1
|
Wu Z, Chen Y, Zhu D, Zheng Y, Ali KB, Hou K. Advancement of Traditional Chinese Medicine in Regulation of Intestinal Flora: Mechanism-based Role in Disease Management. Recent Pat Anticancer Drug Discov 2022; 17:136-144. [PMID: 34587887 DOI: 10.2174/1574892816666210929164930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Intestinal microecology is the largest and most complex human microecology. The intestinal microflora plays an important role in human health. Imbalance of intestinal microflora contributes to the occurrence and development of many diseases. Recently, the treatment of human diseases by regulating intestinal microflora has become a research topic of interest. Traditional Chinese medicine considers the whole human body as the central concept in disease treatment strategies. It advocates maintaining the coordination and balance of the functions of various organs and systems of the human body, including the intestinal microflora. Traditional Chinese medicine improves the metabolism and immune function of the human body by regulating the intestinal microflora. The intestinal microflora could trigger pharmacological activity or reduce toxicity of drugs through regulating metabolism, which enables traditional Chinese medicine formulations to exert their best therapeutic effects. This review summarized the relationship between the intestinal microflora and digestive system, tumors, and other diseases. Furthermore, the role of traditional Chinese medicine in the treatment of tumors, and other diseases is discussed. The relationship among traditional Chinese medicine and the common intestinal microflora, pathogenesis of human diseases, and effective intervention methods were elaborated. In addition, we explored the research progress of traditional Chinese medicine in the treatment of various human diseases by regulating intestinal microflora to provide new treatment concepts. There is a close relationship between traditional Chinese medicine and the intestinal microflora. Traditional Chinese medicine formulations contribute to maintain the natural balance of the intestinal tract and the intestinal microflora to achieve treatment effects. This paper summarizes the mechanism of action of traditional Chinese medicine formulations in regulating the intestinal microflora in the prevention and treatment of various diseases. Furthermore, it summarizes information on the application of the interaction between traditional Chinese medicine preparations and the regulation of intestinal microflora in the treatment of common human diseases. Intestinal microflora plays a key role in traditional Chinese medicine in maintaining the natural balance of physiology and metabolism of human body. It will provide a theoretical basis for the traditional Chinese medicine preparations in the prevention and treatment of common human diseases, and simulate future research on this aspect.
Collapse
Affiliation(s)
- Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong 515000, China and Graduate School, Shantou University Medical College, Shantou City, Guangdong 515000, China
- Graduate School, Shantou University Medical College, Shantou City, Guangdong, 515000, China
| | - Yongru Chen
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong, 515000, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong 515000, China and Graduate School, Shantou University Medical College, Shantou City, Guangdong 515000, China
| | - Yingmiao Zheng
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong 515000, China and Graduate School, Shantou University Medical College, Shantou City, Guangdong 515000, China
| | - Khan Barkat Ali
- Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, Pakistan
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong 515000, China and Graduate School, Shantou University Medical College, Shantou City, Guangdong 515000, China
- Graduate School, Shantou University Medical College, Shantou City, Guangdong, 515000, China
| |
Collapse
|
2
|
Kumar A, Rahal A, Sohal JS, Gupta VK. Bacterial stress response: understanding the molecular mechanics to identify possible therapeutic targets. Expert Rev Anti Infect Ther 2020; 19:121-127. [PMID: 32811215 DOI: 10.1080/14787210.2020.1813021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Bacteria are ubiquitous and many of them are pathogenic in nature. Entry of bacteria in host and its recognition by host defense system induce stress in host cells. With time, bacteria have also developed strategies including drug resistance to escape from antibacterial therapy as well as host defense mechanism. AREAS COVERED Bacterial stress initiates and promotes adaptive immune response through several integrated mechanisms. The mechanisms of bacteria to up and down regulate different pathways involved in these responses have been discussed. The genetic expression of these pathways can be manipulated by the pharmacological interventions. Present review discusses in these contexts and explores the possibilities to overcome stress induced by bacterial pathogens and to suggest new possible therapeutic targets. EXPERT OPINION In our opinion, there are two important fronts to regulate the bacterial stress. One is to target caspase involved in the process of transformation and translation at gene level and protein expression. Second is the identification of bacterial genes that lead to synthesis of abnormal end products supporting bacterial survival in host environment and also to surpass the host defense mechanism. Identification of such genes and their expression products could be an effective option to encounter bacterial resistance.
Collapse
Affiliation(s)
- Amit Kumar
- College of Biotechnology, SVPUAT , Meerut, India
| | - Anu Rahal
- Division of Animal Health, ICAR- CIRG , Mathura, India
| | - Jagdip Singh Sohal
- Amity University Jaipur, Centre for Mycobacterial Disease Research, Amity University , Jaipur, India
| | | |
Collapse
|
3
|
Influences of stress hormones on microbial infections. Microb Pathog 2019; 131:270-276. [PMID: 30981718 DOI: 10.1016/j.micpath.2019.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
Stress hormones have been recently suggested to influence the pathogenicity of bacteria significantly. Stress has been identified as part of the factors causing an outbreak of infections in the aquaculture industry. The most studied neuroendocrine hormonal family from a microbial endocrinology perspective is the catecholamine comprising of norepinephrine, epinephrine, and dopamine. It is of importance that catecholamine affects the growth and virulence of bacteria. The influence of stress on bacterial infections is attributed to the ability of catecholamines to suppress the immune system as the mode of action for increased bacterial growth. Catecholamines have increased the growth of bacteria, virulence-associated factors, adhesions, and biofilm formation and consequently influence the outcome of infections by these bacteria in many hosts. The siderophores and the ferric iron transport system plays a vital role in the mechanism by which catecholamines stimulates growth and exposure of genes to stress hormones enhances the expression of genes involved in bacterial virulence. In recent years, it has been discovered that intestinal microflora takes part in bidirectional communication between the gut and brain. The rapidly growing field of microbiome research, understanding the communities of bacteria living within our bodies and the genes they contain is yielding new perspectives. This review reveals catecholamines effects on the growth and virulence of bacteria and the latest trends in microbial endocrinology.
Collapse
|
4
|
Rodrigues LOCP, Graça RSF, Carneiro LAM. Integrated Stress Responses to Bacterial Pathogenesis Patterns. Front Immunol 2018; 9:1306. [PMID: 29930559 PMCID: PMC5999787 DOI: 10.3389/fimmu.2018.01306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/25/2018] [Indexed: 12/25/2022] Open
Abstract
Activation of an appropriate innate immune response to bacterial infection is critical to limit microbial spread and generate cytokines and chemokines to instruct appropriate adaptive immune responses. Recognition of bacteria or bacterial products by pattern recognition molecules is crucial to initiate this response. However, it is increasingly clear that the context in which this recognition occurs can dictate the quality of the response and determine the outcome of an infection. The cross talk established between host and pathogen results in profound alterations on cellular homeostasis triggering specific cellular stress responses. In particular, the highly conserved integrated stress response (ISR) has been shown to shape the host response to bacterial pathogens by sensing cellular insults resulting from infection and modulating transcription of key genes, translation of new proteins and cell autonomous antimicrobial mechanisms such as autophagy. Here, we review the growing body of evidence demonstrating a role for the ISR as an integral part of the innate immune response to bacterial pathogens.
Collapse
Affiliation(s)
- Larissa O C P Rodrigues
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S F Graça
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia A M Carneiro
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|