1
|
Correia-Silva RD, Corrêa MP, Rodrigues-Silva N, Santos DD, D'Ávila SCGP, Greco KV, Gil CD. Functional role of Annexin A1 and S100A11 in psoriasis pathogenesis: Insights from IMQ-induced models and keratinocyte modulation. Int Immunopharmacol 2025; 159:114915. [PMID: 40409105 DOI: 10.1016/j.intimp.2025.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/17/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
Psoriasis (Pso) is a chronic inflammatory skin disease involving immune dysregulation and epidermal hyperplasia. Annexin A1 (ANXA1), a glucocorticoid-regulated protein, and S100A11 are implicated in keratinocyte function, but their roles in Pso remain unclear. This study translationally elucidates the functional role of ANXA1 and S100A11 in Pso by integrating analyses in human and murine skin biopsies and in vitro assays using human keratinocytes. The expression patterns of the ANXA1 and S100A11 in Pso were investigated using an imiquimod (IMQ)- induced murine model and human skin biopsies. Furthermore, the in vitro effect of the ANXA1-derived peptide Ac2-26 (5, 25, and 50 ng/mL) on IL-17-stimulated human keratinocytes (HaCaT cell line) was evaluated. IMQ-treated mice exhibited hallmark psoriatic features, including epidermal thickening, mast cell degranulation, and elevated IL-23 levels. Immunohistochemical analyses revealed significant upregulation of ANXA1 and S100A11 in psoriatic skin, with coexpression observed in keratinocytes, particularly in superficial epidermal layers. Transcriptomic analysis corroborated these findings, showing elevated ANXA1 and S100A11 expression in psoriatic lesions compared to controls. In HaCaT cells, IL-17 stimulation reduced ANXA1 and S100A11 levels. Treatment with Ac2-26 at the highest concentrations (25 and 50 ng/mL) significantly reduced viability/metabolism of IL-17-stimulated keratinocytes, while the lowest concentration of Ac2-26 (5 ng/mL) effectively increased ROS production. In conclusion, ANXA1 and S100A11 are key players in Pso, with their expression and coexpression closely linked to disease pathogenesis. Further studies are warranted to explore the clinical implications of targeting the ANXA1/S100A11 axis in inflammatory skin diseases.
Collapse
Affiliation(s)
- Rebeca D Correia-Silva
- Structural and Functional Biology Graduate Program, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Mab P Corrêa
- Structural and Functional Biology Graduate Program, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Nathália Rodrigues-Silva
- Structural and Functional Biology Graduate Program, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Diego D Santos
- Structural and Functional Biology Graduate Program, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Solange C G P D'Ávila
- Department of Pathology and Forensic Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | - Karin V Greco
- Structural and Functional Biology Graduate Program, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | - Cristiane D Gil
- Structural and Functional Biology Graduate Program, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Sant Ana M, Amantino CF, Silva RA, Gil CD, Greco KV, Primo FL, Girol AP, Oliani SM. Annexin A1 2-26 hydrogel improves healing properties in an experimental skin lesion after induction of type 1 diabetes. Biomed Pharmacother 2023; 165:115230. [PMID: 37531784 DOI: 10.1016/j.biopha.2023.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Diabetes mellitus (DM) is characterized by metabolic alterations that involve defects in the secretion and/or action of insulin, being responsible for several complications, such as impaired healing. Studies from our research group have shown that annexin A1 protein (AnxA1) is involved in the regulation of inflammation and cell proliferation. In light of these findings, we have developed a new technology and evaluated its effect on a wound healing in vivo model using type 1 diabetes (T1DM)-induced mice. We formulated a hydrogel containing AnxA12-26 using defined parameters such as organoleptic characteristics, pH, UV-vis spectroscopy and cytotoxicity assay. UV-vis spectroscopy confirmed the presence of the associated AnxA12-26 peptide in the three-dimensional hydrogel matrix, while the in vitro cytotoxicity assay showed excellent biocompatibility. Mice showed increased blood glucose levels, confirming the efficacy of streptozotocin (STZ) to induce T1DM. Treatment with AnxA12-26 hydrogel showed to improve diabetic wound healing, defined as complete re-epithelialization and tissue remodeling, with reduction of inflammatory infiltrate in diabetic animals. We envisage that the AnxA12-26 hydrogel, with its innovative composition and formulation be efficient on improving diabetic healing and contributing on the expansion of the therapeutic arsenal to treat diabetic wounds, at a viable cost.
Collapse
Affiliation(s)
- Monielle Sant Ana
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil
| | - Camila F Amantino
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Rafael A Silva
- Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Cristiane D Gil
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil; Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Karin V Greco
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | - Fernando L Primo
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Ana P Girol
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil; University Center Padre Albino, Catanduva, SP, Brazil; Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Sonia M Oliani
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil; Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil; Advanced Research Center in Medicine (CEPAM), União das Faculdades dos Grandes Lagos (Unilago), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Zheng Y, Li Y, Li S, Hu R, Zhang L. Annexin A1 (Ac2-26)-dependent Fpr2 receptor alleviates sepsis-induced acute kidney injury by inhibiting inflammation and apoptosis in vivo and in vitro. Inflamm Res 2023; 72:347-362. [PMID: 36544058 PMCID: PMC9925514 DOI: 10.1007/s00011-022-01640-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Excessive inflammatory responses and apoptosis are critical pathologies that contribute to sepsis-induced acute kidney injury (SI-AKI). Annexin A1 (ANXA1), a member of the calcium-dependent phospholipid-binding protein family, protects against SI-AKI through its anti-inflammatory and antiapoptotic effects, but the underlying mechanisms are still largely unknown. METHODS In vivo, SI-AKI mouse models were established via caecal ligation and puncture (CLP) and were then treated with the Ac2-26 peptide of ANXA1 (ANXA1 (Ac2-26)), WRW4 (Fpr2 antagonist) or both. In vitro, HK-2 cells were induced by lipopolysaccharide (LPS) and then treated with ANXA1 (Ac2-26), Fpr2-siRNA or both. RESULTS In the present study, we found that the expression levels of ANXA1 were decreased, and the expression levels of TNF-α, IL-1β, IL-6, cleaved caspase-3, cleaved caspase-8 and Bax were significantly increased, accompanied by marked kidney tissue apoptosis in vivo. Moreover, we observed that ANXA1 (Ac2-26) significantly reduced the levels of TNF-α, IL-1β and IL-6 and cleaved caspase-3, cleaved caspase-8, FADD and Bax and inhibited apoptosis in kidney tissue and HK-2 cells, accompanied by pathological damage to kidney tissue. Seven-day survival, kidney function and cell viability were significantly improved in vivo and in vitro, respectively. Furthermore, the administration of ANXA1 (Ac2-26) inhibited the CLP- or LPS-induced phosphorylation of PI3K and AKT and downregulated the level of NF-κB in vivo and in vitro. Moreover, our data demonstrate that blocking the Fpr2 receptor by the administration of WRW4 or Fpr2-siRNA reversed the abovementioned regulatory role of ANXA1, accompanied by enhanced phosphorylation of PI3K and AKT and upregulation of the level of NF-κB in vivo and in vitro. CONCLUSIONS Taken together, this study provides evidence that the protective effect of ANXA1 (Ac2-26) on SI-AKI largely depends on the negative regulation of inflammation and apoptosis via the Fpr2 receptor.
Collapse
Affiliation(s)
- Yanlei Zheng
- Department of Critical Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079 China
| | - Yan Li
- Department of Critical Care Medicine, Xiangyang Central Hospital, Xiangyang, 440121 China
| | - Shi Li
- Department of Critical Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079 China
| | - Ronghua Hu
- Department of Critical Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079 China
| | - Li Zhang
- Department of Critical Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China.
| |
Collapse
|
4
|
Zhao Q, Sheng MF, Wang YY, Wang XY, Liu WY, Zhang YY, Ke TY, Chen S, Pang GZ, Yong L, Ding Z, Shen YJ, Shen YX, Shao W. LncRNA Gm26917 regulates inflammatory response in macrophages by enhancing Annexin A1 ubiquitination in LPS-induced acute liver injury. Front Pharmacol 2022; 13:975250. [PMID: 36386180 PMCID: PMC9663662 DOI: 10.3389/fphar.2022.975250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are defined as transcripts of more than 200 nucleotides that have little or no coding potential. LncRNAs function as key regulators in diverse physiological and pathological processes. However, the roles of lncRNAs in lipopolysaccharide (LPS)-induced acute liver injury (ALI) are still elusive. In this study, we report the roles of lncRNA Gm26917 induced by LPS in modulating liver inflammation. As key components of the innate immune system, macrophages play critical roles in the initiation, progression and resolution of ALI. Our studies demonstrated that Gm26917 localized in the cytoplasm of hepatic macrophages and globally regulated the expression of inflammatory genes and the differentiation of macrophages. In vivo study showed that lentivirus-mediated gene silencing of Gm26917 attenuated liver inflammation and protected mice from LPS-induced ALI. Furthermore, mechanistic study showed that the 3'-truncation of Gm26917 interacted with the N-terminus of Annexin A1, a negative regulator of the NF-κB signaling pathway. We also found that Gm26917 knockdown suppressed NF-κB activity by decreasing the ubiquitination of Annexin A1 and its interaction with NEMO. In addition, expression of Gm26917 in inflammatory macrophages was regulated by the transcription factor forkhead box M1 (FOXM1). LPS treatment dramatically increased the binding of FOXM1 to the promoter region of Gm26917 in macrophages. In summary, our findings suggest that lncRNA Gm26917 silencing protects against LPS-induced liver injury by regulating the TLR4/NF-κB signaling pathway in macrophages.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Meng-Fei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Yao-Yun Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Xing-Yu Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Wei-Yi Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Yuan-Yuan Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Tiao-Ying Ke
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Shu Chen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Gao-Zong Pang
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Liang Yong
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhan Ding
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jun Shen
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Xian Shen
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Siddhuraj P, Jönsson J, Alyamani M, Prabhala P, Magnusson M, Lindstedt S, Erjefält JS. Dynamically upregulated mast cell CPA3 patterns in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Front Immunol 2022; 13:924244. [PMID: 35983043 PMCID: PMC9378779 DOI: 10.3389/fimmu.2022.924244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe mast cell-specific metalloprotease CPA3 has been given important roles in lung tissue homeostasis and disease pathogenesis. However, the dynamics and spatial distribution of mast cell CPA3 expression in lung diseases remain unknown.MethodsUsing a histology-based approach for quantitative spatial decoding of mRNA and protein single cell, this study investigates the dynamics of CPA3 expression across mast cells residing in lungs from control subjects and patients with severe chronic obstructive pulmonary disease (COPD) or idiopathic lung fibrosis (IPF).ResultsMast cells in COPD lungs had an anatomically widespread increase of CPA3 mRNA (bronchioles p < 0.001, pulmonary vessels p < 0.01, and alveolar parenchyma p < 0.01) compared to controls, while granule-stored CPA3 protein was unaltered. IPF lungs had a significant upregulation of both mast cell density, CPA3 mRNA (p < 0.001) and protein (p < 0.05), in the fibrotic alveolar tissue. Spatial expression maps revealed altered mast cell mRNA/protein quotients in lung areas subjected to disease-relevant histopathological alterations. Elevated CPA3 mRNA also correlated to lung tissue eosinophils, CD3 T cells, and declined lung function. Single-cell RNA sequencing of bronchial mast cells confirmed CPA3 as a top expressed gene with potential links to both inflammatory and protective markers.ConclusionThis study shows that lung tissue mast cell populations in COPD and IPF lungs have spatially complex and markedly upregulated CPA3 expression profiles that correlate with immunopathological alterations and lung function. Given the proposed roles of CPA3 in tissue homeostasis, remodeling, and inflammation, these alterations are likely to have clinical consequences.
Collapse
Affiliation(s)
- Premkumar Siddhuraj
- Unit of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | | | - Manar Alyamani
- Unit of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Pavan Prabhala
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Mattias Magnusson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Department of Thoracic Surgery, Lund University Skane University Hospital, Lund, Sweden
| | - Jonas S. Erjefält
- Unit of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Allergology and Respiratory Medicine, Lund University, Skane University Hospital, Lund, Sweden
- *Correspondence: Jonas S. Erjefält,
| |
Collapse
|
6
|
ANNEXIN A1: Roles in Placenta, Cell Survival, and Nucleus. Cells 2022; 11:cells11132057. [PMID: 35805141 PMCID: PMC9266233 DOI: 10.3390/cells11132057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The unbiased approaches of the last decade have enabled the collection of new data on the biology of annexin A1 (ANXA1) in a variety of scientific aspects, creating opportunities for new biomarkers and/or therapeutic purposes. ANXA1 is found in the plasma membrane, cytoplasm, and nucleus, being described at low levels in the nuclear and cytoplasmic compartments of placental cells related to gestational diabetic diseases, and its translocation from the cytoplasm to the nucleus has been associated with a response to DNA damage. The approaches presented here open pathways for reflection upon, and intrinsic clarification of, the modulating action of this protein in the response to genetic material damage, as well as its level of expression and cellular localization. The objective of this study is to arouse interest, with an emphasis on the mechanisms of nuclear translocation of ANXA1, which remain underexplored and may be beneficial in new inflammatory therapies.
Collapse
|
7
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
8
|
Xia W, Zhu J, Wang X, Tang Y, Zhou P, Hou M, Li S. ANXA1 directs Schwann cells proliferation and migration to accelerate nerve regeneration through the FPR2/AMPK pathway. FASEB J 2020; 34:13993-14005. [PMID: 32856352 DOI: 10.1096/fj.202000726rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Many factors are involved in the process of nerve regeneration. Understanding the mechanisms regarding how these factors promote an efficient remyelination is crucial to deciphering the molecular and cellular processes required to promote nerve repair. Schwann cells (SCs) play a central role in the process of peripheral nerve repair/regeneration. Using a model of facial nerve crush injury and repair, we identified Annexin A1 (ANXA1) as the extracellular trigger of SC proliferation and migration. ANXA1 activated formyl peptide receptor 2 (FPR2) receptors and the downstream adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling cascade, leading to SC proliferation and migration in vitro. SCs lacking FPR2 or AMPK displayed a defect in proliferation and migration. After facial nerve injury (FNI), ANXA1 promoted the proliferation of SCs and nerve regeneration in vivo. Collectively, these data identified the ANXA1/FPR2/AMPK axis as an important pathway in SC proliferation and migration. ANXA1-induced remyelination and SC proliferation promotes FNI regeneration.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Zhu
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyi Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Yinda Tang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Zhou
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|