1
|
Chen Z, Wang J, Lu B, Meng W, Zhu Y, Jiang Q, Gao D, Ma Z, Zeng H, Chen J, Liu S, Wang Z, Jia K. Reduction of microRNA-221 in BVDV infection enhances viral replication by targeting the ATG7-mediated autophagy pathway. Ir Vet J 2025; 78:10. [PMID: 40176193 PMCID: PMC11963565 DOI: 10.1186/s13620-025-00286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/06/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Bovine viral diarrhoea (BVD), a condition triggered by bovine viral diarrhoea virus (BVDV), is recognized globally as a prevalent pathogen among ruminants and markedly affects the economics of animal husbandry. MicroRNAs, a class of small noncoding RNAs, play pivotal roles in regulating a myriad of biological processes.The ATG7-LC3 pathway, a canonical autophagy mechanism, is integral in defending against pathogenic invasion and maintaining cellular homeostasis. RESULTS In this study, we observed significant downregulation of bta-miR-221 in cells infected with BVDV. We further established that overexpression of bta-miR-221 markedly attenuated BVDV replication in Madin‒Darby bovine kidney (MDBK) cells. Through bioinformatics prediction analysis, we identified ATG7, an autophagy-related gene, as a direct downstream target of bta-miR-221. However, the intricate relationships among bta-miR-221, the ATG7-LC3 pathway, and BVDV infection remained unclear. Our study revealed that ATG7 expression was significantly elevated in BVDV-infected cells, whereas bta-miR-221 mimics repressed both endogenous and exogenous ATG7 expression. Following BVDV infection, we noted a decrease in LC3I expression, its conversion to LC3II, a significant increase in ATG7 expression, and a notable decrease in SQSTM1/p62 expression. By employing laser confocal microscopy and immunoprecipitation assays, we elucidated the regulation of the ATG7-LC3 pathway by bta-miR-221 in MDBK cells. Our findings recealed that BVDV infection enhanced the ATG7-LC3 interaction, inducing autophagy through the suppression of bta-miR-221 in MDBK cells. Consequently, bta-miR-221 emerged as a potent inhibitor of BVDV, impacting its proliferation and replication within the host. CONCLUSIONS This research sheds light on novel aspects of virus-host interactions and lays a foundation for the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Zihan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Baochun Lu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wenxin Meng
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Yufan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Qifeng Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Duo Gao
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Zihang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Huijuan Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Jinping Chen
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Shizhe Liu
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Zhen Wang
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China.
| |
Collapse
|
2
|
Liang B, Bai T, Zhao Y, Han J, He X, Pu Y, Wang C, Liu W, Ma Q, Tian K, Zheng W, Liu N, Liu J, Ma Y, Jiang L. Two mutations at KRT74 and EDAR synergistically drive the fine-wool production in Chinese sheep. J Adv Res 2024; 57:1-13. [PMID: 37137429 PMCID: PMC10918353 DOI: 10.1016/j.jare.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION Fine-wool sheep are the most common breed used by the wool industry worldwide. Fine-wool sheep have over a three-fold higher follicle density and a 50% smaller fiber diameter than coarse-wool sheep. OBJECTIVES This study aims to clarify the underlying genetic basis for the denser and finer wool phenotype in fine-wool breeds. METHOD Whole-genome sequences of 140 samples, Ovine HD630K SNP array data of 385 samples, including fine, semi-fine, and coarse wool sheep, as well as skin transcriptomes of nine samples were integrated for genomic selection signature analysis. RESULTS Two loci at keratin 74 (KRT74) and ectodysplasin receptor (EDAR) were revealed. Fine-scale analysis in 250 fine/semi-fine and 198 coarse wool sheep narrowed this association to one C/A missense variant of KRT74 (OAR3:133,486,008, P = 1.02E-67) and one T/C SNP in the regulatory region upstream of EDAR (OAR3:61,927,840, P = 2.50E-43). Cellular over-expression and ovine skin section staining assays confirmed that C-KRT74 activated the KRT74 protein and specifically enlarged cell size at the Huxley's layer of the inner root sheath (P < 0.01). This structure enhancement shapes the growing hair shaft into the finer wool than the wild type. Luciferase assays validated that the C-to-T mutation upregulated EDAR mRNA expression via a newly created SOX2 binding site and potentially led to the formation of more hair placodes. CONCLUSIONS Two functional mutations driving finer and denser wool production were characterized and offered new targets for genetic breeding during wool sheep selection. This study not only provides a theoretical basis for future selection of fine wool sheep breeds but also contributes to improving the value of wool commodities.
Collapse
Affiliation(s)
- Benmeng Liang
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Tianyou Bai
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Yuhetian Zhao
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Jiangang Han
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Xiaohong He
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Yabin Pu
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Chunxin Wang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 75002, Ningxia, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China; Xinjiang Academy of Animal Science, China
| | | | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, China
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yuehui Ma
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China.
| | - Lin Jiang
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
3
|
Zhang S, Wang Q, Ye J, Fan Q, Lin X, Gou Z, Azzam MM, Wang Y, Jiang S. Transcriptome and proteome profile of jejunum in chickens challenged with Salmonella Typhimurium revealed the effects of dietary bilberry anthocyanin on immune function. Front Microbiol 2023; 14:1266977. [PMID: 38053560 PMCID: PMC10694457 DOI: 10.3389/fmicb.2023.1266977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction The present study investigated the effects of bilberry anthocyanin (BA) on immune function when alleviating Salmonella Typhimurium (S. Typhimurium) infection in chickens. Methods A total of 180 newly hatched yellow-feathered male chicks were assigned to three groups (CON, SI, and SI + BA). Birds in CON and SI were fed a basal diet, and those in SI + BA were supplemented with 100 mg/kg BA for 18 days. Birds in SI and SI + BA received 0.5 ml suspension of S. Typhimurium (2 × 109 CFU/ml) by oral gavage at 14 and 16 days of age, and those in CON received equal volumes of sterile PBS. Results At day 18, (1) dietary BA alleviated weight loss of chickens caused by S. Typhimurium infection (P < 0.01). (2) Supplementation with BA reduced the relative weight of the bursa of Fabricius (P < 0.01) and jejunal villus height (P < 0.05) and increased the number of goblet cells (P < 0.01) and the expression of MUC2 (P < 0.05) in jejunal mucosa, compared with birds in SI. (3) Supplementation with BA decreased (P < 0.05) the concentration of immunoglobulins and cytokines in plasma (IgA, IL-1β, IL-8, and IFN-β) and jejunal mucosa (IgG, IgM, sIgA, IL-1β, IL-6, IL-8, TNF-α, IFN-β, and IFN-γ) of S. Typhimurium-infected chickens. (4) BA regulated a variety of biological processes, especially the defense response to bacteria and humoral immune response, and suppressed cytokine-cytokine receptor interaction and intestinal immune network for IgA production pathways by downregulating 6 immune-related proteins. Conclusion In summary, the impaired growth performance and disruption of jejunal morphology caused by S. Typhimurium were alleviated by dietary BA by affecting the expression of immune-related genes and proteins, and signaling pathways are related to immune response associated with immune cytokine receptors and production in jejunum.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Qin Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Jinling Ye
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Qiuli Fan
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Xiajing Lin
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Zhongyong Gou
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Mahmoud M. Azzam
- Department of Animal Production College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Yibing Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Gaghan C, Gorrell K, Taha-Abdelaziz K, Sharif S, Kulkarni RR. Intracloacal Inoculation of Broiler Chickens with Clostridium perfringens Strains: Evaluation of Necrotic Enteritis Disease Development and Lymphoid Immune Responses. Microorganisms 2023; 11:microorganisms11030771. [PMID: 36985344 PMCID: PMC10054439 DOI: 10.3390/microorganisms11030771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Necrotic enteritis (NE) is an economically important disease of chickens. We have recently shown that inflammatory responses in chickens inoculated orally with virulent Clostridium perfringens were spatially regulated. Here, we used previously virulence-characterized netB+ C. perfringens strains, avirulent CP5 and virulent CP18 and CP26, to assess the severity of NE and immune responses in broiler chickens when inoculated intracloacally. The results showed that CP18- and CP26-infected birds had a reduced weight gain and developed milder/less severe NE lesions, as determined by the gross lesions scores, suggesting a subclinical-grade infection. Gene expression analysis in infected birds revealed three statistically significant observations compared to uninfected-control: (1) Increased expression of anti-inflammatory/immunoregulatory interleukin (IL)-10/transforming growth factor (TGF)β in cecal tonsil (CT) and bursa of Fabricius in the CP18/CP26-infected groups. (2) Increased CT transcription of pro-inflammatory IL-1β, IL-6 and interferon (IFN)γ and decreased Harderian gland (HG) expression of IFNγ in the CP18/CP26-infected birds. (3) Increased HG or bursal expression of IL-4 and IL-13 in CP5-infected birds. Collectively, intracloacal C. perfringens inoculation seems to induce a highly regulated inflammatory response in the CT and other mucosal lymphoid organs and an intracloacal infection model may be useful in evaluating immune responses in chickens with subclinical NE.
Collapse
Affiliation(s)
- Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Kaitlin Gorrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Correspondence: ; Tel.: +1-919-513-6277
| |
Collapse
|
5
|
Rahman SU, Zhou K, Zhou S, Sun T, Mi R, Huang Y, Han X, Gong H, Chen Z. Curcumin mitigates Cryptosporidium parvum infection through modulation of gut microbiota and innate immune-related genes in immunosuppressed neonatal mice. Microb Pathog 2022; 164:105424. [PMID: 35092833 DOI: 10.1016/j.micpath.2022.105424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 01/04/2023]
Abstract
Cryptosporidium parvum is a major cause of diarrheal disease in immature or weakened immune systems, mainly in infants and young children in resource-poor settings. Despite its high prevalence, fully effective and safe drugs for the treatment of C. parvum infections remain scarce, and there is no vaccine. Meanwhile, curcumin has shown protective effects against C. parvum infections. However, the mechanisms of action and relationship to the gut microbiota and innate immune responses are unclear. Immunosuppressed neonatal mice were infected with oocysts of C. parvum and either untreated or treated with a normal diet, curcumin or paromomycin. We found that curcumin stopped C. parvum oocysts shedding in the feces of infected immunosuppressed neonatal mice, prevented epithelial damage, and villi degeneration, as well as prevented recurrence of infection. Curcumin supplementation increased the relative abundance of Bacteroidetes and decreased the relative abundance of Firmicutes and Proteobacteria in mice infected with C. parvum as shown by 16S rRNA gene sequencing analysis. The relative abundance of Lactobacillus, Bacteroides, Akkermansia, Desulfovibrio, Prevotella, and Helicobacter was significantly associated with C. parvum infection inhibited by curcumin. Curcumin significantly (P < 0.01) suppressed IFN-γ and IL -18 gene expression levels in immunosuppressed neonatal C. parvum-infected mice. We demonstrate that the therapeutic effects curcumin are associated with alterations in the gut microbiota and innate immune-related genes, which may be linked to the anti-Cryptosporidium mechanisms of curcumin.
Collapse
Affiliation(s)
- Sajid Ur Rahman
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Keke Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - ShaSha Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Tiancong Sun
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Rongsheng Mi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiangan Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
6
|
Garcia P, Wang Y, Viallet J, Macek Jilkova Z. The Chicken Embryo Model: A Novel and Relevant Model for Immune-Based Studies. Front Immunol 2021; 12:791081. [PMID: 34868080 PMCID: PMC8640176 DOI: 10.3389/fimmu.2021.791081] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the immune system is associated with many pathologies, including cardiovascular diseases, diabetes, and cancer. To date, the most commonly used models in biomedical research are rodents, and despite the various advantages they offer, their use also raises numerous drawbacks. Recently, another in vivo model, the chicken embryo and its chorioallantoic membrane, has re-emerged for various applications. This model has many benefits compared to other classical models, as it is cost-effective, time-efficient, and easier to use. In this review, we explain how the chicken embryo can be used as a model for immune-based studies, as it gradually develops an embryonic immune system, yet which is functionally similar to humans'. We mainly aim to describe the avian immune system, highlighting the differences and similarities with the human immune system, including the repertoire of lymphoid tissues, immune cells, and other key features. We also describe the general in ovo immune ontogeny. In conclusion, we expect that this review will help future studies better tailor their use of the chicken embryo model for testing specific experimental hypotheses or performing preclinical testing.
Collapse
Affiliation(s)
- Paul Garcia
- Université Grenoble Alpes, Grenoble, France
- R&D Department, Inovotion, La Tronche, France
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, La Tronche, France
| | - Yan Wang
- R&D Department, Inovotion, La Tronche, France
| | | | - Zuzana Macek Jilkova
- Université Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, La Tronche, France
- Service d’Hépato-Gastroentérologie, Pôle Digidune, Centre Hospitalo-Universitaire (USA) Grenoble Alpes, La Tronche, France
| |
Collapse
|
7
|
Kasim VN, Hatta M, Natzir R, Hadju V, Febriza A, Idrus HH. Effects of lime ( Citrus aurantifolia) peel to the expression of mRNA toll-like receptors 4 in balb/c mice-infected Salmonella typhi. J Adv Pharm Technol Res 2020; 11:169-173. [PMID: 33425699 PMCID: PMC7784938 DOI: 10.4103/japtr.japtr_48_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 07/19/2020] [Indexed: 12/16/2022] Open
Abstract
Lime peel contains metabolic compounds that have lethal effects of bacterial cells, but its effect as an antibacterial modulate innate immunity pathways, especially toll-like receptor 4 (TLR-4) signaling pathway, is unclear. This study examined the effects of lime peel extract (LPE) on the activity of TLR 4 in Balb/c mice induced by Salmonella typhi. Mice were induced intraperitoneally and then 3 days after induction, LPE was given orally on two doses (510 and 750 mg/kg BW). The number of bacterial colonization was counted using peritoneal fluid samples by the method of plate count agar. Intervention LPE for 5 days can degrade TLR-4 and the number of colonies of S. typhi. On day 3 after was induced S. typhi, TLR-4 gene expression of Balb/c mice is increased. Postintervention LPE for 5 days, the expression of TLR-4 gene decreased, significantly different at a dose of 750 mg/kg BW (P = 0.04). There was a positive correlation between the expression of TLR-4 gene by the number of bacterial colonization, decreasing gene expression of TLR-4, the number of bacterial colonization is also getting smaller (P = 0.013, r = 0.408). LPE can modulate the TLR-4 signaling pathway in host immunity so that the gene TLR-4 is expressed fewer in numbers. This mechanism causes the bacterial colony number to decrease, not even growth.
Collapse
Affiliation(s)
| | - Mochammad Hatta
- Department of Microbiology, Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Rosdiana Natzir
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Veni Hadju
- Department of Nutrition, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
| | - Ami Febriza
- Department of Physiology, Faculty of Medicine, Muhammadiyah University Makassar, Makassar, Indonesia
| | | |
Collapse
|
8
|
Ribatti D, Tamma R, Elieh Ali Komi D. The morphological basis of the development of the chick embryo immune system. Exp Cell Res 2019; 381:323-329. [PMID: 31141709 DOI: 10.1016/j.yexcr.2019.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/01/2019] [Accepted: 05/24/2019] [Indexed: 11/28/2022]
Abstract
The chick immune system is a fundamental model in basic immunology. In birds, the bone marrow derived pluripotent stem cells after entering the circulation, migrate to bursa of Fabricius to benefit from a microenvironment which supports the differentiation and maturation of B lymphocytes by the help of its resident cells and tissues. Delivering sufficient functional B cells is required to maintain their peripheral population and normal peripheral humoral responses. Additionally, bursa acts as an active site for the generation of antibody diversity through gene conversion. Being consisted of 98% B lymphocytes, the organ is occupied by other cell types including T cells, macrophages, eosinophils and mast cells. Thymus, which is an epithelial organ is the main site of T cell development where positive and negative selections contribute to the development of functional and not autoreactive T cell repertoire. Bursectomy and thymectomy are surgical exercises through which the involvement of cells of specific immunity including B cells and T cells can be determined.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|