been shown to promote HGT of ARGs. Given the crucial role of HGT in the dissemination of ARGs, inhibition of HGT is a key strategy to mitigate AMR. Therefore, this review explores the contribution of HGT in bacterial evolution, identifies specific hotspots andhighlights the role of HGT inhibitors in impeding the spread of ARGs. By specifically focusing on the HGT mechanism and its inhibition, these inhibitors offer a highly promising approach to combating AMR.
Collapse
Affiliation(s)
- Pragyan Paramita Swain
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
6
|
Yang B, Sun J, Zhu S, Wang Z, Liu Y. Exposure to bisphenol compounds accelerates the conjugative transfer of antibiotic resistance plasmid. ENVIRONMENTAL RESEARCH 2024; 263:120002. [PMID: 39278585 DOI: 10.1016/j.envres.2024.120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Antimicrobial resistance poses the most formidable challenge to public health, with plasmid-mediated horizontal gene transfer playing a pivotal role in its global spread. Bisphenol compounds (BPs), a group of environmental contaminants with endocrine-disrupting properties, are extensively used in various plastic products and can be transmitted to food. However, the impact of BPs on the plasmid-mediated horizontal transfer of antibiotic resistance genes (ARGs) has not yet been elucidated. Herein, we demonstrate that BPs could promote the conjugative transfer frequency of RP4-7 and clinically multidrug-resistant plasmids. Furthermore, the promoting effect of BPs on the plasmid transfer was also confirmed in a murine model. Microbial diversity analysis of transconjugants indicated an increase in α diversity in the BPAF-treated group, along with the declined richness of some beneficial bacteria and elevated richness of Faecalibaculum rodentium, which might serve as an intermediate repository for resistance plasmids. The underlying mechanisms driving the enhanced conjugative transfer upon BPAF treatment include exacerbated oxidative stress, disrupted membrane homeostasis, augmented energy metabolism, and the increased expression of conjugation-related genes. Collectively, our findings highlight the potential risk associated with the exacerbated dissemination of AMR both in vitro and in vivo caused by BPs exposure.
Collapse
Affiliation(s)
- Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingyi Sun
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
7
|
Kondratieva DA, Savelieva JR, Golikova MV. Effect of Meropenem on Conjugative Plasmid Transfer in Klebsiella pneumoniae. Int J Mol Sci 2024; 25:13193. [PMID: 39684903 DOI: 10.3390/ijms252313193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Plasmid-mediated resistance is a major mechanism that contributes to the gradual decline in the effectiveness of antibiotics from different classes, including carbapenems. Antibiotics can significantly contribute to the efficiency of plasmid transfer between bacterial strains. To investigate the potential effect of an antibiotic on the efficacy of conjugative plasmid transfer, we conducted mating experiments with Klebsiella pneumoniae strains. Donor strains of K. pneumoniae that carry plasmids with blaKPC or blaOXA-48 carbapenemase genes and recipient plasmid-free K. pneumoniae strains were used in matings. Matings were conducted on the agar with or without meropenem at 1/8×, 1/4×, or 1/2×MIC against the respective recipients. In the second part of our study, we investigated the pharmacodynamic properties of meropenem against transconjugant strains of K. pneumoniae, which were obtained in the first part of this study. As a result, at a concentration equivalent to 1/8×MIC, meropenem primarily inhibited conjugation among K. pneumoniae strains, while at a concentration equal to 1/2×MIC, it facilitated conjugation. Transconjugants derived from K. pneumoniae with intermediate MICs failed to respond to simulated treatment with meropenem using prolonged infusion and a high-dose regimen. This finding suggests that such transconjugants may potentially pose a risk if involved in an infectious process.
Collapse
Affiliation(s)
- Daria A Kondratieva
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Julia R Savelieva
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Maria V Golikova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| |
Collapse
|
8
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Alav I, Buckner MMC. Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes. Crit Rev Microbiol 2024; 50:993-1010. [PMID: 37462915 PMCID: PMC11523920 DOI: 10.1080/1040841x.2023.2233603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 02/15/2024]
Abstract
Horizontal gene transfer plays a key role in the global dissemination of antimicrobial resistance (AMR). AMR genes are often carried on self-transmissible plasmids, which are shared amongst bacteria primarily by conjugation. Antibiotic use has been a well-established driver of the emergence and spread of AMR. However, the impact of commonly used non-antibiotic compounds and environmental pollutants on AMR spread has been largely overlooked. Recent studies found common prescription and over-the-counter drugs, artificial sweeteners, food preservatives, and environmental pollutants, can increase the conjugative transfer of AMR plasmids. The potential mechanisms by which these compounds promote plasmid transmission include increased membrane permeability, upregulation of plasmid transfer genes, formation of reactive oxygen species, and SOS response gene induction. Many questions remain around the impact of most non-antibiotic compounds on AMR plasmid conjugation in clinical isolates and the long-term impact on AMR dissemination. By elucidating the role of routinely used pharmaceuticals, food additives, and pollutants in the dissemination of AMR, action can be taken to mitigate their impact by closely monitoring use and disposal. This review will discuss recent progress on understanding the influence of non-antibiotic compounds on plasmid transmission, the mechanisms by which they promote transfer, and the level of risk they pose.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michelle M. C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Zhang S, Long J, Li Q, Li M, Yu R, Lu Y, Ma X, Cai Y, Shen C, Zeng J, Huang B, Chen C, Pu J. Small RNA GadY in Escherichia coli enhances conjugation system of IncP-1 by targeting SdiA. Front Cell Infect Microbiol 2024; 14:1445850. [PMID: 39108982 PMCID: PMC11300174 DOI: 10.3389/fcimb.2024.1445850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Plasmid-mediated conjugation is a common mechanism for most bacteria to transfer antibiotic resistance genes (ARGs). The conjugative transfer of ARGs is emerging as a major threat to human beings. Although several transfer-related factors are known to regulate this process, small RNAs (sRNAs)-based regulatory roles remain to be clarified. Here, the Hfq-binding sRNA GadY in donor strain Escherichia coli (E. coli) SM10λπ was identified as a new regulator for bacterial conjugation. Two conjugation models established in our previous studies were used, which SM10λπ carrying a chromosomally integrated IncP-1α plasmid RP4 and a mobilizable plasmid pUCP24T served as donor cells, and P. aeruginosa PAO1 or E. coli EC600 as the recipients. GadY was found to promote SM10λπ-PAO1 conjugation by base-pairing with its target mRNA SdiA, an orphan LuxR-type receptor that responds to exogenous N-acylated homoserine lactones (AHLs). However, SM10λπ-EC600 conjugation was not affected due to EC600 lacking AHLs synthase. It indicates that the effects of GadY on conjugation depended on AHLs-SdiA signalling. Further study found GadY bound SdiA to negatively regulate the global RP4 repressors KorA and KorB. When under ciprofloxacin or levofloxacin treatment, GadY expression in donor strain was enhanced, and it positively regulated quinolone-induced SM10λπ-PAO1 conjugation. Thus, our study provides a novel role for sRNA GadY in regulating plasmid-mediated conjugation, which helps us better understand bacterial conjugation to counter antibiotic resistance.
Collapse
Affiliation(s)
- Shebin Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiao Long
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwei Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mo Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiqi Yu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingyan Ma
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yimei Cai
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong Shen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Jianming Zeng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cha Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieying Pu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| |
Collapse
|
11
|
Drane K, Sheehan M, Whelan A, Ariel E, Kinobe R. The Role of Wastewater Treatment Plants in Dissemination of Antibiotic Resistance: Source, Measurement, Removal and Risk Assessment. Antibiotics (Basel) 2024; 13:668. [PMID: 39061350 PMCID: PMC11274174 DOI: 10.3390/antibiotics13070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Antibiotic Resistance Genes (ARGs) are contaminants of emerging concern with marked potential to impact public and environmental health. This review focusses on factors that influence the presence, abundance, and dissemination of ARGs within Wastewater Treatment Plants (WWTPs) and associated effluents. Antibiotic-Resistant Bacteria (ARB) and ARGs have been detected in the influent and the effluent of WWTPs worldwide. Different levels of wastewater treatment (primary, secondary, and tertiary) show different degrees of removal efficiency of ARGs, with further differences being observed when ARGs are captured as intracellular or extracellular forms. Furthermore, routinely used molecular methodologies such as quantitative polymerase chain reaction or whole genome sequencing may also vary in resistome identification and in quantifying ARG removal efficiencies from WWTP effluents. Additionally, we provide an overview of the One Health risk assessment framework, as well as future strategies on how WWTPs can be assessed for environmental and public health impact.
Collapse
Affiliation(s)
- Kezia Drane
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Madoc Sheehan
- College of Science, Technology, and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Anna Whelan
- Townsville Water and Waste, Wastewater Operations, Townsville, QLD 4810, Australia;
| | - Ellen Ariel
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Robert Kinobe
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| |
Collapse
|
12
|
Mohamed DS, Abd El-Baky RM, El-Mokhtar MA, Ghanem SK, Yahia R, Alqahtani AM, Abourehab MAS, Ahmed EF. Influence of selected non-antibiotic pharmaceuticals on antibiotic resistance gene transfer in Escherichia coli. PLoS One 2024; 19:e0304980. [PMID: 38905247 PMCID: PMC11192386 DOI: 10.1371/journal.pone.0304980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/20/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Antibiotic resistance genes (ARGs) transfer rapidly among bacterial species all over the world contributing to the aggravation of antibiotic resistance crisis. Antibiotics at sub-inhibitory concentration induce horizontal gene transfer (HRT) between bacteria, especially through conjugation. The role of common non-antibiotic pharmaceuticals in the market in disseminating antibiotic resistance is not well studied. OBJECTIVES In this work, we indicated the effect of some commonly used non-antibiotic pharmaceuticals including antiemetic (metoclopramide HCl) and antispasmodics (hyoscine butyl bromide and tiemonium methyl sulfate) on the plasmid-mediated conjugal transfer of antibiotic resistance genes between pathogenic E. coli in the gastric intestinal tract (GIT). METHODS Broth microdilution assay was used to test the antibacterial activity of the tested non-antibiotic pharmaceuticals. A conjugation mating system was applied in presence of the studied non-antibiotic pharmaceuticals to test their effect on conjugal transfer frequency. Plasmid extraction and PCR were performed to confirm the conjugation process. Transmission electron microscopy (TEM) was used for imaging the effect of non-antibiotic pharmaceuticals on bacterial cells. RESULTS No antibacterial activity was reported for the used non-antibiotic pharmaceuticals. Plasmid-mediated conjugal transfer between isolates was induced by metoclopramide HCl but suppressed by hyoscine butyl bromide. Tiemonium methylsulfate slightly promoted conjugal transfer. Aggregation between cells and periplasmic bridges was clear in the case of metoclopramide HCl while in presence of hyoscine butyl bromide little affinity was observed. CONCLUSION This study indicates the contribution of non-antibiotic pharmaceuticals to the dissemination and evolution of antibiotic resistance at the community level. Metoclopramide HCl showed an important role in the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Doaa Safwat Mohamed
- Microbiology & Immunology Department, Faculty of Pharmacy, Sohag University, Sohag Al Gadida City, Egypt
| | - Rehab Mahmoud Abd El-Baky
- Microbiology & Immunology Department, Faculty of Pharmacy, Minia University, Minia, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mohamed Ahmed El-Mokhtar
- Medical Microbiology & Immunology Department, Faculty of Medicine, Assiut University, El Fateh, Egypt
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Sahar K. Ghanem
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Sohag University, Sohag Al Gadida City, Egypt
| | - Ramadan Yahia
- Microbiology and Immunology Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Alaa M. Alqahtani
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Eman Farouk Ahmed
- Microbiology & Immunology Department, Faculty of Pharmacy, Sohag University, Sohag Al Gadida City, Egypt
| |
Collapse
|
13
|
Gestels Z, Baranchyk Y, Van den Bossche D, Laumen J, Abdellati S, Britto Xavier B, Manoharan-Basil SS, Kenyon C. Could traces of fluoroquinolones in food induce ciprofloxacin resistance in Escherichia coli and Klebsiella pneumoniae? An in vivo study in Galleria mellonella with important implications for maximum residue limits in food. Microbiol Spectr 2024; 12:e0359523. [PMID: 38687060 PMCID: PMC11237748 DOI: 10.1128/spectrum.03595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
We hypothesized that the residual concentrations of fluoroquinolones allowed in food (acceptable daily intake-ADIs) could select for ciprofloxacin resistance in our resident microbiota. We developed models of chronic Escherichia coli and Klebsiella pneumoniae infection in Galleria mellonella larvae and exposed them to ADI doses of ciprofloxacin via single dosing and daily dosing regimens. The emergence of ciprofloxacin resistance was assessed via isolation of the target bacteria in selective agar plates. Exposure to as low as one-tenth of the ADI dose of the single and daily dosing regimens of ciprofloxacin resulted in the selection of ciprofloxacin resistance in K. pneumoniae but not E. coli. This resistance was associated with cross-resistance to doxycycline and ceftriaxone. Whole genome sequencing revealed inactivating mutations in the transcription repressors, ramR and rrf2, as well as mutations in gyrA and gyrB. We found that ciprofloxacin doses 10-fold lower than those classified as acceptable for daily intake could induce resistance to ciprofloxacin in K. pneumoniae. These results suggest that it would be prudent to include the induction of antimicrobial resistance as a significant criterion for determining ADIs and the associated maximum residue limits in food.IMPORTANCEThis study found that the concentrations of ciprofloxacin/enrofloxacin allowed in food can induce de novo ciprofloxacin resistance in Klebsiella pneumoniae. This suggests that it would be prudent to reconsider the criteria used to determine "safe" upper concentration limits in food.
Collapse
Affiliation(s)
- Zina Gestels
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Yuliia Baranchyk
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Dorien Van den Bossche
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jolein Laumen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Said Abdellati
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Basil Britto Xavier
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Hospital Outbreak Support Team—HOST, Ziekenhuis Netwerk Antwerpen Middelheim, Antwerp, Belgium
| | | | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Qiu H, Huang L, Wang H, Tao C, Ran Z, Xu J, Sun H, Wang P. Effects of Lactobacillus acidophilus AC on the growth, intestinal flora and metabolism of zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109570. [PMID: 38643956 DOI: 10.1016/j.fsi.2024.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The intensive aquaculture model has resulted in a heightened prevalence of diseases among farmed animals. It is imperative to identify healthy and efficacious alternatives to antibiotics for the sustainable progression of aquaculture. In this investigation, a strain of Lactobacillus acidophilus AC was introduced into the cultural water at varying concentrations (105 CFU/mL, 106 CFU/mL, 107 CFU/mL) to nourish zebrafish (Danio rerio). The findings revealed that L. acidophilus AC effectively increased the growth performance of zebrafish, improved the ion exchange capacity of gills, and enhanced hepatic antioxidant and immune-enzyme activities. Furthermore, L. acidophilus AC notably enhanced the intestinal morphology and augmented the activity of digestive enzymes within the intestinal tract. Analysis of intestinal flora revealed that L. acidophilus AC exerted a significant impact on the intestinal flora community, manifested by a reduction in the relative abundance of Burkholderiales, Candidatus_Saccharibacteria_bacterium, and Sutterellaceae, coupled with an increase in the relative abundance of Cetobacterium. Metabolomics analysis demonstrated that L. acidophilus AC significantly affected intestinal metabolism of zebrafish. PG (i-19:0/PGE2) and 12-Hydroxy-13-O-d-glucuronoside-octadec-9Z-enoate were the metabolites with the most significant up- and down-regulation folds, respectively. Finally, L. acidophilus AC increased the resistance of zebrafish to Aeromonas hydrophila. In conclusion, L. acidophilus AC was effective in enhancing the health and immunity of zebrafish. Thus, our findings suggested that L. acidophilus AC had potential applications and offered a reference for its use in aquaculture.
Collapse
Affiliation(s)
- Haoyu Qiu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ling Huang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Hanying Wang
- National Marine Facility Aquaculture Engineering and Technology Research Center, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chenzhi Tao
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhiqiang Ran
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiahang Xu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Haofeng Sun
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ping Wang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
15
|
Stanton IC, Tipper HJ, Chau K, Klümper U, Subirats J, Murray AK. Does Environmental Exposure to Pharmaceutical and Personal Care Product Residues Result in the Selection of Antimicrobial-Resistant Microorganisms, and is this Important in Terms of Human Health Outcomes? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:623-636. [PMID: 36416260 DOI: 10.1002/etc.5498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The environment plays a critical role in the development, dissemination, and transmission of antimicrobial resistance (AMR). Pharmaceuticals and personal care products (PPCPs) enter the environment through direct application to the environment and through anthropogenic pollution. Although there is a growing body of evidence defining minimal selective concentrations (MSCs) of antibiotics and the role antibiotics play in horizontal gene transfer (HGT), there is limited evidence on the role of non-antibiotic PPCPs. Existing data show associations with the development of resistance or effects on bacterial growth rather than calculating selective endpoints. Research has focused on laboratory-based systems rather than in situ experiments, although PPCP concentrations found throughout wastewater, natural water, and soil environments are often within the range of laboratory-derived MSCs and at concentrations shown to promote HGT. Increased selection and HGT of AMR by PPCPs will result in an increase in total AMR abundance in the environment, increasing the risk of exposure and potential transmission of environmental AMR to humans. There is some evidence to suggest that humans can acquire resistance from environmental settings, with water environments being the most frequently studied. However, because this is currently limited, we recommend that more evidence be gathered to understand the risk the environment plays in regard to human health. In addition, we recommend that future research efforts focus on MSC-based experiments for non-antibiotic PPCPS, particularly in situ, and investigate the effect of PPCP mixtures on AMR. Environ Toxicol Chem 2024;43:623-636. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Kevin Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universitӓt Dresden, Dresden, Germany
| | - Jessica Subirats
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain
| | - Aimee K Murray
- College of Medicine and Health, University of Exeter, Cornwall, UK
| |
Collapse
|
16
|
Zuo X, Zhang S, Chen S. The role of water matrix on antibiotic resistance genes transmission in substrate layer from stormwater bioretention cells. WATER RESEARCH 2024; 251:121103. [PMID: 38183842 DOI: 10.1016/j.watres.2024.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Recently, extensive attention has been paid to antibiotic resistance genes (ARGs) transmission. However, little available literature could be found about ARGs transmission in stormwater bioretention cells, especially the role of water matrix on ARGs transmission. Batch experiments were conducted to investigate target ARGs (blaTEM, tetR and aphA) transmission behaviors in substrate layer from stormwater bioretention cells under different water matrices, including nutrient elements (e.g., carbon, nitrogen and phosphorus), water environmental conditions (dissolved oxygen (DO), pH and salinity, etc.) and pollution factors (like heavy metals, antibiotics and disinfectants), showing that ARGs conjugation frequency increased sharply with the enhancement of water matrices (expect DO and pH), while there were obvious increasing tendencies for all ARGs transformation frequencies under only the pollution factor. The correlation between dominant bacteria and ARGs transmission implied that conjugation and transformation of ARGs were mainly determined by Firmicutes, Bacteroidota, Latescibacterota, Chloroflexi and Cyanobacteria at the phylum level, and by Sphingomonas, Ensifer, IMCC26256, Rubellimicrobium, Saccharimonadales, Vicinamibacteraceae, Nocardioides, JG30-KF-CM66 at the genus level. The mentioned dominant bacteria were responsible for intracellular reactive oxygen species (ROS) and cell membrane permeability (CMP) in the substrate layer, where the amplification of intracellular ROS variation were the largest with 144 and 147 % under the condition of TP and salinity, respectively, and the one of CMP variation were the highest more than 165 % under various pollution factors. Furthermore, both increasing DO and reducing salinity could be potential approaches for the inhibition of ARGs transmission in bioretention cells taking into account the simultaneous removal of conventional pollutants.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - SongHu Zhang
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - ShaoJie Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
17
|
Raro OHF, Poirel L, Nordmann P. Effect of Zinc Oxide and Copper Sulfate on Antibiotic Resistance Plasmid Transfer in Escherichia coli. Microorganisms 2023; 11:2880. [PMID: 38138025 PMCID: PMC10745819 DOI: 10.3390/microorganisms11122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Heavy metals such as zinc (Zn) and copper (Cu) may be associated with antibiotic resistance dissemination. Our aim was to investigate whether sub-lethal dosage of Zn and Cu may enhance plasmid transfer and subsequently resistance genes dissemination. Plasmid conjugation frequencies (PCF) were performed with Escherichia coli strains bearing IncL-blaOXA-48, IncA/C-blaCMY-2, IncI1-blaCTX-M-1, IncF-blaCTX-M-1, and IncX3-blaNDM-5 as donors. Mating-out assays were performed with sub-dosages of zinc oxide (ZnO) and Cu sulfate (CuSO4). Quantification of the SOS response-associated gene expression levels and of the production of reactive oxygen species were determined. Increased PCF was observed for IncL, IncA/C, and IncX3 when treated with ZnO. PCF was only increased for IncL when treated with CuSO4. The ROS production presented an overall positive correlation with PCF after treatment with ZnO for IncL, IncA/C, and IncX3. For CuSO4 treatment, the same was observed only for IncL. No increase was observed for expression of SOS response-associated genes under CuSO4 treatment, and under ZnO treatment, we observed an increase in SOS response-associated genes only for IncX3. Our data showed that sub-dosages of ZnO and CuSO4 could significantly enhance PCF in E. coli, with a more marked effect observed with IncL, IncA/C, and IncX3 scaffolds. Our study suggested that use of certain heavy metals is not the panacea for avoiding use of antibiotics in order to prevent the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700 Fribourg, Switzerland; (O.H.F.R.); (P.N.)
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700 Fribourg, Switzerland; (O.H.F.R.); (P.N.)
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, 1700 Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700 Fribourg, Switzerland; (O.H.F.R.); (P.N.)
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, 1700 Fribourg, Switzerland
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Shi S, Cheng Y, Wang S, Zhang X, Han F, Li X, Dong H. Improvement of the conjugation transfer of N. gerenzanensis based on the synergistic effect of quorum sensing and antibiotic interference. AMB Express 2023; 13:133. [PMID: 38006456 PMCID: PMC10676335 DOI: 10.1186/s13568-023-01641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
Nonomuraea gerenzanensis (N. gerenzanensis) is known for its ability to biosynthesize A40926, the precursor of the glycopeptide antibiotic (GPA) Dalbavancin. However, challenges and uncertainties related to the genetic manipulation of the rare actinomycetes remain. In order to improve the conjugation transfer of N. gerenzanensis, the crucial factors affecting conjugal transfer were evaluated, including agar medium, mycelial state, donor-recipient ratio, magnesium ion concentration, and antibiotic coverage time firstly. Additionally, γ-butyrolactone (GBL) for quorum sensing (QS) and antibiotics targeting bacterial walls were applied to evaluate their effects on conjugation transfer. As a result, the optimal conditions of 5%TSB of liquid medium, 24 h of the period time, V0.1 of agar medium, 30 mM of magnesium ion, the ratio 10:1 of donor-to-recipient, and 27 h of the overlaying time of antibiotic were determined. Furthermore, the results showed that autoinducer GBL and GPA teicoplanin had a synergetic effect on the conjugation transfer of N. gerenzanensis at a working concentration of 60 µM and 0.5 µg mL-1, respectively. The highest conjugation efficiency could reach about 1.3 depending on the optimal process conditions and the interference of QS and antibiotics.
Collapse
Affiliation(s)
- Shi Shi
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Yutong Cheng
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Xiangmei Zhang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Fubo Han
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Xiaojing Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Huijun Dong
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China.
| |
Collapse
|
19
|
Hallal Ferreira Raro O, Poirel L, Tocco M, Nordmann P. Impact of veterinary antibiotics on plasmid-encoded antibiotic resistance transfer. J Antimicrob Chemother 2023; 78:2209-2216. [PMID: 37486104 PMCID: PMC10477142 DOI: 10.1093/jac/dkad226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVES Resistance genes can be genetically transmitted and exchanged between commensal and pathogenic bacterial species, and in different compartments including the environment, or human and animal guts (One Health concept). The aim of our study was to evaluate whether subdosages of antibiotics administered in veterinary medicine could enhance plasmid transfer and, consequently, resistance gene exchange in gut microbiota. METHODS Conjugation frequencies were determined with Escherichia coli strains carrying IncL- (blaOXA-48) or IncI1-type (blaCTX-M-1) plasmids subjected to a series of subinhibitory concentrations of antibiotics used in veterinary medicine, namely amoxicillin, ceftiofur, apramycin, neomycin, enrofloxacin, colistin, erythromycin, florfenicol, lincomycin, oxytetracycline, sulfamethazine, tiamulin and the ionophore narasin. Treatments with subinhibitory dosages were performed with and without supplementation with the antioxidant edaravone, known as a mitigator of the inducibility effect of several antibiotics on plasmid conjugation frequency (PCF). Expression of SOS-response associated genes and fluorescence-based reactive oxygen species (ROS) detection assays were performed to evaluate the stress oxidative response. RESULTS Increased PCFs were observed for both strains when treating with florfenicol and oxytetracycline. Increased expression of the SOS-associated recA gene also occurred concomitantly, as well as increased ROS production. Addition of edaravone to the treatments reduced their PCF and also showed a decreasing effect on SOS and ROS responses for both plasmid scaffolds. CONCLUSIONS We showed here that some antibiotics used in veterinary medicine may induce transfer of plasmid-encoded resistance and therefore may contribute to the worldwide spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Maurine Tocco
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
21
|
Sanchez-Cid C, Ghaly TM, Gillings MR, Vogel TM. Sub-inhibitory gentamicin pollution induces gentamicin resistance gene integration in class 1 integrons in the environment. Sci Rep 2023; 13:8612. [PMID: 37244902 PMCID: PMC10224954 DOI: 10.1038/s41598-023-35074-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
Antibiotics at sub-inhibitory concentrations are often found in the environment. Here they could impose selective pressure on bacteria, leading to the selection and dissemination of antibiotic resistance, despite being under the inhibitory threshold. The goal of this study was to evaluate the effects of sub-inhibitory concentrations of gentamicin on environmental class 1 integron cassettes in natural river microbial communities. Gentamicin at sub-inhibitory concentrations promoted the integration and selection of gentamicin resistance genes (GmRG) in class 1 integrons after only a one-day exposure. Therefore, sub-inhibitory concentrations of gentamicin induced integron rearrangements, increasing the mobilization potential of gentamicin resistance genes and potentially increasing their dissemination in the environment. This study demonstrates the effects of antibiotics at sub-inhibitory concentrations in the environment and supports concerns about antibiotics as emerging pollutants.
Collapse
Affiliation(s)
- Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, NSW, 2109, Australia
| | - Timothy M Vogel
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAe 1418, VetAgro Sup, Ecologie Microbienne, F-69622, Villeurbanne, France
| |
Collapse
|
22
|
Kosterlitz O, Huisman JS. Guidelines for the estimation and reporting of plasmid conjugation rates. Plasmid 2023; 126:102685. [PMID: 37121291 DOI: 10.1016/j.plasmid.2023.102685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Conjugation is a central characteristic of plasmid biology and an important mechanism of horizontal gene transfer in bacteria. However, there is little consensus on how to accurately estimate and report plasmid conjugation rates, in part due to the wide range of available methods. Given the similarity between approaches, we propose general reporting guidelines for plasmid conjugation experiments. These constitute best practices based on recent literature about plasmid conjugation and methods to measure conjugation rates. In addition to the general guidelines, we discuss common theoretical assumptions underlying existing methods to estimate conjugation rates and provide recommendations on how to avoid violating these assumptions. We hope this will aid the implementation and evaluation of conjugation rate measurements, and initiate a broader discussion regarding the practice of quantifying plasmid conjugation rates.
Collapse
Affiliation(s)
- Olivia Kosterlitz
- Department of Biology, University of Washington, 3747 W Stevens Way NE, Life Sciences Bldg, Seattle, Washington, United States of America.
| | - Jana S Huisman
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Universitätsstrasse 16, 8092 Zürich, Switzerland.
| |
Collapse
|
23
|
Yan X, Liu W, Wen S, Wang L, Zhu L, Wang J, Kim YM, Wang J. Effect of sulfamethazine on the horizontal transfer of plasmid-mediated antibiotic resistance genes and its mechanism of action. J Environ Sci (China) 2023; 127:399-409. [PMID: 36522071 DOI: 10.1016/j.jes.2022.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 06/17/2023]
Abstract
As a new type of environmental pollutant, antibiotic resistance genes (ARGs) pose a huge challenge to global health. Horizontal gene transfer (HGT) represents an important route for the spread of ARGs. The widespread use of sulfamethazine (SM2) as a broad-spectrum bacteriostatic agent leads to high residual levels in the environment, thereby increasing the spread of ARGs. Therefore, we chose to study the effect of SM2 on the HGT of ARGs mediated by plasmid RP4 from Escherichia coli (E. coli) HB101 to E. coli NK5449 as well as its mechanism of action. The results showed that compared with the control group, SM2 at concentrations of 10 mg/L and 200 mg/L promoted the HGT of ARGs, but transfer frequency decreased at concentrations of 100 mg/L and 500 mg/L. The transfer frequency at 200 mg/L was 3.04 × 10-5, which was 1.34-fold of the control group. The mechanism of SM2 improving conjugation transfer is via enhancement of the mRNA expression of conjugation genes (trbBP, trfAP) and oxidative stress genes, inhibition of the mRNA expression of vertical transfer genes, up regulation of the outer membrane protein genes (ompC, ompA), promotion of the formation of cell pores, and improvement of the permeability of cell membrane to promote the conjugation transfer of plasmid RP4. The results of this study provide theoretical support for studying the spread of ARGs in the environment.
Collapse
Affiliation(s)
- Xiaojing Yan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Wenwen Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Shengfang Wen
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Korea
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
24
|
Wang S, Li S, Du D, Abass OK, Nasir MS, Yan W. Stimulants and donors promote megaplasmid pND6-2 horizontal gene transfer in activated sludge. J Environ Sci (China) 2023; 126:742-753. [PMID: 36503799 DOI: 10.1016/j.jes.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/17/2023]
Abstract
The activated sludge process is characterized by high microbial density and diversity, both of which facilitate antibiotic resistance gene transfer. Many studies have suggested that antibiotic and non-antibiotic drugs at sub-inhibitory concentrations are major inducers of conjugative gene transfer. The self-transmissible plasmid pND6-2 is one of the endogenous plasmids harbored in Pseudomonas putida ND6, which can trigger the transfer of another co-occurring naphthalene-degrading plasmid pND6-1. Therefore, to illustrate the potential influence of stimulants on conjugative transfer of pND6-2, we evaluated the effects of four antibiotics (ampicillin, gentamycin, kanamycin, and tetracycline) and naphthalene, on the conjugal transfer efficiency of pND6-2 by filter-mating experiment. Our findings demonstrated that all stimulants within an optimal dose promoted conjugative transfer of pND6-2 from Pseudomonas putida GKND6 to P. putida KT2440, with tetracycline being the most effective (100 µg/L and 10 µg/L), as it enhanced pND6-2-mediated intra-genera transfer by approximately one hundred-fold. Subsequently, seven AS reactors were constructed with the addition of donors and different stimulants to further elucidate the conjugative behavior of pND6-2 in natural environment. The stimulants positively affected the conjugal process of pND6-2, while donors reshaped the host abundance in the sludge. This was likely because stimulant addition enhanced the expression levels of conjugation transfer-related genes. Furthermore, Blastocatella and Chitinimonas were identified as the potential receptors of plasmid pND6-2, which was not affected by donor types. These findings demonstrate the positive role of sub-inhibitory stimulant treatment on pND6-2 conjugal transfer and the function of donors in re-shaping the host spectrum of pND6-2.
Collapse
Affiliation(s)
- Shan Wang
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dan Du
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China
| | - Olusegun K Abass
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Muhammad Salman Nasir
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China; Department of Structures and Environmental Engineering, University of Agriculture, Faisalabad 38040, Pakistan
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
25
|
Liu W, Huang Y, Zhang H, Liu Z, Huan Q, Xiao X, Wang Z. Factors and Mechanisms Influencing Conjugation In Vivo in the Gastrointestinal Tract Environment: A Review. Int J Mol Sci 2023; 24:5919. [PMID: 36982992 PMCID: PMC10059276 DOI: 10.3390/ijms24065919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence and spread of antibiotic resistance genes (ARGs) have imposed a serious threat on global public health. Horizontal gene transfer (HGT) via plasmids is mainly responsible for the spread of ARGs, and conjugation plays an important role in HGT. The conjugation process is very active in vivo and its effect on the spreading of ARGs may be underestimated. In this review, factors affecting conjugation in vivo, especially in the intestinal environment, are summarized. In addition, the potential mechanisms affecting conjugation in vivo are summarized from the perspectives of bacterial colonization and the conjugation process.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Yanhu Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Han Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Quanmin Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225012, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225012, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
26
|
Membrane-Binding Biomolecules Influence the Rate of Vesicle Exchange between Bacteria. Appl Environ Microbiol 2022; 88:e0134622. [PMID: 36342184 PMCID: PMC9746307 DOI: 10.1128/aem.01346-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The exchange of bacterial extracellular vesicles facilitates molecular exchange between cells, including the horizontal transfer of genetic material. Given the implications of such transfer events on cell physiology and adaptation, some bacterial cells have likely evolved mechanisms to regulate vesicle exchange. Past work has identified mechanisms that influence the formation of extracellular vesicles, including the production of small molecules that modulate membrane structure; however, whether these mechanisms also modulate vesicle uptake and have an overall impact on the rate of vesicle exchange is unknown. Here, we show that membrane-binding molecules produced by microbes influence both the formation and uptake of extracellular vesicles and have the overall impact of increasing the vesicle exchange rate within a bacterial coculture. In effect, production of compounds that increase vesicle exchange rates encourage gene exchange between neighboring cells. The ability of several membrane-binding compounds to increase vesicle exchange was demonstrated. Three of these compounds, nisin, colistin, and polymyxin B, are antimicrobial peptides added at sub-inhibitory concentrations. These results suggest that a potential function of exogenous compounds that bind to membranes may be the regulation of vesicle exchange between cells. IMPORTANCE The exchange of bacterial extracellular vesicles is one route of gene transfer between bacteria, although it was unclear if bacteria developed strategies to modulate the rate of gene transfer within vesicles. In eukaryotes, there are many examples of specialized molecules that have evolved to facilitate the production, loading, and uptake of vesicles. Recent work with bacteria has shown that some small molecules influence membrane curvature and induce vesicle formation. Here, we show that similar compounds facilitate vesicle uptake, thereby increasing the overall rate of vesicle exchange within bacterial populations. The addition of membrane-binding compounds, several of them antibiotics at subinhibitory concentrations, to a bacterial coculture increased the rate of horizontal gene transfer via vesicle exchange.
Collapse
|
27
|
Ekhlas D, Soro AB, Leonard FC, Manzanilla EG, Burgess CM. Examining the impact of zinc on horizontal gene transfer in Enterobacterales. Sci Rep 2022; 12:20503. [PMID: 36443412 PMCID: PMC9705563 DOI: 10.1038/s41598-022-23690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance is one of the main international health concerns for humans, animals, and the environment, and substantial efforts have focused on reducing its development and spread. While there is evidence for correlations between antimicrobial usage and antimicrobial resistance development, specific information on the effect of heavy metal/antimicrobial usage on bacterial conjugation is more limited. The aim of this study was to investigate the effects of zinc and antimicrobials in different concentrations on horizontal gene transfer of an ampicillin resistance gene, using a multi-drug resistant Escherichia coli donor strain and three different Salmonella enterica serovars as recipient strains. Differences in conjugation frequencies for the different Salmonella recipients were observed, independent of the presence of zinc or the antimicrobials. Selective pressure on the recipient strains, in the form of ampicillin, resulted in a decrease in conjugation frequencies, while, the presence of rifampicin resulted in increases. Zinc exposure affected conjugation frequencies of only one of the three recipient strains, thus the effect of zinc on conjugation frequencies seemed to be concentration and strain dependent. Furthermore, differences in growth rates due to plasmid carriage were observed for one of the Salmonella strains.
Collapse
Affiliation(s)
- Daniel Ekhlas
- grid.6435.40000 0001 1512 9569Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Arturo B. Soro
- grid.7886.10000 0001 0768 2743School of Veterinary Medicine, University College Dublin, Dublin, Ireland ,grid.6435.40000 0001 1512 9569Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Finola C. Leonard
- grid.7886.10000 0001 0768 2743School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Edgar G. Manzanilla
- grid.7886.10000 0001 0768 2743School of Veterinary Medicine, University College Dublin, Dublin, Ireland ,Pig Development Department, Teagasc Moorepark, Fermoy, Co. Cork Ireland
| | - Catherine M. Burgess
- grid.6435.40000 0001 1512 9569Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
28
|
Ding M, Ye Z, Liu L, Wang W, Chen Q, Zhang F, Wang Y, Sjöling Å, Martín-Rodríguez AJ, Hu R, Chen W, Zhou Y. Subinhibitory antibiotic concentrations promote the horizontal transfer of plasmid-borne resistance genes from Klebsiellae pneumoniae to Escherichia coli. Front Microbiol 2022; 13:1017092. [PMID: 36419429 PMCID: PMC9678054 DOI: 10.3389/fmicb.2022.1017092] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2023] Open
Abstract
Horizontal gene transfer plays an important role in the spread of antibiotic resistance, in which plasmid-mediated conjugation transfer is the most important mechanism. While sub-minimal inhibitory concentrations (sub-MIC) of antibiotics could promote conjugation frequency, the mechanism by which sub-MIC levels of antibiotics affect conjugation frequency is not clear. Here, we used Klebsiella pneumoniae SW1780 carrying the multi-drug resistance plasmid pSW1780-KPC as the donor strain, to investigate the effects of sub-MICs of meropenem (MEM), ciprofloxacin (CIP), cefotaxime (CTX), and amikacin (AK) on conjugational transfer of pSW1780-KPC from SW1780 to Escherichia coli J53. Our results showed that the transfer frequencies increased significantly by treating SW1780 strain with sub-MIC levels of MEM, CIP, CTX and AK. Transfer frequencies at sub-MIC conditions in a Galleria mellonella were significantly higher than in vitro. To investigate gene expression and metabolic effects, RT-qPCR and LC-MS-based metabolome sequencing were performed. Transcript levels of T4SS genes virB1, virB2, virB4, virB8, and conjugation-related genes traB, traK, traE, and traL were significantly upregulated by exposure to sub-MICs of MEM, CIP, CTX, and AK. Metabolome sequencing revealed nine differentially regulated metabolites. Our findings are an early warning for a wide assessment of the roles of sub-MIC levels of antibiotics in the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Manlin Ding
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zi Ye
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Lu Liu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Qiao Chen
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Feiyang Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Ying Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Renjing Hu
- Department of Laboratory Medicine, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenbi Chen
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
29
|
Effects of Nutrient Level and Growth Rate on the Conjugation Process That Transfers Mobile Antibiotic Resistance Genes in Continuous Cultures. Appl Environ Microbiol 2022; 88:e0112122. [PMID: 36094214 PMCID: PMC9552606 DOI: 10.1128/aem.01121-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria in the effluent of wastewater treatment plants (WWTPs) can transfer antibiotic resistance genes (ARGs) to the bacteria in receiving water through conjugation; however, there is a lack of quantitative assessment of this phenomenon in continuous cultures. Our objective was to determine the effects of background nutrient levels in river water column and growth rates of bacteria on the conjugation frequency of ARGs from effluent bacteria to river bacteria, as well as on the resulting resistance level (i.e., MICs) of the river bacteria. Chemostats were employed to simulate the discharge points of WWTPs into rivers, where effluent bacteria (donor cells) meet river bacteria (recipient cells). Both donor and recipient cells were Escherichia coli cells, and the donor cells were constructed by filter mating with bacteria in the effluent of a local WWTP. Results showed that higher bacterial growth rate (0.45 h-1 versus 0.15 h-1) led to higher conjugation frequencies (10-4 versus 10-6 transconjugant per recipient). The nutrient level also significantly affected the conjugation frequency, albeit to a lesser extent than the growth rate. The MIC against tetracycline increased from 2 mg/L in the recipient to 64 to 128 mg/L in transconjugants. In comparison, the MIC only increased to as high as 8 mg/L in mutants. Whole-genome sequencing showed that the tet-containing plasmid in both the donor and the transconjugant cells also occur in other fecal bacterial genera. The quantitative information obtained from this study can inform hazard identification related to the proliferation of wastewater-associated ARGs in surface water. IMPORTANCE WWTPs have been regarded as an important hot spot of ARGs. The discharge point of WWTP effluent, where ARGs may be horizontally transferred from bacteria of treated wastewater to bacteria of receiving water, is an important interface between the human-dominated ecosystem and the natural environment. The use of batch cultures in previous studies cannot adequately simulate the nutrient conditions and growth rates in receiving water. In this study, chemostats were employed to simulate the continuous growth of bacteria in receiving water. Furthermore, the experimental setup allowed for separate investigations on the effects of nutrient levels (i.e., simulating background nutrients in river water) and bacterial growth rates on conjugation frequencies and resulting resistance levels. The study generates statistically sound ecological data that can be used to estimate the risk of wastewater-originated ARGs as part of the One Health framework.
Collapse
|
30
|
Emergence and Transfer of Plasmid-Harbored rmtB in a Clinical Multidrug-Resistant Pseudomonas aeruginosa Strain. Microorganisms 2022; 10:microorganisms10091818. [PMID: 36144421 PMCID: PMC9500886 DOI: 10.3390/microorganisms10091818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa poses a great challenge to clinical treatment. In this study, we characterized a ST768 MDR P. aeruginosa strain, Pa150, that was isolated from a diabetic foot patient. The minimum inhibitory concentration (MIC) assay showed that Pa150 was resistant to almost all kinds of antibiotics, especially aminoglycosides. Whole genome sequencing revealed multiple antibiotic resistant genes on the chromosome and a 437-Kb plasmid (named pTJPa150) that harbors conjugation-related genes. A conjugation assay verified its self-transmissibility. On the pTJPa150 plasmid, we identified a 16S rRNA methylase gene, rmtB, that is flanked by mobile genetic elements (MGEs). The transfer of the pTJPa150 plasmid or the cloning of the rmtB gene into the reference strain, PAO1, significantly increased the bacterial resistance to aminoglycoside antibiotics. To the best of our knowledge, this is the first report of an rmtB-carrying conjugative plasmid isolated from P. aeruginosa, revealing a novel possible transmission mechanism of the rmtB gene.
Collapse
|
31
|
Wu RT, Chen JY, Liu S, Niu SH, Liao XD, Xing SC. Cyclic AMP and biofilms reveal the synergistic proliferation strategy of Pseudomonas aeruginosa and Escherichia coli under the costimulation of high concentrations of microplastics and enrofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156470. [PMID: 35660582 DOI: 10.1016/j.scitotenv.2022.156470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) provide attachment sites for biofilm formation of microorganisms, which can promote their resistance to environmental stress has been proved. However, the effect of MPs on synergy survival among microorganisms under antibiotic stress remains unclear. In the present study, the proliferation of Escherichia coli and Pseudomonas aeruginosa was assessed under enrofloxacin stress with the influence of MPs. Here, MPs reduced the growth speed of E. coli and enhanced that of P. aeruginosa, especially at 12 h, but the final value of OD600 and CFU of both bacteria not be influenced. E. coli was enrofloxacin sensitive (MIC = 0.25 μg/mL), and a high MP concentration in the presence of enrofloxacin notably enhanced the biofilm formation ability of P. aeruginosa, but proliferation decreased. In the coculture system, the proliferation of E. coli (increased 1.42-fold) and P. aeruginosa (increased 1.06-fold) both increased under enrofloxacin stress (0.25 μg/mL) with high-concentration MP addition. P. aeruginosa may provide the biofilm matrix for E. coli to resist the stress of enrofloxacin. The high concentration of cyclic AMP secreted by E. coli may slightly inhibited biofilm formation, leading to a decrease in the fitness cost of P. aeruginosa; thus, the proliferation of P. aeruginosa increased. The present study is the first to show that MP combined with antibiotics stimulates the metabolic cooperation of bacteria to promote proliferation.
Collapse
Affiliation(s)
- Rui-Ting Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
32
|
The Effect of Heavy Metals on Conjugation Efficiency of an F-Plasmid in Escherichia coli. Antibiotics (Basel) 2022; 11:antibiotics11081123. [PMID: 36009992 PMCID: PMC9404890 DOI: 10.3390/antibiotics11081123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Conjugation, the process by which conjugative plasmids are transferred between bacteria, is regarded as a major contributor to the spread of antibiotic resistance, in both environmental and clinical settings. Heavy metals are known to co-select for antibiotic resistance, but the impact of the presence of these metals on conjugation itself is not clear. Here, we systematically investigate the impact that five heavy metals (arsenic, cadmium, copper, manganese, and zinc) have on the transfer of an IncF conjugative plasmid in Escherichia coli. Our results show that two of the metals, cadmium and manganese, have no significant impact, while arsenic and zinc both reduce conjugation efficiency by approximately 2-fold. Copper showed the largest impact, with an almost 100-fold decrease in conjugation efficiency. This was not mediated by any change in transcription from the major Py promoter responsible for transcription of the conjugation machinery genes. Further, we show that in order to have this severe impact on the transfer of the plasmid, copper sulfate needs to be present during the mating process, and we suggest explanations for this.
Collapse
|
33
|
Nohejl T, Valcek A, Papousek I, Palkovicova J, Wailan AM, Pratova H, Minoia M, Dolejska M. Genomic analysis of qnr-harbouring IncX plasmids and their transferability within different hosts under induced stress. BMC Microbiol 2022; 22:136. [PMID: 35590235 PMCID: PMC9118779 DOI: 10.1186/s12866-022-02546-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Background Conjugative plasmids play a major role in the dissemination of antibiotic resistance genes. Knowledge of the plasmid characteristics and behaviour can allow development of control strategies. Here we focus on the IncX group of plasmids carrying genes conferring quinolone resistance (PMQR), reporting their transfer and persistence within host bacteria of various genotypes under distinct conditions and levels of induced stress in form of temperature change and various concentrations of ciprofloxacin supplementation. Methods Complete nucleotide sequences were determined for eight qnr-carrying IncX-type plasmids, of IncX1 (3), IncX2 (3) and a hybrid IncX1-2 (2) types, recovered from Escherichia coli of various origins. This data was compared with further complete sequences of IncX1 and IncX2 plasmids carrying qnr genes (n = 41) retrieved from GenBank and phylogenetic tree was constructed. Representatives of IncX1 (pHP2) and IncX2 (p194) and their qnrS knockout mutants, were studied for influence of induced stress and genetic background on conjugative transfer and maintenance. Results A high level of IncX core-genome similarity was found in plasmids of animal, environmental and clinical origin. Significant differences were found between the individual IncX plasmids, with IncX1 subgroup plasmids showing higher conjugative transfer rates than IncX2 plasmids. Knockout of qnr modified transfer frequency of both plasmids. Two stresses applied simultaneously were needed to affect transfer rate of wildtype plasmids, whereas a single stress was sufficient to affect the IncX ΔqnrS plasmids. The conjugative transfer was shown to be biased towards the host phylogenetic proximity. A long-term cultivation experiment pointed out the persistence of IncX plasmids in the antibiotic-free environment. Conclusions The study indicated the stimulating effect of ciprofloxacin supplementation on the plasmid transfer that can be nullified by the carriage of a single PMQR gene. The findings present the significant properties and behaviour of IncX plasmids carrying antibiotic resistance genes that are likely to play a role in their dissemination and stability in bacterial populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02546-6.
Collapse
Affiliation(s)
- Tomas Nohejl
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Adam Valcek
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic.,Faculty of Medicine, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Ivo Papousek
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jana Palkovicova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Alexander M Wailan
- Parasites and Microbes, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Hana Pratova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Marco Minoia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic. .,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic. .,Faculty of Medicine, Biomedical Center, Charles University, Pilsen, Czech Republic. .,Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
34
|
Algarni S, Ricke SC, Foley SL, Han J. The Dynamics of the Antimicrobial Resistance Mobilome of Salmonella enterica and Related Enteric Bacteria. Front Microbiol 2022; 13:859854. [PMID: 35432284 PMCID: PMC9008345 DOI: 10.3389/fmicb.2022.859854] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
The foodborne pathogen Salmonella enterica is considered a global public health risk. Salmonella enterica isolates can develop resistance to several antimicrobial drugs due to the rapid spread of antimicrobial resistance (AMR) genes, thus increasing the impact on hospitalization and treatment costs, as well as the healthcare system. Mobile genetic elements (MGEs) play key roles in the dissemination of AMR genes in S. enterica isolates. Multiple phenotypic and molecular techniques have been utilized to better understand the biology and epidemiology of plasmids including DNA sequence analyses, whole genome sequencing (WGS), incompatibility typing, and conjugation studies of plasmids from S. enterica and related species. Focusing on the dynamics of AMR genes is critical for identification and verification of emerging multidrug resistance. The aim of this review is to highlight the updated knowledge of AMR genes in the mobilome of Salmonella and related enteric bacteria. The mobilome is a term defined as all MGEs, including plasmids, transposons, insertion sequences (ISs), gene cassettes, integrons, and resistance islands, that contribute to the potential spread of genes in an organism, including S. enterica isolates and related species, which are the focus of this review.
Collapse
Affiliation(s)
- Suad Algarni
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Steven L. Foley
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, United States
| | - Jing Han
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- *Correspondence: Jing Han,
| |
Collapse
|
35
|
Sanchez-Cid C, Guironnet A, Keuschnig C, Wiest L, Vulliet E, Vogel TM. Gentamicin at sub-inhibitory concentrations selects for antibiotic resistance in the environment. ISME COMMUNICATIONS 2022; 2:29. [PMID: 37938295 PMCID: PMC9723587 DOI: 10.1038/s43705-022-00101-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 06/01/2023]
Abstract
Antibiotics released into the environment at low (sub-inhibitory) concentrations could select for antibiotic resistance that might disseminate to the human microbiome. In this case, low-level anthropogenic sources of antibiotics would have a significant impact on human health risk. In order to provide data necessary for the evaluation of this risk, we implemented river water microcosms at both sub-inhibitory and inhibitory concentrations of gentamicin as determined previously based on bacterial growth in enriched media. Using metagenomic sequencing and qPCR/RT-qPCR, we assessed the effects of gentamicin on water bacterial communities and their resistome. A change in the composition of total and active communities, as well as a gentamicin resistance gene selection identified via mobile genetic elements, was observed during a two-day exposure. We demonstrated the effects of sub-inhibitory concentrations of gentamicin on bacterial communities and their associated resistome in microcosms (simulating in situ conditions). In addition, we established relationships between antibiotic dose and the magnitude of the community response in the environment. The scope of resistance selection under sub-inhibitory concentrations of antibiotics and the mechanisms underlying this process might provide the basis for understanding resistance dispersion and associated risks in relatively low impacted ecosystems.
Collapse
Affiliation(s)
- Concepcion Sanchez-Cid
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, Ecully, France.
- Promega France, 69100, Charbonnières-les-Bains, France.
| | - Alexandre Guironnet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Christoph Keuschnig
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, Ecully, France
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, Ecully, France
| |
Collapse
|
36
|
Zhao Y, Cao Z, Cui L, Hu T, Guo K, Zhang F, Wang X, Peng Z, Liu Q, Dai M. Enrofloxacin Promotes Plasmid-Mediated Conjugation Transfer of Fluoroquinolone-Resistance Gene qnrS. Front Microbiol 2022; 12:773664. [PMID: 35250901 PMCID: PMC8889117 DOI: 10.3389/fmicb.2021.773664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to determine the effect of enrofloxacin (ENR) on the transfer of the plasmid-mediated quinolone resistance (PMQR) gene qnrS from opportunistic pathogen Escherichia coli (E2) to Salmonella Enteritidis (SE211) and to analyze the resistance characteristics of SE211-qnrS isolates. The plasmid carrying qnrS gene of E2 was sequenced by Oxford Nanopore technology. The plasmid carrying qnrS gene belonged to incompatibility group IncY. In vitro, the transfer experiment of IncY plasmid was performed by the liquid medium conjugation method. The conjugation transfer frequency of the IncY plasmid was 0.008 ± 0.0006 in the absence of ENR, 0.012 ± 0.003 in 1/32 MICENR, 0.01 ± 0.008 in 1/8 MICENR, and 0.03 ± 0.015 (Mean±SD) in 1/2 MICENR, respectively. After inoculation of E. coli E2 and SE211, chickens were treated with different doses of ENR (3.03, 10, and 50 mg/kg b.w.) for 7 days consecutively. To screen the SE211-qnrS strains from intestinal tract of chickens, the resistance genes and susceptibility of isolates were identified. The amount of E. coli E2 and the copy number of qnrS gene in the chicken intestinal tract were determined by colony counting and qPCR, respectively. In vivo, more SE211-qnrS strains were isolated from the treated group compared with the untreated group. SE211-qnrS strains not only obtained IncY plasmid, but also showed similar resistance phenotype as E2. In conclusion, ENR treatment can promote the spread of a IncY-resistance plasmid carrying the qnrS fluoroquinolone-resistance gene in Escherichia coli and the development of drug-resistant bacteria.
Collapse
Affiliation(s)
- Yue Zhao
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Zhengzheng Cao
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Luqing Cui
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Tianyu Hu
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Kaixuan Guo
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Fan Zhang
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Xiangru Wang
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Zhong Peng
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Quan Liu
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Menghong Dai
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
37
|
Subinhibitory Concentration of Colistin Promotes the Conjugation Frequencies of Mcr-1- and blaNDM-5-Positive Plasmids. Microbiol Spectr 2022; 10:e0216021. [PMID: 35230128 PMCID: PMC9045390 DOI: 10.1128/spectrum.02160-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Horizontal gene transfer (HGT) plays a significant role in the spread of antibiotic resistance genes (ARGs). Most reported compounds promote HGT by increasing the cell membrane permeability. Colistin has been reported to increase the cell membrane permeability when exhibiting its antibacterial effect. Therefore, this study aimed to investigate the potential role of colistin in facilitating the dissemination of ARGs via plasmid conjugation by establishing an in vitro mating model. Three strains Escherichia coli (E. coli) DH5α, E. coli L65, and E. coli LD67-1 carrying plasmid RP4-7, blaNDM-5 positive IncX3 plasmid, and mcr-1 positive IncI2 plasmid, respectively, were regarded as the donor strains and E. coli J53 as the recipient strain. Exposure to subinhibitory concentrations of colistin (1/4, 1/8, 1/16 MIC) significantly stimulated the conjugation frequency of RP-4 plasmid, wide-type IncI2 and IncX3 plasmid. Scanning electron microscopy revealed the shrunken cell membrane after colistin treatment, whereas propidium iodide dye and 1-N-Phenylnaphthylamine fluorescent probe showed the increased cell membrane permeability. Additionally, the expression level of the outer membrane proteins (ompF and ompC) was increased. These results indicate a break in the membrane barrier. The expression of the mating pair formation gene (trbBp) was promoted and the expression of the global regulatory genes (korA, trbA), which downregulates trbBp expression, was inhibited. Thus, the production of the mating pairing machine could be elevated after colistin exposure. These findings aid in understanding the hidden risks of colistin on the spread of antimicrobial resistance. IMPORTANCE Antimicrobial resistance (AMR) dissemination is a growing global threat. As a last-resort treatment against multidrug-resistant and extensively drug-resistant Gram-negative bacteria, colistin has been used for prophylactic and therapeutic purposes in veterinary medicine. Previous studies have reported the presence of colistin residues in the intestinal tract and feces. The role of colistin in facilitating the conjugation frequency of mcr-1- and blaNDM-5-positive plasmids was confirmed in this study along with elucidating its potential mechanisms. This study raises awareness of the potential AMR dissemination roles induced by colistin in environmental settings.
Collapse
|
38
|
Pan X, Zhao X, Song Y, Ren H, Tian Z, Liang Q, Jin Y, Bai F, Cheng Z, Feng J, Wu W. Molecular Characterization of WCK 5222 (Cefepime/Zidebactam)-Resistant Mutants Developed from a Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolate. Microbiol Spectr 2022; 10:e0267821. [PMID: 35196805 PMCID: PMC8865557 DOI: 10.1128/spectrum.02678-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
WCK 5222 (cefepime/zidebactam) is a β-lactam/β-lactamase inhibitor combination that is effective against a broad range of highly drug-resistant bacterial pathogens, including those producing metallo-β-lactamase. In this study, we isolated a multidrug-resistant Pseudomonas aeruginosa clinical strain that is resistant to a variety of β-lactam antibiotics and the ceftazidime-avibactam combination. A metallo-β-lactamase gene blaDIM-2 was identified on a self-transmissible megaplasmid in the strain, which confers the resistance to β-lactam antibiotics, leaving WCK 5222 potentially one of the last treatment resorts. In vitro passaging assay combined with whole-genome sequencing revealed mutations in the pbpA gene (encoding the zidebactam target protein PBP2) in the evolved resistant mutants. Among the mutations, a V516M mutation increased the bacterial virulence in a murine acute pneumonia model. Reconstitution of the mutations in the reference strain PAO1 verified their roles in the resistance to zidebactam and revealed their influences on cell morphology in the absence and presence of zidebactam. Microscale thermophoresis (MST) assays demonstrated that the mutations reduced the affinity between PBP2 and zidebactam to various extents. Overall, our results revealed that mutations in the pbpA gene might be a major cause of evolved resistance to WCK 5222 in clinical settings. IMPORTANCE Antibiotic resistance imposes a severe threat on human health. WCK 5222 is a β-lactam/β-lactamase inhibitor combination that is composed of cefepime and zidebactam. It is one of the few antibiotics in clinical trials that are effective against multidrug-resistant Pseudomonas aeruginosa, including those producing metallo-β-lactamases. Understanding the mechanisms and development of bacterial resistance to WCK 5222 may provide clues for the development of strategies to suppress resistant evolvement. In this study, we performed an in vitro passaging assay by using a multidrug-resistant P. aeruginosa clinical isolate. Our results revealed that mutations in the zidebactam target protein PBP2 play a major role in the bacterial resistance to WCK 5222. We further demonstrated that the mutations reduced the affinities between PBP2 and zidebactam and resulted in functional resistance of PBP2 to zidebactam.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinrui Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huan Ren
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenyang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qi’an Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
39
|
Jadeja NB, Worrich A. From gut to mud: dissemination of antimicrobial resistance between animal and agricultural niches. Environ Microbiol 2022; 24:3290-3306. [PMID: 35172395 DOI: 10.1111/1462-2920.15927] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
With increasing reports on antimicrobial resistance (AMR) in humans, animals and the environment, we are at risk of returning to a pre-antibiotic era. Therefore, AMR is recognized as one of the major global health threats of this century. Antibiotics are used extensively in farming systems to treat and prevent infections in food animals or to increase their growth. Besides the risk of a transfer of AMR between the human and the animal sector, there is another yet largely overlooked sector in the One Health triad. Human-dominated ecosystems such as agricultural soils are a major sink for antibiotics and AMR originating from livestock farming. This review summarizes current knowledge on the prevalence of AMR at the interface of animal and agricultural production and discusses the potential implications for human health. Soil resistomes are augmented by the application of manure from treated livestock. Subsequent transfer of AMR into plant microbiomes may likely play a critical role in human exposure to antibiotic resistance in the environment. Based on the knowledge that is currently available we advocate that more attention should be paid to the role of environmental resistomes in the AMR crisis.
Collapse
Affiliation(s)
- Niti B Jadeja
- Ashoka Trust for Research in Ecology and the Environment, PO, Royal Enclave, Srirampura, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Anja Worrich
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, 04318, Germany
| |
Collapse
|
40
|
Liu G, Thomsen LE, Olsen JE. Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: a mini-review. J Antimicrob Chemother 2021; 77:556-567. [PMID: 34894259 DOI: 10.1093/jac/dkab450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of antimicrobial resistance (AMR) among pathogenic bacteria constitute an accelerating crisis for public health. The selective pressures caused by increased use and misuse of antimicrobials in medicine and livestock production have accelerated the overall selection of resistant bacteria. In addition, horizontal gene transfer (HGT) plays an important role in the spread of resistance genes, for example mobilizing reservoirs of AMR from commensal bacteria into pathogenic ones. Antimicrobials, besides antibacterial function, also result in undesirable effects in the microbial populations, including the stimulation of HGT. The main aim of this narrative review was to present an overview of the current knowledge of the impact of antimicrobials on HGT in bacteria, including the effects of transformation, transduction and conjugation, as well as other less well-studied mechanisms of HGT. It is widely accepted that conjugation plays a major role in the spread of AMR in bacteria, and the focus of this review is therefore mainly on the evidence provided that antimicrobial treatment affects this process. Other mechanisms of HGT have so far been deemed less important in this respect; however, recent discoveries suggest their role may be larger than previously thought, and the review provides an update on the rather limited knowledge currently available regarding the impact of antimicrobial treatment on these processes as well. A conclusion from the review is that there is an urgent need to investigate the mechanisms of antimicrobial-induced HGT, since this will be critical for developing new strategies to combat the spread of AMR.
Collapse
Affiliation(s)
- Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Line Elnif Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| |
Collapse
|
41
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed.
Part 10: Quinolones: flumequine and oxolinic acid. EFSA J 2021; 19:e06862. [PMID: 34729090 PMCID: PMC8546796 DOI: 10.2903/j.efsa.2021.6862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The specific concentrations of flumequine and oxolinic acid in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data are available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. No suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials.
Collapse
|
42
|
Guo K, Zhao Y, Cui L, Cao Z, Zhang F, Wang X, Feng J, Dai M. The Influencing Factors of Bacterial Resistance Related to Livestock Farm: Sources and Mechanisms. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.650347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacterial resistance is a complex scientific issue. To manage this issue, we need to deeply understand the influencing factors and mechanisms. Based on the background of livestock husbandry, this paper reviews the factors that affect the acquisition of bacterial resistance. Meanwhile, the resistance mechanism is also discussed. “Survival of the fittest” is the result of genetic plasticity of bacterial pathogens, which brings about specific response, such as producing adaptive mutation, gaining genetic material or changing gene expression. To a large extent, bacterial populations acquire resistance genes directly caused by the selective pressure of antibiotics. However, mobile resistance genes may be co-selected by other existing substances (such as heavy metals and biocides) without direct selection pressure from antibiotics. This is because the same mobile genetic elements as antibiotic resistance genes can be co-located by the resistance determinants of some of these compounds. Furthermore, environmental factors are a source of resistance gene acquisition. Here, we describe some of the key measures that should be taken to mitigate the risk of antibiotic resistance. We call on the relevant governments or organizations around the world to formulate and improve the monitoring policies of antibiotic resistance, strengthen the supervision, strengthen the international cooperation and exchange, and curb the emergence and spread of drug-resistant strains.
Collapse
|
43
|
Bier E, Nizet V. Driving to Safety: CRISPR-Based Genetic Approaches to Reducing Antibiotic Resistance. Trends Genet 2021; 37:745-757. [PMID: 33745750 DOI: 10.1016/j.tig.2021.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Bacterial resistance to antibiotics has reached critical levels, skyrocketing in hospitals and the environment and posing a major threat to global public health. The complex and challenging problem of reducing antibiotic resistance (AR) requires a network of both societal and science-based solutions to preserve the most lifesaving pharmaceutical intervention known to medicine. In addition to developing new classes of antibiotics, it is essential to safeguard the clinical efficacy of existing drugs. In this review, we examine the potential application of novel CRISPR-based genetic approaches to reducing AR in both environmental and clinical settings and prolonging the utility of vital antibiotics.
Collapse
Affiliation(s)
- Ethan Bier
- Tata Institute for Genetics and Society, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA; Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA.
| | - Victor Nizet
- Tata Institute for Genetics and Society, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA; Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0687, USA; Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0687, USA
| |
Collapse
|
44
|
Zoolkefli FIRM, Moriguchi K, Cho Y, Kiyokawa K, Yamamoto S, Suzuki K. Isolation and Analysis of Donor Chromosomal Genes Whose Deficiency Is Responsible for Accelerating Bacterial and Trans-Kingdom Conjugations by IncP1 T4SS Machinery. Front Microbiol 2021; 12:620535. [PMID: 34093458 PMCID: PMC8174662 DOI: 10.3389/fmicb.2021.620535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Conjugal transfer is a major driving force of genetic exchange in eubacteria, and the system in IncP1-type broad-host-range plasmids transfers DNA even to eukaryotes and archaea in a process known as trans-kingdom conjugation (TKC). Although conjugation factors encoded on plasmids have been extensively analyzed, those on the donor chromosome have not. To identify the potential conjugation factor(s), a genome-wide survey on a comprehensive collection of Escherichia coli gene knockout mutants (Keio collection) as donors to Saccharomyces cerevisiae recipients was performed using a conjugal transfer system mediated by the type IV secretion system (T4SS) of the IncP1α plasmid. Out of 3,884 mutants, three mutants (ΔfrmR, ΔsufA, and ΔiscA) were isolated, which showed an increase by one order of magnitude in both E. coli-E. coli and E. coli-yeast conjugations without an increase in the mRNA accumulation level for the conjugation related genes examined. The double-knockout mutants for these genes (ΔfrmRΔsufA and ΔiscAΔfrmR) did not show synergistic effects on the conjugation efficiency, suggesting that these factors affect a common step in the conjugation machinery. The three mutants demonstrated increased conjugation efficiency in IncP1β-type but not in IncN- and IncW-type broad-host-range plasmid transfers, and the homologous gene knockout mutants against the three genes in Agrobacterium tumefaciens also showed increased TKC efficiency. These results suggest the existence of a specific regulatory system in IncP1 plasmids that enables the control of conjugation efficiency in different hosts, which could be utilized for the development of donor strains as gene introduction tools into bacteria, eukaryotes, and archaea.
Collapse
Affiliation(s)
| | - Kazuki Moriguchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yunjae Cho
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashihiroshima, Japan
| | - Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Katsunori Suzuki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
45
|
Antioxidant Molecules as a Source of Mitigation of Antibiotic Resistance Gene Dissemination. Antimicrob Agents Chemother 2021; 65:AAC.02658-20. [PMID: 33753335 DOI: 10.1128/aac.02658-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is the most commonly identified human pathogen and a prominent microorganism of the gut microbiota. Acquired resistance to antibiotics in this species is driven mainly by horizontal gene transfer and plasmid acquisition. Currently, the main concern is the acquisition of extended-spectrum β-lactamases of the CTX-M type in E. coli, a worldwide-observed phenomenon. Plasmids encoding CTX-M enzymes have different scaffolds and conjugate at different frequencies. Here, we show that the conjugation rates of several plasmid types encoding broad-spectrum β-lactamases are increased when the E. coli donor strain is exposed to subinhibitory concentrations of diverse orally given antibiotics, including fluoroquinolones, such as ciprofloxacin and levofloxacin, but also trimethoprim and nitrofurantoin. This study provides insights into underlying mechanisms leading to increased plasmid conjugation frequency in relation to DNA synthesis inhibitor-type antibiotics, involving reactive oxygen species (ROS) production and probably increased expression of genes involved in the SOS response. Furthermore, we show that some antioxidant molecules currently approved for unrelated clinical uses, such as edaravone, p-coumaric acid, and N-acetylcysteine, may antagonize the ability of antibiotics to increase plasmid conjugation rates. These results suggest that several antioxidative molecules might be used in combination with these "inducer" antibiotics to mitigate the unwanted increased resistance plasmid dissemination.
Collapse
|
46
|
Xiong R, Liu Y, Pu J, Liu J, Zheng D, Zeng J, Chen C, Lu Y, Huang B. Indole Inhibits IncP-1 Conjugation System Mainly Through Promoting korA and korB Expression. Front Microbiol 2021; 12:628133. [PMID: 33815310 PMCID: PMC8017341 DOI: 10.3389/fmicb.2021.628133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/12/2021] [Indexed: 11/26/2022] Open
Abstract
Indole works as an interspecies signal molecule to regulate multiple physiological activities, like antibiotic resistance, acid resistance, and virulence. However, the effect of indole on conjugation is unknown. Here, with Escherichia coli SM10λπ as a donor strain that carries a chromosomally integrated conjugative RP4 plasmid, we explored the effect of indole on conjugation of a mobilizable pUCP24T plasmid imparting gentamycin resistance. The results showed that exogenous indole treatment inhibited conjugative transfer of pUCP24T from SM10λπ to recipient strains, Pseudomonas aeruginosa PAO1 and E. coli EC600. Furthermore, raising endogenous indole production through overexpression of TnaA, a tryptophanase, in SM10λπ significantly inhibited both SM10λπ-PAO1 and SM10λπ-EC600 conjugation, whereas deficiency of tnaA reversed the phenotype. Subsequent mechanistic studies revealed that exogenous indole significantly inhibited the expression of mating pair formation gene (trbB) and the DNA transfer and replication gene (trfA), mainly due to the promotion of regulatory genes (korA and korB), and the result was confirmed in tnaA knockout and overexpression strains. Additionally, we found that both extracellular indole production and tnaA expression of SM10λπ were downregulated by ciprofloxacin (CIP). Intriguingly, one-eighth minimum inhibitory concentration of CIP treatment clearly facilitated both SM10λπ-PAO1 and SM10λπ-EC600 conjugation, and indole inhibited CIP-induced conjugation frequency. These data suggest that indole may play a negative role in the process of CIP-induced conjugation. This is the first study to reveal the biological function of indole-inhibiting conjugation and its role in CIP-induced conjugation, which may be developed into a new way of controlling the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuyang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieying Pu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jianping Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Dexiang Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yang Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Bin Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
47
|
In Vitro Assessment of Antimicrobial Resistance Dissemination Dynamics during Multidrug-Resistant-Bacterium Invasion Events by Using a Continuous-Culture Device. Appl Environ Microbiol 2021; 87:AEM.02659-20. [PMID: 33361364 DOI: 10.1128/aem.02659-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial-resistant pathogens display significant public health threats by causing difficulties in clinical treatment of bacterial infection. Antimicrobial resistance (AMR) is transmissible between bacteria, significantly increasing the appearance of antimicrobial-resistant pathogens and aggravating the AMR problem. In this work, the dissemination dynamics of AMR from invading multidrug-resistant (MDR) Escherichia coli to a community of pathogenic Salmonella enterica was investigated using a continuous-culture device, and the behaviors of dissemination dynamics under different levels of antibiotic stress were investigated. Three MDR E. coli invasion events were analyzed in this work: MDR E. coli-S. enterica cocolonization, MDR E. coli invasion after antibiotic treatment of S. enterica, and MDR E. coli invasion before antibiotic treatment of S. enterica It was found that both horizontal gene transfer (HGT) and vertical gene transfer (VGT) play significant roles in AMR dissemination, although different processes contribute differently under different circumstances, that environmental levels of antibiotics promote AMR dissemination by enhancing HGT rather than leading to selective advantage for resistant bacteria, and that early invasion of MDR E. coli completely and quickly sabotages the effectiveness of antibiotic treatment. These findings contribute to understanding the drivers of AMR dissemination under different antibiotic stresses, the detrimental impact of environmental tetracycline contamination, and the danger of nosocomial presence and dissemination of MDR nonpathogens.IMPORTANCE Antimicrobial resistance poses a grave threat to public health and reduces the effectiveness of antimicrobial drugs in treating bacterial infections. Antimicrobial resistance is transmissible, either by horizontal gene transfer between bacteria or by vertical gene transfer following inheritance of genetic traits. The dissemination dynamics and behaviors of this threat, however, have not been rigorously investigated. In this work, with a continuous-culture device, we studied antimicrobial resistance dissemination processes by simulating antimicrobial-resistant Escherichia coli invasion to a pathogenic Salmonella enterica community. Using this novel tool, we provide evidence on the drivers of antimicrobial resistance dissemination, on the detrimental impact of environmental antibiotic contamination, and on the danger of antimicrobial resistance in hospitals, even if what harbors the antimicrobial resistance is not a pathogen. This work furthers our understanding of antimicrobial resistance and its dissemination between bacteria and of antibiotic therapy, our most powerful tool against bacterial infection.
Collapse
|
48
|
Song Z, Zuo L, Li C, Tian Y, Wang H. Copper Ions Facilitate the Conjugative Transfer of SXT/R391 Integrative and Conjugative Element Across Bacterial Genera. Front Microbiol 2021; 11:616792. [PMID: 33603719 PMCID: PMC7884315 DOI: 10.3389/fmicb.2020.616792] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Copper can persist stably in the environment for prolonged periods. Except for inducing antibiotic resistance in bacteria, copper ions (Cu2+) can facilitate the horizontal transfer of plasmid DNA. However, whether and how Cu2+ can accelerate the conjugative transfer of SXT/R391 integrative and conjugative element (ICE) is still largely unknown. In this study, Proteus mirabilis ChSC1905, harboring an SXT/R391 ICE that carried 21 antibiotic resistance genes (ARGs), was used as a donor, and Escherichia coli EC600 was used as a recipient. Cu2+, at subinhibitory and environmentally relevant concentrations (1–10 μmol/L), significantly accelerated the conjugative transfer of SXT/R391 ICE across bacterial genera (from P. mirabilis to E. coli) (p < 0.05). The combined analyses of phenotypic tests and genome-wide sequencing indicated that reactive oxygen species (ROS) production and cell membrane permeability were critical in the enhanced conjugative transfer of SXT/R391 ICE. Furthermore, the expression of genes related to cell adhesion and ATP synthesis was also significantly upregulated on exposure to Cu2+ at a concentration of 5 μmol/L. This study clarified the potential mechanisms of Cu2+ to promote the conjugative transfer of SXT/R391 ICE, revealing the potential risk imposed by Cu2+ on the horizontal transfer of SXT/R391 ICE-mediated ARGs.
Collapse
Affiliation(s)
- Zhou Song
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Zuo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiming Tian
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Zarei-Baygi A, Smith AL. Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies. BIORESOURCE TECHNOLOGY 2021; 319:124181. [PMID: 33254446 DOI: 10.1016/j.biortech.2020.124181] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance genes (ARGs) are present as both intracellular and extracellular fractions of DNA in the environment. Due to the poor yield of extracellular DNA in conventional extraction methods, previous studies have mainly focused on intracellular ARGs (iARGs). In this review, we evaluate the prevalence/persistence and horizontal transfer of iARGs and extracellular ARGs (eARGs) in different environments, and then explore advanced mitigation strategies in wastewater treatment plants (WWTPs) for preventing the spread of antibiotic resistance in the environment. Although iARGs are the main fraction of ARGs in nutrient-rich environments, eARGs are predominant in receiving aquatic environments. In such environments, natural transformation of eARGs occurs with a comparable frequency to conjugation of iARGs. Further, eARGs can be adsorbed by soil and sediments particles, protected from DNase degradation, and consequently persist longer than iARGs. Collectively, these characteristics emphasize the crucial role of eARGs in the spread of antibiotic resistance in the environment. Fate of iARGs and eARGs through advanced treatment technologies (disinfection and membrane filtration) indicates that different mitigation strategies may be required for each ARG fraction to be significantly removed. Finally, comprehensive risk assessment is needed to evaluate/compare the effect of iARGs versus eARGs in the environment.
Collapse
Affiliation(s)
- Ali Zarei-Baygi
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, United States
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, United States.
| |
Collapse
|
50
|
Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes (Basel) 2020; 11:genes11111239. [PMID: 33105635 PMCID: PMC7690428 DOI: 10.3390/genes11111239] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.
Collapse
|