1
|
Nutaratat P, Werapan B, Phosrithong N, Trakulnaleamsai C, Rungrod A, Utamatho M, Soonsanga S, Promdonkoy B, Malairuang K, Prathumpai W. Vegetative insecticidal protein (Vip3A) production by Bacillus thuringiensis Bt294 and its efficacy against Lepidopteran pests ( Spodoptera exigua). BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 40:e00812. [PMID: 37736117 PMCID: PMC10509655 DOI: 10.1016/j.btre.2023.e00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
A vegetative insecticidal protein, Vip3A, is highly active against lepidopteran pests, which are the most important pests in most tropical countries. An important aspect of the successful commercial production of this bacterial insecticide is the development of bacterial culture media that maximize the titres of this protein and cost reduction. This study aimed to investigate and optimize Vip3A production by Bacillus thuringiensis Bt294 using statistical methods and 3-step sequential approaches. The experimental design showed that the production of Vip3A was maximized to 300 mg/L when the bacterium was cultivated in medium composed of 5.05 g/L glycerol, 49.17 g/L soytone, 30.05 g/L casein hydrolysate, 1.99 g/L CaCl2.2H2O, 7.5 mg/L CuSO4, 15 mg/L MnSO4.H2O, 9.4 g/L K2HPO4, 2.2 g/L KH2PO4, 0.2 g/L MgSO4.7H2O, 5 g/L yeast extract, 2.5 mg/L NiCl2.6H2O and 3 mL/L vitamin solution. B. thuringiensis Bt294 Vip3A toxin was highly toxic to Spodoptera exigua with LC50 values of 187.1 ng/cm2 at 7 days. This result demonstrated that a high titre of Vip3A produced by B. thuringiensis Bt294 will be useful as a biological control agent. This optimization will allow production to be scaled up for commercial production in the future.
Collapse
Affiliation(s)
- Pumin Nutaratat
- Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Borworn Werapan
- Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Netnapa Phosrithong
- Forest entomology and Microbiology Research Group, Forest and Plant Conservation Research Office, Department of National Parks, Wildlife and Plant Conservation, 61 Phahonyothin Rd, Chatuchak, Bangkok, 10900, Thailand
| | - Chutchanun Trakulnaleamsai
- Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Amporn Rungrod
- Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Mongkon Utamatho
- Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sumarin Soonsanga
- Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Boonhiang Promdonkoy
- Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Kwanruthai Malairuang
- Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wai Prathumpai
- Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
2
|
Li X, Wang Y, Crabbe MJC, Wang L, Ma W, Ren Z. Genetically modified metallothionein/cellulose composite material as an efficient and environmentally friendly biosorbent for Cd 2+ removal. Int J Biol Macromol 2022; 218:543-555. [PMID: 35902013 DOI: 10.1016/j.ijbiomac.2022.07.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Metallothioneins (MTs) are a class of cysteine-rich metal-binding proteins. Cadmium (Cd) is one of the toxic heavy metal pollutants. In our previous research, the full-length cDNA of MT (Cd specificity) from freshwater crab (Sinopotamon henanense) (ShMT) was cloned and genetically modified to ShMT3 by site-directed mutagenesis to enhance the tolerance for Cd2+, however, it was limited in actual Cd2+ adsorption due to instability. Here, ShMT3-CBM, a novel recombinant fusion protein, was prepared. CBM is a carbohydrate binding module that can specifically bind cellulose while ShMT3 can effectively chelate Cd2+. The biosorbent Cellulose1-ShMT3-CBM was obtained by screening suitable cellulose materials. The selective adsorption experiments showed that Cellulose1-ShMT3-CBM had a preference for Cd2+. In low-concentration Cd2+ solutions, the removal efficiency was >99 %, and the adsorption equilibrium was reached within 15 min. The saturated adsorption capacity of Cellulose1-ShMT3-CBM for Cd2+ is 180.35 ± 4.67 mg/g (Dry Weight). Regeneration experiments showed that adsorption efficiency was maintained after six cycles. The MTT experiment showed that Cellulose1-ShMT3-CBM had low cytotoxicity. Meanwhile, Cellulose1-ShMT3-CBM can preferentially remove Cd2+ in actual water samples and boiler sewage. In this study, an environmentally friendly biosorbent which can adsorb Cd2+ efficiently and quickly was prepared for actual water treatment.
Collapse
Affiliation(s)
- Xuefen Li
- School of Life Science, Shanxi University, Taiyuan 030006, PR China
| | - Yuxia Wang
- School of Life Science, Shanxi University, Taiyuan 030006, PR China
| | - M James C Crabbe
- School of Life Science, Shanxi University, Taiyuan 030006, PR China; Wolfson College, University of Oxford, Oxford OX2 6UD, UK; Institute of Biomedical and Environmental Science & Technology, School of Life Sciences, Faculty of Creative Arts, Technologies and Science, University of Bedfordshire, University Square, Luton LU1 3JU, UK
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, PR China
| | - Wenli Ma
- School of Life Science, Shanxi University, Taiyuan 030006, PR China.
| | - Zhumei Ren
- School of Life Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
3
|
Yu Z, Fu Y, Zhang W, Zhu L, Yin W, Chou SH, He J. The RNA Chaperone Protein Hfq Regulates the Characteristic Sporulation and Insecticidal Activity of Bacillus thuringiensis. Front Microbiol 2022; 13:884528. [PMID: 35479624 PMCID: PMC9037596 DOI: 10.3389/fmicb.2022.884528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus thuringiensis (Bt) is one of the most widely used bio-insecticides at present. It can produce many virulence factors and insecticidal crystal proteins during growth and sporulation. Hfq, on the other hand, is a bacterial RNA chaperone that can regulate the function of different kinds of RNAs, thereby affecting various bacterial phenotypes. To further explore the physiological functions of Hfq in Bt, we took BMB171 as the starting strain, knocked out one, two, or three hfq genes in its genome in different combinations, and compared the phenotypic differences between the deletion mutant strains and the starting strain. We did observe significant changes in several phenotypes, including motility, biofilm formation, sporulation, and insecticidal activity against cotton bollworm, among others. Afterward, we found through transcriptome studies that when all hfq genes were deleted, 32.5% of the genes in Bt were differentially transcribed, with particular changes in the sporulation-related and virulence-related genes. The above data demonstrated that Hfq plays a pivotal role in Bt and can regulate its various physiological functions. Our study on the regulatory mechanism of Hfq in Bt, especially the mining of the regulatory network of its sporulation and insecticidal activity, could lay a theoretical foundation for the better utilization of Bt as an effective insecticide.
Collapse
Affiliation(s)
- Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Fu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Isolation, molecular characterization and pathogenicity of native Bacillus thuringiensis, from Ethiopia, against the tomato leafminer, Tuta absoluta: Detection of a new high lethal phylogenetic group. Microbiol Res 2021; 250:126802. [PMID: 34174672 DOI: 10.1016/j.micres.2021.126802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022]
Abstract
Tuta absoluta (tomato leafminer) is one of the devastating agricultural pest that attack mainly tomatoes. The continuous use of chemical pesticides is not affordable and poses a collateral damage to human and environmental health. This requires integrated pest management to reduce chemical pesticides. B. thuringiensis is a cosmopolitan, antagonistic soil bacterium used to control agricultural pests. In this study, effective Bt strains were screened from different sample sources based on their lepidopteran specific cry genes and larvicidal efficacy against tomato leafminer, T. absoluta under laboratory conditions. Of the 182 bacterial isolates, 55 (30 %) of isolates harbored parasporal protein crystals. Out of these, 34 (62 %) isolates possess one or more lepidopteran specific cry genes: 20 % of isolates positive for cry2, 18.2 % for cry9, 3.6 % for cry1, 16.4 % for cry2 + cry9, 1.8 % for cry1 + cry9, and 1.8 % for cry1 + cry2 + cry9. However, 21 (38.2 %) isolates did not show any lepidopteran specific cry genes. Isolates positive for cry genes showed 36.7-75 % and 46.7-98.3 % mortality against second and third instar larvae of the T. absoluta at the concentration of 108 colony forming units (CFUs) ml-1. Cry1 and cry1 plus other cry gene positive isolates were relatively more pathogenic against T. absoluta. However, third instar larvae of the T. absoluta was more susceptible than second instar larvae. Two of the isolates, AAUF6 and AAUMF9 were effective and scored LT50 values of 2.3 and 2.7 days and LC50 values of 3.4 × 103 and 4.15 × 103 CFUs ml-1 against the third instar larvae, respectively. The phylogenetic studies showed some congruence of groups with cry gene profiles and lethality level of isolates and very interestingly, we have detected a putative new phylogenetic group of Bt from Ethiopia.
Collapse
|
5
|
Gupta M, Kumar H, Kaur S. Vegetative Insecticidal Protein (Vip): A Potential Contender From Bacillus thuringiensis for Efficient Management of Various Detrimental Agricultural Pests. Front Microbiol 2021; 12:659736. [PMID: 34054756 PMCID: PMC8158940 DOI: 10.3389/fmicb.2021.659736] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Bacillus thuringiensis (Bt) bacterium is found in various ecological habitats, and has natural entomo-pesticidal properties, due to the production of crystalline and soluble proteins during different growth phases. In addition to Cry and Cyt proteins, this bacterium also produces Vegetative insecticidal protein (Vip) during its vegetative growth phase, which is considered an excellent toxic candidate because of the difference in sequence homology and receptor sites from Cry proteins. Vip proteins are referred as second-generation insecticidal proteins, which can be used either alone or in complementarity with Cry proteins for the management of various detrimental pests. Among these Vip proteins, Vip1 and Vip2 act as binary toxins and have toxicity toward pests belonging to Hemiptera and Coleoptera orders, whereas the most important Vip3 proteins have insecticidal activity against Lepidopteran pests. These Vip3 proteins are similar to Cry proteins in terms of toxicity potential against susceptible insects. They are reported to be toxic toward pests, which can’t be controlled with Cry proteins. The Vip3 proteins have been successfully pyramided along with Cry proteins in transgenic rice, corn, and cotton to combat resistant pest populations. This review provides detailed information about the history and importance of Vip proteins, their types, structure, newly identified specific receptors, and action mechanism of this specific class of proteins. Various studies conducted on Vip proteins all over the world and the current status have been discussed. This review will give insights into the significance of Vip proteins as alternative promising candidate toxic proteins from Bt for the management of pests in most sustainable manner.
Collapse
Affiliation(s)
- Mamta Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.,ICAR-Indian Institute of Maize Research, Ludhiana, India
| | - Harish Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, India
| | - Sarvjeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
6
|
Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers. Toxins (Basel) 2020; 12:toxins12080522. [PMID: 32823872 PMCID: PMC7472478 DOI: 10.3390/toxins12080522] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 02/01/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram negative soil bacterium. This bacterium secretes various proteins during different growth phases with an insecticidal potential against many economically important crop pests. One of the important families of Bt proteins is vegetative insecticidal proteins (Vip), which are secreted into the growth medium during vegetative growth. There are three subfamilies of Vip proteins. Vip1 and Vip2 heterodimer toxins have an insecticidal activity against many Coleopteran and Hemipteran pests. Vip3, the most extensively studied family of Vip toxins, is effective against Lepidopteron. Vip proteins do not share homology in sequence and binding sites with Cry proteins, but share similarities at some points in their mechanism of action. Vip3 proteins are expressed as pyramids alongside Cry proteins in crops like maize and cotton, so as to control resistant pests and delay the evolution of resistance. Biotechnological- and in silico-based analyses are promising for the generation of mutant Vip proteins with an enhanced insecticidal activity and broader spectrum of target insects.
Collapse
|
7
|
Rabha M, Acharjee S, Sarmah BK. Multilocus sequence typing for phylogenetic view and vip gene diversity of Bacillus thuringiensis strains of the Assam soil of North East India. World J Microbiol Biotechnol 2018; 34:103. [PMID: 29951787 DOI: 10.1007/s11274-018-2489-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/21/2018] [Indexed: 11/30/2022]
Abstract
An agriculturally important insecticidal bacterium, Bacillus thuringiensis have been isolated from the soil samples of various part of Assam including the Kaziranga National Park. Previously, the isolates were characterized based on morphology, 16S rDNA sequencing, and the presence of the various classes' crystal protein gene(s). In the present study, the phylogenetic analysis of a few selected isolates was performed by an unambiguous and quick method called the multiple locus sequence typing (MLST). A known B. thuringiensis strain kurstaki 4D4 have been used as a reference strain for MLST. A total of four the MLST locus of housekeeping genes, recF, sucC, gdpD and yhfL were selected. A total of 14 unique sequence types (STs) was identified. A total number of alleles identified for the locus gdpD and sucC was 12, followed by locus yhfL was 11, however, only 6 alleles were detected for the locus recF. The phylogenetic analysis using MEGA 7.0.26 showed three major lineages. Approximately, 87% of the isolates belonged to the STs corresponding to B. thuringiensis, whereas two isolates, BA07 and BA39, were clustered to B. cereus. The isolates were also screened for the diversity of vegetative insecticidal protein (vip) genes. In all, 8 isolates showed the presence of vip1, followed by 7 isolates having vip2 and 6 isolates for vip3 genes. The expression of Vip3A proteins was analyzed by western blot analyses and expression of the Vip3A protein was observed in the isolate BA20. Thus, the phylogenetic relationship and diversity of Bt isolates from Assam soil was established based on MLST, in addition, found isolates having vip genes, which could be used for crop improvement.
Collapse
Affiliation(s)
- Mihir Rabha
- Department of Agricultural Biotechnology, DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, 785013, India.
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|