1
|
Shehadeh F, Felix L, Kalligeros M, Shehadeh A, Fuchs BB, Ausubel FM, Sotiriadis PP, Mylonakis E. Machine Learning-Assisted High-Throughput Screening for Anti-MRSA Compounds. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1911-1921. [PMID: 39058605 DOI: 10.1109/tcbb.2024.3434340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
BACKGROUND Antimicrobial resistance is a major public health threat, and new agents are needed. Computational approaches have been proposed to reduce the cost and time needed for compound screening. AIMS A machine learning (ML) model was developed for the in silico screening of low molecular weight molecules. METHODS We used the results of a high-throughput Caenorhabditis elegans methicillin-resistant Staphylococcus aureus (MRSA) liquid infection assay to develop ML models for compound prioritization and quality control. RESULTS The compound prioritization model achieved an AUC of 0.795 with a sensitivity of 81% and a specificity of 70%. When applied to a validation set of 22,768 compounds, the model identified 81% of the active compounds identified by high-throughput screening (HTS) among only 30.6% of the total 22,768 compounds, resulting in a 2.67-fold increase in hit rate. When we retrained the model on all the compounds of the HTS dataset, it further identified 45 discordant molecules classified as non-hits by the HTS, with 42/45 (93%) having known antimicrobial activity. CONCLUSION Our ML approach can be used to increase HTS efficiency by reducing the number of compounds that need to be physically screened and identifying potential missed hits, making HTS more accessible and reducing barriers to entry.
Collapse
|
2
|
Kalganova AI, Eliseev IE, Smirnov IV, Terekhov SS. Platforms for the Search for New Antimicrobial Agents Using In Vivo C. elegans Models. Acta Naturae 2024; 16:15-26. [PMID: 39877009 PMCID: PMC11771841 DOI: 10.32607/actanaturae.27348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/19/2024] [Indexed: 01/31/2025] Open
Abstract
Despite the achievements brought about by high-throughput screening technologies, there is still a lack of effective platforms to be used to search for new antimicrobial drugs. The antimicrobial activity of compounds continues, for the most part, to be assessed mainly using in vitro pathogen cultures, a situation which does not make easy a detailed investigation of the molecular mechanisms underlying host-pathogen interactions. In vivo testing of promising compounds using chordate models is labor-intensive and expensive and, therefore, is used in preclinical studies of selected drug candidates but not in primary screening. This approach does not facilitate the selection of compounds with low organ toxicity and is not suitable for the identification of therapeutic compounds that affect virulence factors. The use of microscopic nematode C. elegans to model human infections is a promising approach that enables one to investigate the host-pathogen interaction and identify anti-infective compounds with new mechanisms of action.
Collapse
Affiliation(s)
- A. I. Kalganova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
| | - I. E. Eliseev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
| | - I. V. Smirnov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Endocrinology Research Center, Moscow, 117292 Russian Federation
| | - S. S. Terekhov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
| |
Collapse
|
3
|
Krátký M. Novel sulfonamide derivatives as a tool to combat methicillin-resistant Staphylococcus aureus. Future Med Chem 2024; 16:545-562. [PMID: 38348480 DOI: 10.4155/fmc-2023-0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Increasing resistance in Staphylococcus aureus has created a critical need for new drugs, especially those effective against methicillin-resistant strains (methicillin-resistant Staphylococcus aureus [MRSA]). Sulfonamides are a privileged scaffold for the development of novel antistaphylococcal agents. This review covers recent advances in sulfonamides active against MRSA. Based on the substitution patterns of sulfonamide moieties, its derivatives can be tuned for desired properties and biological activity. Contrary to the traditional view, not only N-monosubstituted 4-aminobenzenesulfonamides are effective. Novel sulfonamides have various mechanisms of action, not only 'classical' inhibition of the folate biosynthetic pathway. Some of them can overcome resistance to classical sulfa drugs and cotrimoxazole, are bactericidal and active in vivo. Hybrid compounds with distinct bioactive scaffolds are particularly advantageous.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Cortat Y, Nedyalkova M, Schindler K, Kadakia P, Demirci G, Nasiri Sovari S, Crochet A, Salentinig S, Lattuada M, Steiner OM, Zobi F. Computer-Aided Drug Design and Synthesis of Rhenium Clotrimazole Antimicrobial Agents. Antibiotics (Basel) 2023; 12:antibiotics12030619. [PMID: 36978486 PMCID: PMC10044843 DOI: 10.3390/antibiotics12030619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
In the context of the global health issue caused by the growing occurrence of antimicrobial resistance (AMR), the need for novel antimicrobial agents is becoming alarming. Inorganic and organometallic complexes represent a relatively untapped source of antibiotics. Here, we report a computer-aided drug design (CADD) based on a 'scaffold-hopping' approach for the synthesis and antibacterial evaluation of fac-Re(I) tricarbonyl complexes bearing clotrimazole (ctz) as a monodentate ligand. The prepared molecules were selected following a pre-screening in silico analysis according to modification of the 2,2'-bipyridine (bpy) ligand in the coordination sphere of the complexes. CADD pointed to chiral 4,5-pinene and 5,6-pinene bipyridine derivatives as the most promising candidates. The corresponding complexes were synthesized, tested toward methicillin-sensitive and -resistant S. aureus strains, and the obtained results evaluated with regard to their binding affinity with a homology model of the S. aureus MurG enzyme. Overall, the title species revealed very similar minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values as those of the reference compound used as the scaffold in our approach. The obtained docking scores advocate the viability of 'scaffold-hopping' for de novo design, a potential strategy for more cost- and time-efficient discovery of new antibiotics.
Collapse
Affiliation(s)
- Youri Cortat
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Miroslava Nedyalkova
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Kevin Schindler
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Parth Kadakia
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Gozde Demirci
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Marco Lattuada
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Olimpia Mamula Steiner
- Haute école d'Ingénierie et d'Architecture, University of Applied Sciences Western Switzerland HES-SO, Pérolles 80, 1700 Fribourg, Switzerland
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
5
|
Siqueira FDS, Siqueira JD, Denardi LB, Moreira KS, Lima Burgo TA, de Lourenço Marques L, Machado AK, Davidson CB, Chaves OA, Anraku de Campos MM, Back DF. Antibacterial, antifungal, and anti-biofilm effects of sulfamethoxazole-complexes against pulmonary infection agents. Microb Pathog 2023; 175:105960. [PMID: 36587926 DOI: 10.1016/j.micpath.2022.105960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Antibiotic resistance associated with pulmonary infection agents has become a public health problem, being considered one of the main priorities for immediate resolution. Thus, to increase the therapeutic options in the fight against resistant microorganisms, the synthesis of molecules from pre-existing drugs has shown to be a promising alternative. In this sense, the present work reports the synthesis, characterization, and biological evaluation (against fungal and bacterial agents that cause lung infections) of potential metallodrugs based on sulfamethoxazole complexed with AuI, AgI, HgII, CdII, NiII, and CuII. The minimal inhibitory concentration (MIC) value was used to evaluate the antifungal and antibacterial properties of the compounds. In addition, it was also evaluated the antibiofilm capacity in Pseudomonas aeruginosa, through the quantification of its biomass and visualization using atomic force microscopy. For each case, molecular docking calculations were carried out to suggest the possible biological target of the assayed inorganic complexes. Our results indicated that the novel inorganic complexes are better antibacterial and antifungal than the commercial antibiotic sulfamethoxazole, highlighting the AgI-complex, which was able to inhibit the growth of microorganisms that cause lung diseases with concentrations in the 2-8 μg mL-1 range, probably at targeting dihydropteroate synthetase - a key enzyme involved in the folate synthesis. Furthermore, sulfamethoxazole complexes were able to inhibit the formation of bacterial biofilms at significantly lower concentrations than free sulfamethoxazole, probably mainly targeting the active site of LysR-type transcriptional regulator (PqsR). Overall, the present study reports preliminary results that demonstrate the derivatization of sulfamethoxazole with transition metal cations to obtain potential metallodrugs with applications as antimicrobial and antifungal against pulmonary infections, being an alternative for drug-resistant strains.
Collapse
Affiliation(s)
- Fallon Dos Santos Siqueira
- Mycobacteriology Laboratory, Graduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Josiéli Demetrio Siqueira
- Inorganic Materials Laboratory, Graduate Program in Chemistry, Department of Chemistry Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Laura Bedin Denardi
- Mycobacteriology Laboratory, Graduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Kelly Schneider Moreira
- Coulomb Electrostatic and Mechanochemical Laboratory, Graduate Program in Chemistry, Department of Chemistry, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Thiago Augusto Lima Burgo
- Coulomb Electrostatic and Mechanochemical Laboratory, Graduate Program in Chemistry, Department of Chemistry, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Lenice de Lourenço Marques
- Inorganic Materials Laboratory, Graduate Program in Chemistry, Department of Chemistry Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Alencar Kolinski Machado
- Laboratory of Genetics and Cell Culture, Graduate Program in Nanosciences, Franciscan University, Andradas' Street, 1614, zip code:, 97010-032, Santa Maria, Brazil
| | - Carolina Bordin Davidson
- Laboratory of Genetics and Cell Culture, Graduate Program in Nanosciences, Franciscan University, Andradas' Street, 1614, zip code:, 97010-032, Santa Maria, Brazil
| | - Otávio Augusto Chaves
- Coimbra Chemistry Center - Institute of Molecular Sciences (CQC-IMS), Faculty of Science and Technology, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Marli Matiko Anraku de Campos
- Mycobacteriology Laboratory, Graduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil.
| | - Davi Fernando Back
- Inorganic Materials Laboratory, Graduate Program in Chemistry, Department of Chemistry Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil.
| |
Collapse
|
6
|
Ratia C, Sueiro S, Soengas RG, Iglesias MJ, López-Ortiz F, Soto SM. Gold(III) Complexes Activity against Multidrug-Resistant Bacteria of Veterinary Significance. Antibiotics (Basel) 2022; 11:antibiotics11121728. [PMID: 36551386 PMCID: PMC9774617 DOI: 10.3390/antibiotics11121728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The emergence and spread of multidrug-resistant bacteria are a global concern. The lack of new antibiotics in the pipeline points to the need for developing new strategies. In this sense, gold(III) complexes (G3Cs) could be a promising alternative due to their recently described antibacterial activity. The aim of this study was to evaluate the antimicrobial activity of G3Cs alone and in combination with colistin against pathogenic bacteria from veterinary sources. Minimal inhibitory concentration (MIC) values were determined by broth microdilution and compared with clinically relevant antibiotics. Antibiofilm activity was determined by crystal violet staining. Combinations of selected G3Cs with colistin and cytotoxicity in commercial human cell lines were evaluated. Four and seven G3Cs showed antibacterial effect against Gram-negative and Gram-positive strains, respectively, with this activity being higher among Gram-positive strains. The G3Cs showed antibiofilm activity against Gram-negative species at concentrations similar or one to four folds higher than the corresponding MICs. Combination of G3Cs with colistin showed a potential synergistic antibacterial effect reducing concentrations and toxicity of both agents. The antimicrobial and antibiofilm activity, the synergistic effect when combined with colistin and the in vitro toxicity suggest that G3Cs would provide a new therapeutic alternative against multidrug-resistant bacteria from veterinary origin.
Collapse
Affiliation(s)
- Carlos Ratia
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sara Sueiro
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain
| | - Raquel G. Soengas
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 7, 33006 Oviedo, Spain
| | - María José Iglesias
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain
| | - Fernando López-Ortiz
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain
- Correspondence: (F.L.-O.); (S.M.S.)
| | - Sara María Soto
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.L.-O.); (S.M.S.)
| |
Collapse
|
7
|
Ramotowska S, Spisz P, Brzeski J, Ciesielska A, Makowski M. Application of the SwitchSense Technique for the Study of Small Molecules’ (Ethidium Bromide and Selected Sulfonamide Derivatives) Affinity to DNA in Real Time. J Phys Chem B 2022; 126:7238-7251. [PMID: 36106569 PMCID: PMC9527753 DOI: 10.1021/acs.jpcb.2c03138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The discovery and introduction of the switchSense technique
in
the chemical laboratory have drawn well-deserved interest owing to
its wide range of applications. Namely, it can be used to determine
the diameter of proteins, alterations in their tertiary structures
(folding), and many other conformational changes that are important
from a biological point of view. The essence of this technique is
based on its ability to study of the interactions between an analyte
and a ligand in real time (in a buffer flow). Its simplicity, on the
other hand, is based on the use of a signaling system that provides
information about the ongoing interactions based on the changes in
the fluorescence intensity. This technique can be extremely advantageous
in the study of new pharmaceuticals. The design of compounds with
biological activity, as well as the determination of their molecular
targets and modes of interactions, is crucial in the search for new
drugs and the fight against drug resistance. This article presents
another possible application of the switchSense technique for the
study of the binding kinetics of small model molecules such as ethidium
bromide (EB) and selected sulfonamide derivatives with DNA in the
static and dynamic modes at three different temperatures (15, 25,
and 37 °C) each. The experimental results remain in very good
agreement with the molecular dynamics docking ones. These physicochemical
insights and applications obtained from the switchSense technique
allow for the design of an effective strategy for molecular interaction
assessments of small but pharmaceutically important molecules with
DNA.
Collapse
Affiliation(s)
- Sandra Ramotowska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Paulina Spisz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Jakub Brzeski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| |
Collapse
|
8
|
Sulfonamides differing in the alkylamino substituent length – Synthesis, electrochemical characteristic, acid-base profile and complexation properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Liu Y, Lu Y, Xu Z, Ma X, Chen X, Liu W. Repurposing of the gold drug auranofin and a review of its derivatives as antibacterial therapeutics. Drug Discov Today 2022; 27:1961-1973. [DOI: 10.1016/j.drudis.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/22/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
|
10
|
Selective Anticancer and Antimicrobial Metallodrugs Based on Gold(III) Dithiocarbamate Complexes. Biomedicines 2021; 9:biomedicines9121775. [PMID: 34944591 PMCID: PMC8698672 DOI: 10.3390/biomedicines9121775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
New dithiocarbamate cycloaurated complexes have been synthesized and their physicochemical and in vitro antitumor properties have been evaluated. All the performed studies highlighted good transport through the blood and biodistribution, according to the balance between the properties of hydrophilicity/lipophilicity and the binding of moderate strength to the BSA protein. Furthermore, none of the complexes exhibited reduction or decomposition reactions, presenting excellent physiological stability. The in vitro cytotoxic effect was evaluated on human colon cancer cell line Caco-2/TC7, and the complexes showed great antiproliferative activity and excellent selectivity, as much less effect was detected on normal Caco-2/TC7 cells. Most of the complexes exhibit antiproliferative activity that was better than or similar to auranofin, and at least nine times better than that of cisplatin. Its action mechanism is still under discussion since no evidence of cell cycle arrest was found, but an antioxidant role was shown for some of the selective complexes. All complexes were also tested as antimicrobial drugs, exhibiting good activity towards S. aureus and E. coli. bacteria and C. albicans and C. neoformans fungi.
Collapse
|
11
|
Siqueira FDS, Alves CFDS, Machado AK, Siqueira JD, Santos TD, Mizdal CR, Moreira KS, Teixeira Carvalho D, Bonez PC, Urquhart CG, Santos RCV, Sagrillo MR, Marques LDL, Back DF, de Campos MMA. Molecular docking, quorum quenching effect, antibiofilm activity and safety profile of silver-complexed sulfonamide on Pseudomonas aeruginosa. BIOFOULING 2021; 37:555-571. [PMID: 34225503 DOI: 10.1080/08927014.2021.1939019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Microbial infections caused by sessile microorganisms are known to be a more challenging issue than infections caused by the same microorganisms in the planktonic state. Pseudomonas aeruginosa is an opportunistic pathogen and biofilm-forming agent. This species presents intense cellular communication mediated by signaling molecules. This process is known as quorum sensing (QS) and induces the transcription of specific genes that favors cell density growth and three-dimensional bacterial grouping. In this context, the discovery of compounds capable of inhibiting the action of the QS signaling molecules seems to be a promising strategy against biofilms. This work aimed to evaluate the anti-biofilm action and the in vitro safety profile of a sulfamethoxazole-Ag complex. The results obtained indicate potential anti-biofilm activity through QS inhibition. In silico tests showed that the compound acts on the las and pqs systems, which are the main regulators of biofilm formation in P. aeruginosa. Additionally, the molecule proved to be safe for human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
| | | | - Alencar Kolinski Machado
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, Brazil, Santa Maria, Brazil
| | | | - Thiago Dos Santos
- Research Center on Natural and Synthetic Products, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Caren Rigon Mizdal
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Diogo Teixeira Carvalho
- Pharmaceutical Chemistry Research Laboratory, Federal University of Alfenas, Alfenas, Brazil
| | - Pauline Codernonsi Bonez
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Michele Rorato Sagrillo
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, Brazil, Santa Maria, Brazil
| | - Lenice de Lourenço Marques
- Farroupilha Federal Institute, São Vicente do Sul Campus, Zip code: 97420-000, São Vicente do Sul, Brazil
| | - Davi Fernando Back
- Graduate Program in Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
12
|
Stenger‐Smith JR, Mascharak PK. Gold Drugs with {Au(PPh
3
)}
+
Moiety: Advantages and Medicinal Applications. ChemMedChem 2020; 15:2136-2145. [DOI: 10.1002/cmdc.202000608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/21/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Jenny R. Stenger‐Smith
- Department of Chemistry and Biochemistry University of California, Santa Cruz 1156 High Street Santa Cruz CA 95064 USA
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry University of California, Santa Cruz 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
13
|
Silver(I) and gold(I) complexes with sulfasalazine: Spectroscopic characterization, theoretical studies and antiproliferative activities over Gram-positive and Gram-negative bacterial strains. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Pinto RM, Lopes-de-Campos D, Martins MCL, Van Dijck P, Nunes C, Reis S. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol Rev 2020; 43:622-641. [PMID: 31420962 PMCID: PMC8038934 DOI: 10.1093/femsre/fuz021] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is considered by the World Health Organization as a high priority pathogen for which new therapies are needed. This is particularly important for biofilm implant-associated infections once the only available treatment option implies a surgical procedure combined with antibiotic therapy. Consequently, these infections represent an economic burden for Healthcare Systems. A new strategy has emerged to tackle this problem: for small bugs, small particles. Here, we describe how nanotechnology-based systems have been studied to treat S. aureus biofilms. Their features, drawbacks and potentialities to impact the treatment of these infections are highlighted. Furthermore, we also outline biofilm models and assays required for preclinical validation of those nanosystems to smooth the process of clinical translation.
Collapse
Affiliation(s)
- Rita M Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium.,VIB-KU Leuven, Center for Microbiology, B-3001 Leuven, Belgium.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Daniela Lopes-de-Campos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium.,VIB-KU Leuven, Center for Microbiology, B-3001 Leuven, Belgium
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Oloyede HO, Woods JAO, Görls H, Plass W, Eseola AO. Influence of structural and thermal factors on phenoxazinone synthase activities catalysed by coordinatively saturated cobalt(III) octahedral complexes bearing diazene–disulfonamide N⌃N⌃N chelators. CR CHIM 2020. [DOI: 10.5802/crchim.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Zahran RF, Geba ZM, Tabll AA, Mashaly MM. Therapeutic potential of a novel combination of Curcumin with Sulfamethoxazole against carbon tetrachloride-induced acute liver injury in Swiss albino mice. J Genet Eng Biotechnol 2020; 18:13. [PMID: 32363509 PMCID: PMC7196577 DOI: 10.1186/s43141-020-00027-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND In the current study, we have investigated the effect of each of curcumin (CUR) and sulfamethoxazole (SMX) either separate or mixed together (CUR + SMX) on biochemical, hematological and histological alternations associated with carbon tetrachloride (CCl4)-induced liver fibrosis in mice. RESULTS CCl4, caused changes of several biomarkers, proving its hepatotoxic effects, such as an increase in aminotransferases liver enzymes alanine and aspartate transaminases (ALT, AST), malondialdehyde (MDA), and nitric oxide (NO) formation, with a decrease in superoxide dismutase (SOD), glutathione reductase (GSSG), total antioxidant capacity (TAO), glutathione (GSH), total protein, and albumin, compared to a negative control mice group. Compared to the CCl4 group of mice, the CUR and SMX separate and/or together (CUR + SMX) treatments showed significance in (p < 0.001), ameliorated liver injury (characterized by an elevation of (ALT, AST) and a decrease (p < 0.001) in serum albumin and total protein), antioxidant (characterized by a decrease in (p < 0.001) MDA, NO; an increase (p < 0.001) SOD, GSSG, TAO; and reducing GSH), hematological changes (characterized by a decrease (p < 0.001) in white blood cells count and an increase (p < 0.001) in platelets count, hematocrit levels, hemoglobin concentration, and (p < 0.05) red blood cells count), SDS-PAGE electrophoresis with a decrease in protein synthesis and changes in histological examinations. CONCLUSIONS CUR and SMX either separate or together (SUR + SMX) may be considered promising candidates in the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Rasha Fekry Zahran
- Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt
| | - Zeinab M. Geba
- Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ashraf A. Tabll
- Department of Microbial Biotechnology, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, 12622 Egypt
| | - Mohammad M. Mashaly
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
17
|
Zahran RF, Geba ZM, Tabll AA, Mashaly MM. Therapeutic potential of a novel combination of Curcumin with Sulfamethoxazole against carbon tetrachloride-induced acute liver injury in Swiss albino mice. J Genet Eng Biotechnol 2020. [PMID: 32363509 DOI: 10.1186/s43141-020-00027-9.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the current study, we have investigated the effect of each of curcumin (CUR) and sulfamethoxazole (SMX) either separate or mixed together (CUR + SMX) on biochemical, hematological and histological alternations associated with carbon tetrachloride (CCl4)-induced liver fibrosis in mice. RESULTS CCl4, caused changes of several biomarkers, proving its hepatotoxic effects, such as an increase in aminotransferases liver enzymes alanine and aspartate transaminases (ALT, AST), malondialdehyde (MDA), and nitric oxide (NO) formation, with a decrease in superoxide dismutase (SOD), glutathione reductase (GSSG), total antioxidant capacity (TAO), glutathione (GSH), total protein, and albumin, compared to a negative control mice group. Compared to the CCl4 group of mice, the CUR and SMX separate and/or together (CUR + SMX) treatments showed significance in (p < 0.001), ameliorated liver injury (characterized by an elevation of (ALT, AST) and a decrease (p < 0.001) in serum albumin and total protein), antioxidant (characterized by a decrease in (p < 0.001) MDA, NO; an increase (p < 0.001) SOD, GSSG, TAO; and reducing GSH), hematological changes (characterized by a decrease (p < 0.001) in white blood cells count and an increase (p < 0.001) in platelets count, hematocrit levels, hemoglobin concentration, and (p < 0.05) red blood cells count), SDS-PAGE electrophoresis with a decrease in protein synthesis and changes in histological examinations. CONCLUSIONS CUR and SMX either separate or together (SUR + SMX) may be considered promising candidates in the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Rasha Fekry Zahran
- Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt.
| | - Zeinab M Geba
- Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ashraf A Tabll
- Department of Microbial Biotechnology, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, 12622, Egypt
| | - Mohammad M Mashaly
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
18
|
Michaut M, Steffen A, Contreras JM, Morice C, Paulen A, Schalk IJ, Plésiat P, Mislin GLA. Chryso-lactams:Gold(I) derivatives of ampicillin with specific activity against Gram-positive pathogens. Bioorg Med Chem Lett 2020; 30:127098. [PMID: 32173196 DOI: 10.1016/j.bmcl.2020.127098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Mathieu Michaut
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Alexandre Steffen
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Jean-Marie Contreras
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Christophe Morice
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Aurélie Paulen
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67400 Illkirch-Graffenstaden, France
| | - Isabelle J Schalk
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67400 Illkirch-Graffenstaden, France
| | - Patrick Plésiat
- Laboratoire de Bactériologie, UMR 6249 CNRS Chrono-Environnement, Faculté de Médecine-Pharmacie, Université de Franche-Comté, Besançon, France
| | - Gaëtan L A Mislin
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67400 Illkirch-Graffenstaden, France.
| |
Collapse
|
19
|
Suo D, Wang P, Xiao Z, Zhang S, Zhuang H, Li Y, Su X. Multiresidue Determination of 27 Sulfonamides in Poultry Feathers and Its Application to a Sulfamethazine Pharmacokinetics Study on Laying Hen Feathers and Sulfonamide Residue Monitoring on Poultry Feathers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11236-11243. [PMID: 31539244 DOI: 10.1021/acs.jafc.9b02782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A method for the simultaneous determination of 27 sulfonamides in poultry feathers using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established in this study. The samples were extracted using 0.1 mol/L HCl solutions in a 60 °C water bath for 2 h, purified using hydrophilic-lipophilic balance solid-phase extraction, nitrogen-dried, and then reconstituted for UPLC-MS/MS analysis, which was performed with a CSH-C18 column. Linearity, limit of detection, limit of quantification, recovery, and precision were calculated in accordance with Commission Decision 2002/657/EC. For linearity, all standard curves showed a standard coefficient greater than 0.99, and the recoveries and coefficient of variation were 89-115% and <20%, respectively. The limit of detection and limit of quantification were 0.2-5 and 0.5-20 ng/g, respectively. The method was successfully applied to sulfamethazine (SMZ) residue accumulation monitoring in laying hen feathers and sulfonamide residue monitoring on poultry feathers. SMZ residue accumulation in the laying hen feathers was studied after administration with 100 mg/kg of SMZ for 21 consecutive days. SMZ residues were still detected in feathers 14 days after drug administration and persisted for up to 85 days. Results from 42 poultry feather samples showed that the feather is a suitable medium to monitor the illegal use of sulfonamides in poultry production.
Collapse
Affiliation(s)
- Decheng Suo
- Institute of Quality Standards and Testing Technology for Agricultural Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Zhiming Xiao
- Institute of Quality Standards and Testing Technology for Agricultural Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Su Zhang
- Institute of Quality Standards and Testing Technology for Agricultural Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Hongting Zhuang
- Liaoning Agricultural Development Service Center , Shenyang , Liaoning 110000 , People's Republic of China
| | - Yang Li
- Institute of Quality Standards and Testing Technology for Agricultural Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agricultural Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| |
Collapse
|
20
|
Feng TY, Ren F, Fang Q, Dai GC, Li Y, Li Q, Xi HM, Li H, Hao YY, Hu JH. Effects of sulfanilamide on boar sperm quality, bacterial composition, and fertility during liquid storage at 17°C. Anim Sci J 2019; 90:1161-1169. [PMID: 31381235 DOI: 10.1111/asj.13281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/24/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022]
Abstract
Sulfanilamide (SA) is an effective broad-spectrum antibacterial agent in human and veterinary medicine. The purpose of this study was to evaluate the effects of SA on boar sperm quality during liquid storage at 17°C and determine the optimal concentration of SA and its effects on bacterial growth, microbial composition, and maternal fertility. Boar ejaculates were diluted with a basic extender, containing different concentrations of SA, and stored in a 17°C incubator for 6 days. The sperm motility, plasma membrane integrity, and acrosome integrity were measured daily. The results showed that when the concentration of SA was 0.02 g/L, the sperm quality parameters were significantly higher than those of all other treatment groups (p < .05). We also monitored the bacterial growth and compared the differences in the microbial species between the 0.02 g/L SA group and the control by 16S rDNA sequencing. The results revealed that some bacteria, such as Staphylococcus and Pseudomonas, were considerably lower in the 0.02 g/L SA group than in the control group (p < .05). In addition, preserved semen was used for artificial insemination, and results showed that 0.02 g/L SA group had a higher litter size, and its pregnancy rate was 92.5%.
Collapse
Affiliation(s)
- Tian-Yu Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fa Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qian Fang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gui-Chao Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qian Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hua-Ming Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yang-Yi Hao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Hong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Mizdal CR, Stefanello ST, Nogara PA, Antunes Soares FA, de Lourenço Marques L, de Campos MMA. Molecular docking, and anti-biofilm activity of gold-complexed sulfonamides on Pseudomonas aeruginosa. Microb Pathog 2018; 125:393-400. [DOI: 10.1016/j.micpath.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
|